summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorNathan Binkert <nate@binkert.org>2010-02-26 18:14:48 -0800
committerNathan Binkert <nate@binkert.org>2010-02-26 18:14:48 -0800
commitf7a627338ccbe0ed2c3c96ee7b9ba4552de987ab (patch)
tree77b40de6a8ad8920606c5fb4e907d770083abacc /src
parenteb4ce01056f92ba971e929d57db047fc5e280a9a (diff)
downloadgem5-f7a627338ccbe0ed2c3c96ee7b9ba4552de987ab.tar.xz
isa_parser: move code around to prepare for putting more stuff in the class
Diffstat (limited to 'src')
-rwxr-xr-xsrc/arch/isa_parser.py1802
1 files changed, 900 insertions, 902 deletions
diff --git a/src/arch/isa_parser.py b/src/arch/isa_parser.py
index 42f51d806..08449235e 100755
--- a/src/arch/isa_parser.py
+++ b/src/arch/isa_parser.py
@@ -36,702 +36,221 @@ from types import *
from m5.util.grammar import Grammar
-class ISAParser(Grammar):
- def __init__(self, *args, **kwargs):
- super(ISAParser, self).__init__(*args, **kwargs)
- self.templateMap = {}
-
- #####################################################################
- #
- # Lexer
- #
- # The PLY lexer module takes two things as input:
- # - A list of token names (the string list 'tokens')
- # - A regular expression describing a match for each token. The
- # regexp for token FOO can be provided in two ways:
- # - as a string variable named t_FOO
- # - as the doc string for a function named t_FOO. In this case,
- # the function is also executed, allowing an action to be
- # associated with each token match.
- #
- #####################################################################
-
- # Reserved words. These are listed separately as they are matched
- # using the same regexp as generic IDs, but distinguished in the
- # t_ID() function. The PLY documentation suggests this approach.
- reserved = (
- 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
- 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
- 'OUTPUT', 'SIGNED', 'TEMPLATE'
- )
-
- # List of tokens. The lex module requires this.
- tokens = reserved + (
- # identifier
- 'ID',
-
- # integer literal
- 'INTLIT',
-
- # string literal
- 'STRLIT',
-
- # code literal
- 'CODELIT',
+###################
+# Utility functions
- # ( ) [ ] { } < > , ; . : :: *
- 'LPAREN', 'RPAREN',
- 'LBRACKET', 'RBRACKET',
- 'LBRACE', 'RBRACE',
- 'LESS', 'GREATER', 'EQUALS',
- 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
- 'ASTERISK',
+#
+# Indent every line in string 's' by two spaces
+# (except preprocessor directives).
+# Used to make nested code blocks look pretty.
+#
+def indent(s):
+ return re.sub(r'(?m)^(?!#)', ' ', s)
- # C preprocessor directives
- 'CPPDIRECTIVE'
+#
+# Munge a somewhat arbitrarily formatted piece of Python code
+# (e.g. from a format 'let' block) into something whose indentation
+# will get by the Python parser.
+#
+# The two keys here are that Python will give a syntax error if
+# there's any whitespace at the beginning of the first line, and that
+# all lines at the same lexical nesting level must have identical
+# indentation. Unfortunately the way code literals work, an entire
+# let block tends to have some initial indentation. Rather than
+# trying to figure out what that is and strip it off, we prepend 'if
+# 1:' to make the let code the nested block inside the if (and have
+# the parser automatically deal with the indentation for us).
+#
+# We don't want to do this if (1) the code block is empty or (2) the
+# first line of the block doesn't have any whitespace at the front.
- # The following are matched but never returned. commented out to
- # suppress PLY warning
- # newfile directive
- # 'NEWFILE',
+def fixPythonIndentation(s):
+ # get rid of blank lines first
+ s = re.sub(r'(?m)^\s*\n', '', s);
+ if (s != '' and re.match(r'[ \t]', s[0])):
+ s = 'if 1:\n' + s
+ return s
- # endfile directive
- # 'ENDFILE'
- )
+# Error handler. Just call exit. Output formatted to work under
+# Emacs compile-mode. Optional 'print_traceback' arg, if set to True,
+# prints a Python stack backtrace too (can be handy when trying to
+# debug the parser itself).
+def error(lineno, string, print_traceback = False):
+ spaces = ""
+ for (filename, line) in fileNameStack[0:-1]:
+ print spaces + "In file included from " + filename + ":"
+ spaces += " "
+ # Print a Python stack backtrace if requested.
+ if (print_traceback):
+ traceback.print_exc()
+ if lineno != 0:
+ line_str = "%d:" % lineno
+ else:
+ line_str = ""
+ sys.exit(spaces + "%s:%s %s" % (fileNameStack[-1][0], line_str, string))
- # Regular expressions for token matching
- t_LPAREN = r'\('
- t_RPAREN = r'\)'
- t_LBRACKET = r'\['
- t_RBRACKET = r'\]'
- t_LBRACE = r'\{'
- t_RBRACE = r'\}'
- t_LESS = r'\<'
- t_GREATER = r'\>'
- t_EQUALS = r'='
- t_COMMA = r','
- t_SEMI = r';'
- t_DOT = r'\.'
- t_COLON = r':'
- t_DBLCOLON = r'::'
- t_ASTERISK = r'\*'
+####################
+# Template objects.
+#
+# Template objects are format strings that allow substitution from
+# the attribute spaces of other objects (e.g. InstObjParams instances).
- # Identifiers and reserved words
- reserved_map = { }
- for r in reserved:
- reserved_map[r.lower()] = r
+labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
- def t_ID(self, t):
- r'[A-Za-z_]\w*'
- t.type = self.reserved_map.get(t.value, 'ID')
- return t
+class Template(object):
+ def __init__(self, t):
+ self.template = t
- # Integer literal
- def t_INTLIT(self, t):
- r'-?(0x[\da-fA-F]+)|\d+'
- try:
- t.value = int(t.value,0)
- except ValueError:
- error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
- t.value = 0
- return t
+ def subst(self, d):
+ myDict = None
- # String literal. Note that these use only single quotes, and
- # can span multiple lines.
- def t_STRLIT(self, t):
- r"(?m)'([^'])+'"
- # strip off quotes
- t.value = t.value[1:-1]
- t.lexer.lineno += t.value.count('\n')
- return t
+ # Protect non-Python-dict substitutions (e.g. if there's a printf
+ # in the templated C++ code)
+ template = protect_non_subst_percents(self.template)
+ # CPU-model-specific substitutions are handled later (in GenCode).
+ template = protect_cpu_symbols(template)
+ # Build a dict ('myDict') to use for the template substitution.
+ # Start with the template namespace. Make a copy since we're
+ # going to modify it.
+ myDict = parser.templateMap.copy()
- # "Code literal"... like a string literal, but delimiters are
- # '{{' and '}}' so they get formatted nicely under emacs c-mode
- def t_CODELIT(self, t):
- r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
- # strip off {{ & }}
- t.value = t.value[2:-2]
- t.lexer.lineno += t.value.count('\n')
- return t
+ if isinstance(d, InstObjParams):
+ # If we're dealing with an InstObjParams object, we need
+ # to be a little more sophisticated. The instruction-wide
+ # parameters are already formed, but the parameters which
+ # are only function wide still need to be generated.
+ compositeCode = ''
- def t_CPPDIRECTIVE(self, t):
- r'^\#[^\#].*\n'
- t.lexer.lineno += t.value.count('\n')
- return t
+ myDict.update(d.__dict__)
+ # The "operands" and "snippets" attributes of the InstObjParams
+ # objects are for internal use and not substitution.
+ del myDict['operands']
+ del myDict['snippets']
- def t_NEWFILE(self, t):
- r'^\#\#newfile\s+"[\w/.-]*"'
- fileNameStack.push((t.value[11:-1], t.lexer.lineno))
- t.lexer.lineno = 0
+ snippetLabels = [l for l in labelRE.findall(template)
+ if d.snippets.has_key(l)]
- def t_ENDFILE(self, t):
- r'^\#\#endfile'
- (old_filename, t.lexer.lineno) = fileNameStack.pop()
+ snippets = dict([(s, mungeSnippet(d.snippets[s]))
+ for s in snippetLabels])
- #
- # The functions t_NEWLINE, t_ignore, and t_error are
- # special for the lex module.
- #
+ myDict.update(snippets)
- # Newlines
- def t_NEWLINE(self, t):
- r'\n+'
- t.lexer.lineno += t.value.count('\n')
+ compositeCode = ' '.join(map(str, snippets.values()))
- # Comments
- def t_comment(self, t):
- r'//.*'
+ # Add in template itself in case it references any
+ # operands explicitly (like Mem)
+ compositeCode += ' ' + template
- # Completely ignored characters
- t_ignore = ' \t\x0c'
+ operands = SubOperandList(compositeCode, d.operands)
- # Error handler
- def t_error(self, t):
- error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
- t.skip(1)
+ myDict['op_decl'] = operands.concatAttrStrings('op_decl')
- #####################################################################
- #
- # Parser
- #
- # Every function whose name starts with 'p_' defines a grammar
- # rule. The rule is encoded in the function's doc string, while
- # the function body provides the action taken when the rule is
- # matched. The argument to each function is a list of the values
- # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
- # symbols on the RHS. For tokens, the value is copied from the
- # t.value attribute provided by the lexer. For non-terminals, the
- # value is assigned by the producing rule; i.e., the job of the
- # grammar rule function is to set the value for the non-terminal
- # on the LHS (by assigning to t[0]).
- #####################################################################
+ is_src = lambda op: op.is_src
+ is_dest = lambda op: op.is_dest
- # The LHS of the first grammar rule is used as the start symbol
- # (in this case, 'specification'). Note that this rule enforces
- # that there will be exactly one namespace declaration, with 0 or
- # more global defs/decls before and after it. The defs & decls
- # before the namespace decl will be outside the namespace; those
- # after will be inside. The decoder function is always inside the
- # namespace.
- def p_specification(self, t):
- 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
- global_code = t[1]
- isa_name = t[2]
- namespace = isa_name + "Inst"
- # wrap the decode block as a function definition
- t[4].wrap_decode_block('''
-StaticInstPtr
-%(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst)
-{
- using namespace %(namespace)s;
-''' % vars(), '}')
- # both the latter output blocks and the decode block are in
- # the namespace
- namespace_code = t[3] + t[4]
- # pass it all back to the caller of yacc.parse()
- t[0] = (isa_name, namespace, global_code, namespace_code)
+ myDict['op_src_decl'] = \
+ operands.concatSomeAttrStrings(is_src, 'op_src_decl')
+ myDict['op_dest_decl'] = \
+ operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
- # ISA name declaration looks like "namespace <foo>;"
- def p_name_decl(self, t):
- 'name_decl : NAMESPACE ID SEMI'
- t[0] = t[2]
+ myDict['op_rd'] = operands.concatAttrStrings('op_rd')
+ myDict['op_wb'] = operands.concatAttrStrings('op_wb')
- # 'opt_defs_and_outputs' is a possibly empty sequence of
- # def and/or output statements.
- def p_opt_defs_and_outputs_0(self, t):
- 'opt_defs_and_outputs : empty'
- t[0] = GenCode()
+ if d.operands.memOperand:
+ myDict['mem_acc_size'] = d.operands.memOperand.mem_acc_size
+ myDict['mem_acc_type'] = d.operands.memOperand.mem_acc_type
- def p_opt_defs_and_outputs_1(self, t):
- 'opt_defs_and_outputs : defs_and_outputs'
- t[0] = t[1]
+ elif isinstance(d, dict):
+ # if the argument is a dictionary, we just use it.
+ myDict.update(d)
+ elif hasattr(d, '__dict__'):
+ # if the argument is an object, we use its attribute map.
+ myDict.update(d.__dict__)
+ else:
+ raise TypeError, "Template.subst() arg must be or have dictionary"
+ return template % myDict
- def p_defs_and_outputs_0(self, t):
- 'defs_and_outputs : def_or_output'
- t[0] = t[1]
+ # Convert to string. This handles the case when a template with a
+ # CPU-specific term gets interpolated into another template or into
+ # an output block.
+ def __str__(self):
+ return expand_cpu_symbols_to_string(self.template)
- def p_defs_and_outputs_1(self, t):
- 'defs_and_outputs : defs_and_outputs def_or_output'
- t[0] = t[1] + t[2]
+################
+# Format object.
+#
+# A format object encapsulates an instruction format. It must provide
+# a defineInst() method that generates the code for an instruction
+# definition.
- # The list of possible definition/output statements.
- def p_def_or_output(self, t):
- '''def_or_output : def_format
- | def_bitfield
- | def_bitfield_struct
- | def_template
- | def_operand_types
- | def_operands
- | output_header
- | output_decoder
- | output_exec
- | global_let'''
- t[0] = t[1]
+exportContextSymbols = ('InstObjParams', 'makeList', 're', 'string')
- # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
- # directly to the appropriate output section.
+exportContext = {}
- # Massage output block by substituting in template definitions and
- # bit operators. We handle '%'s embedded in the string that don't
- # indicate template substitutions (or CPU-specific symbols, which
- # get handled in GenCode) by doubling them first so that the
- # format operation will reduce them back to single '%'s.
- def process_output(self, s):
- s = protect_non_subst_percents(s)
- # protects cpu-specific symbols too
- s = protect_cpu_symbols(s)
- return substBitOps(s % self.templateMap)
+def updateExportContext():
+ exportContext.update(exportDict(*exportContextSymbols))
+ exportContext.update(parser.templateMap)
- def p_output_header(self, t):
- 'output_header : OUTPUT HEADER CODELIT SEMI'
- t[0] = GenCode(header_output = self.process_output(t[3]))
+def exportDict(*symNames):
+ return dict([(s, eval(s)) for s in symNames])
- def p_output_decoder(self, t):
- 'output_decoder : OUTPUT DECODER CODELIT SEMI'
- t[0] = GenCode(decoder_output = self.process_output(t[3]))
- def p_output_exec(self, t):
- 'output_exec : OUTPUT EXEC CODELIT SEMI'
- t[0] = GenCode(exec_output = self.process_output(t[3]))
+class Format(object):
+ def __init__(self, id, params, code):
+ # constructor: just save away arguments
+ self.id = id
+ self.params = params
+ label = 'def format ' + id
+ self.user_code = compile(fixPythonIndentation(code), label, 'exec')
+ param_list = string.join(params, ", ")
+ f = '''def defInst(_code, _context, %s):
+ my_locals = vars().copy()
+ exec _code in _context, my_locals
+ return my_locals\n''' % param_list
+ c = compile(f, label + ' wrapper', 'exec')
+ exec c
+ self.func = defInst
- # global let blocks 'let {{...}}' (Python code blocks) are
- # executed directly when seen. Note that these execute in a
- # special variable context 'exportContext' to prevent the code
- # from polluting this script's namespace.
- def p_global_let(self, t):
- 'global_let : LET CODELIT SEMI'
+ def defineInst(self, name, args, lineno):
+ context = {}
updateExportContext()
- exportContext["header_output"] = ''
- exportContext["decoder_output"] = ''
- exportContext["exec_output"] = ''
- exportContext["decode_block"] = ''
- try:
- exec fixPythonIndentation(t[2]) in exportContext
- except Exception, exc:
- error(t.lexer.lineno,
- 'error: %s in global let block "%s".' % (exc, t[2]))
- t[0] = GenCode(header_output = exportContext["header_output"],
- decoder_output = exportContext["decoder_output"],
- exec_output = exportContext["exec_output"],
- decode_block = exportContext["decode_block"])
-
- # Define the mapping from operand type extensions to C++ types and
- # bit widths (stored in operandTypeMap).
- def p_def_operand_types(self, t):
- 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
- try:
- user_dict = eval('{' + t[3] + '}')
- except Exception, exc:
- error(t.lexer.lineno,
- 'error: %s in def operand_types block "%s".' % (exc, t[3]))
- buildOperandTypeMap(user_dict, t.lexer.lineno)
- t[0] = GenCode() # contributes nothing to the output C++ file
-
- # Define the mapping from operand names to operand classes and
- # other traits. Stored in operandNameMap.
- def p_def_operands(self, t):
- 'def_operands : DEF OPERANDS CODELIT SEMI'
- if not globals().has_key('operandTypeMap'):
- error(t.lexer.lineno,
- 'error: operand types must be defined before operands')
+ context.update(exportContext)
+ if len(name):
+ Name = name[0].upper()
+ if len(name) > 1:
+ Name += name[1:]
+ context.update({ 'name': name, 'Name': Name })
try:
- user_dict = eval('{' + t[3] + '}', exportContext)
+ vars = self.func(self.user_code, context, *args[0], **args[1])
except Exception, exc:
- error(t.lexer.lineno,
- 'error: %s in def operands block "%s".' % (exc, t[3]))
- buildOperandNameMap(user_dict, t.lexer.lineno)
- t[0] = GenCode() # contributes nothing to the output C++ file
-
- # A bitfield definition looks like:
- # 'def [signed] bitfield <ID> [<first>:<last>]'
- # This generates a preprocessor macro in the output file.
- def p_def_bitfield_0(self, t):
- 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
- expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
- if (t[2] == 'signed'):
- expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
- hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
- t[0] = GenCode(header_output = hash_define)
-
- # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
- def p_def_bitfield_1(self, t):
- 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
- expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
- if (t[2] == 'signed'):
- expr = 'sext<%d>(%s)' % (1, expr)
- hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
- t[0] = GenCode(header_output = hash_define)
-
- # alternate form for structure member: 'def bitfield <ID> <ID>'
- def p_def_bitfield_struct(self, t):
- 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
- if (t[2] != ''):
- error(t.lexer.lineno,
- 'error: structure bitfields are always unsigned.')
- expr = 'machInst.%s' % t[5]
- hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
- t[0] = GenCode(header_output = hash_define)
-
- def p_id_with_dot_0(self, t):
- 'id_with_dot : ID'
- t[0] = t[1]
-
- def p_id_with_dot_1(self, t):
- 'id_with_dot : ID DOT id_with_dot'
- t[0] = t[1] + t[2] + t[3]
-
- def p_opt_signed_0(self, t):
- 'opt_signed : SIGNED'
- t[0] = t[1]
-
- def p_opt_signed_1(self, t):
- 'opt_signed : empty'
- t[0] = ''
-
- def p_def_template(self, t):
- 'def_template : DEF TEMPLATE ID CODELIT SEMI'
- self.templateMap[t[3]] = Template(t[4])
- t[0] = GenCode()
-
- # An instruction format definition looks like
- # "def format <fmt>(<params>) {{...}};"
- def p_def_format(self, t):
- 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
- (id, params, code) = (t[3], t[5], t[7])
- defFormat(id, params, code, t.lexer.lineno)
- t[0] = GenCode()
-
- # The formal parameter list for an instruction format is a
- # possibly empty list of comma-separated parameters. Positional
- # (standard, non-keyword) parameters must come first, followed by
- # keyword parameters, followed by a '*foo' parameter that gets
- # excess positional arguments (as in Python). Each of these three
- # parameter categories is optional.
- #
- # Note that we do not support the '**foo' parameter for collecting
- # otherwise undefined keyword args. Otherwise the parameter list
- # is (I believe) identical to what is supported in Python.
- #
- # The param list generates a tuple, where the first element is a
- # list of the positional params and the second element is a dict
- # containing the keyword params.
- def p_param_list_0(self, t):
- 'param_list : positional_param_list COMMA nonpositional_param_list'
- t[0] = t[1] + t[3]
-
- def p_param_list_1(self, t):
- '''param_list : positional_param_list
- | nonpositional_param_list'''
- t[0] = t[1]
-
- def p_positional_param_list_0(self, t):
- 'positional_param_list : empty'
- t[0] = []
-
- def p_positional_param_list_1(self, t):
- 'positional_param_list : ID'
- t[0] = [t[1]]
-
- def p_positional_param_list_2(self, t):
- 'positional_param_list : positional_param_list COMMA ID'
- t[0] = t[1] + [t[3]]
-
- def p_nonpositional_param_list_0(self, t):
- 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
- t[0] = t[1] + t[3]
-
- def p_nonpositional_param_list_1(self, t):
- '''nonpositional_param_list : keyword_param_list
- | excess_args_param'''
- t[0] = t[1]
-
- def p_keyword_param_list_0(self, t):
- 'keyword_param_list : keyword_param'
- t[0] = [t[1]]
-
- def p_keyword_param_list_1(self, t):
- 'keyword_param_list : keyword_param_list COMMA keyword_param'
- t[0] = t[1] + [t[3]]
-
- def p_keyword_param(self, t):
- 'keyword_param : ID EQUALS expr'
- t[0] = t[1] + ' = ' + t[3].__repr__()
-
- def p_excess_args_param(self, t):
- 'excess_args_param : ASTERISK ID'
- # Just concatenate them: '*ID'. Wrap in list to be consistent
- # with positional_param_list and keyword_param_list.
- t[0] = [t[1] + t[2]]
-
- # End of format definition-related rules.
- ##############
-
- #
- # A decode block looks like:
- # decode <field1> [, <field2>]* [default <inst>] { ... }
- #
- def p_decode_block(self, t):
- 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
- default_defaults = defaultStack.pop()
- codeObj = t[5]
- # use the "default defaults" only if there was no explicit
- # default statement in decode_stmt_list
- if not codeObj.has_decode_default:
- codeObj += default_defaults
- codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
- t[0] = codeObj
-
- # The opt_default statement serves only to push the "default
- # defaults" onto defaultStack. This value will be used by nested
- # decode blocks, and used and popped off when the current
- # decode_block is processed (in p_decode_block() above).
- def p_opt_default_0(self, t):
- 'opt_default : empty'
- # no default specified: reuse the one currently at the top of
- # the stack
- defaultStack.push(defaultStack.top())
- # no meaningful value returned
- t[0] = None
-
- def p_opt_default_1(self, t):
- 'opt_default : DEFAULT inst'
- # push the new default
- codeObj = t[2]
- codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
- defaultStack.push(codeObj)
- # no meaningful value returned
- t[0] = None
-
- def p_decode_stmt_list_0(self, t):
- 'decode_stmt_list : decode_stmt'
- t[0] = t[1]
-
- def p_decode_stmt_list_1(self, t):
- 'decode_stmt_list : decode_stmt decode_stmt_list'
- if (t[1].has_decode_default and t[2].has_decode_default):
- error(t.lexer.lineno, 'Two default cases in decode block')
- t[0] = t[1] + t[2]
-
- #
- # Decode statement rules
- #
- # There are four types of statements allowed in a decode block:
- # 1. Format blocks 'format <foo> { ... }'
- # 2. Nested decode blocks
- # 3. Instruction definitions.
- # 4. C preprocessor directives.
-
-
- # Preprocessor directives found in a decode statement list are
- # passed through to the output, replicated to all of the output
- # code streams. This works well for ifdefs, so we can ifdef out
- # both the declarations and the decode cases generated by an
- # instruction definition. Handling them as part of the grammar
- # makes it easy to keep them in the right place with respect to
- # the code generated by the other statements.
- def p_decode_stmt_cpp(self, t):
- 'decode_stmt : CPPDIRECTIVE'
- t[0] = GenCode(t[1], t[1], t[1], t[1])
-
- # A format block 'format <foo> { ... }' sets the default
- # instruction format used to handle instruction definitions inside
- # the block. This format can be overridden by using an explicit
- # format on the instruction definition or with a nested format
- # block.
- def p_decode_stmt_format(self, t):
- 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
- # The format will be pushed on the stack when 'push_format_id'
- # is processed (see below). Once the parser has recognized
- # the full production (though the right brace), we're done
- # with the format, so now we can pop it.
- formatStack.pop()
- t[0] = t[4]
-
- # This rule exists so we can set the current format (& push the
- # stack) when we recognize the format name part of the format
- # block.
- def p_push_format_id(self, t):
- 'push_format_id : ID'
- try:
- formatStack.push(formatMap[t[1]])
- t[0] = ('', '// format %s' % t[1])
- except KeyError:
- error(t.lexer.lineno,
- 'instruction format "%s" not defined.' % t[1])
-
- # Nested decode block: if the value of the current field matches
- # the specified constant, do a nested decode on some other field.
- def p_decode_stmt_decode(self, t):
- 'decode_stmt : case_label COLON decode_block'
- label = t[1]
- codeObj = t[3]
- # just wrap the decoding code from the block as a case in the
- # outer switch statement.
- codeObj.wrap_decode_block('\n%s:\n' % label)
- codeObj.has_decode_default = (label == 'default')
- t[0] = codeObj
-
- # Instruction definition (finally!).
- def p_decode_stmt_inst(self, t):
- 'decode_stmt : case_label COLON inst SEMI'
- label = t[1]
- codeObj = t[3]
- codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
- codeObj.has_decode_default = (label == 'default')
- t[0] = codeObj
-
- # The case label is either a list of one or more constants or
- # 'default'
- def p_case_label_0(self, t):
- 'case_label : intlit_list'
- def make_case(intlit):
- if intlit >= 2**32:
- return 'case ULL(%#x)' % intlit
- else:
- return 'case %#x' % intlit
- t[0] = ': '.join(map(make_case, t[1]))
-
- def p_case_label_1(self, t):
- 'case_label : DEFAULT'
- t[0] = 'default'
-
- #
- # The constant list for a decode case label must be non-empty, but
- # may have one or more comma-separated integer literals in it.
- #
- def p_intlit_list_0(self, t):
- 'intlit_list : INTLIT'
- t[0] = [t[1]]
-
- def p_intlit_list_1(self, t):
- 'intlit_list : intlit_list COMMA INTLIT'
- t[0] = t[1]
- t[0].append(t[3])
-
- # Define an instruction using the current instruction format
- # (specified by an enclosing format block).
- # "<mnemonic>(<args>)"
- def p_inst_0(self, t):
- 'inst : ID LPAREN arg_list RPAREN'
- # Pass the ID and arg list to the current format class to deal with.
- currentFormat = formatStack.top()
- codeObj = currentFormat.defineInst(t[1], t[3], t.lexer.lineno)
- args = ','.join(map(str, t[3]))
- args = re.sub('(?m)^', '//', args)
- args = re.sub('^//', '', args)
- comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
- codeObj.prepend_all(comment)
- t[0] = codeObj
-
- # Define an instruction using an explicitly specified format:
- # "<fmt>::<mnemonic>(<args>)"
- def p_inst_1(self, t):
- 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
- try:
- format = formatMap[t[1]]
- except KeyError:
- error(t.lexer.lineno,
- 'instruction format "%s" not defined.' % t[1])
- codeObj = format.defineInst(t[3], t[5], t.lexer.lineno)
- comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
- codeObj.prepend_all(comment)
- t[0] = codeObj
-
- # The arg list generates a tuple, where the first element is a
- # list of the positional args and the second element is a dict
- # containing the keyword args.
- def p_arg_list_0(self, t):
- 'arg_list : positional_arg_list COMMA keyword_arg_list'
- t[0] = ( t[1], t[3] )
-
- def p_arg_list_1(self, t):
- 'arg_list : positional_arg_list'
- t[0] = ( t[1], {} )
-
- def p_arg_list_2(self, t):
- 'arg_list : keyword_arg_list'
- t[0] = ( [], t[1] )
-
- def p_positional_arg_list_0(self, t):
- 'positional_arg_list : empty'
- t[0] = []
-
- def p_positional_arg_list_1(self, t):
- 'positional_arg_list : expr'
- t[0] = [t[1]]
-
- def p_positional_arg_list_2(self, t):
- 'positional_arg_list : positional_arg_list COMMA expr'
- t[0] = t[1] + [t[3]]
-
- def p_keyword_arg_list_0(self, t):
- 'keyword_arg_list : keyword_arg'
- t[0] = t[1]
-
- def p_keyword_arg_list_1(self, t):
- 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
- t[0] = t[1]
- t[0].update(t[3])
-
- def p_keyword_arg(self, t):
- 'keyword_arg : ID EQUALS expr'
- t[0] = { t[1] : t[3] }
-
- #
- # Basic expressions. These constitute the argument values of
- # "function calls" (i.e. instruction definitions in the decode
- # block) and default values for formal parameters of format
- # functions.
- #
- # Right now, these are either strings, integers, or (recursively)
- # lists of exprs (using Python square-bracket list syntax). Note
- # that bare identifiers are trated as string constants here (since
- # there isn't really a variable namespace to refer to).
- #
- def p_expr_0(self, t):
- '''expr : ID
- | INTLIT
- | STRLIT
- | CODELIT'''
- t[0] = t[1]
-
- def p_expr_1(self, t):
- '''expr : LBRACKET list_expr RBRACKET'''
- t[0] = t[2]
-
- def p_list_expr_0(self, t):
- 'list_expr : expr'
- t[0] = [t[1]]
-
- def p_list_expr_1(self, t):
- 'list_expr : list_expr COMMA expr'
- t[0] = t[1] + [t[3]]
-
- def p_list_expr_2(self, t):
- 'list_expr : empty'
- t[0] = []
+ error(lineno, 'error defining "%s": %s.' % (name, exc))
+ for k in vars.keys():
+ if k not in ('header_output', 'decoder_output',
+ 'exec_output', 'decode_block'):
+ del vars[k]
+ return GenCode(**vars)
- #
- # Empty production... use in other rules for readability.
- #
- def p_empty(self, t):
- 'empty :'
- pass
+# Special null format to catch an implicit-format instruction
+# definition outside of any format block.
+class NoFormat(object):
+ def __init__(self):
+ self.defaultInst = ''
- # Parse error handler. Note that the argument here is the
- # offending *token*, not a grammar symbol (hence the need to use
- # t.value)
- def p_error(self, t):
- if t:
- error(t.lexer.lineno, "syntax error at '%s'" % t.value)
- else:
- error(0, "unknown syntax error", True)
+ def defineInst(self, name, args, lineno):
+ error(lineno,
+ 'instruction definition "%s" with no active format!' % name)
- # END OF GRAMMAR RULES
+# This dictionary maps format name strings to Format objects.
+formatMap = {}
-# Now build the parser.
-parser = ISAParser()
+# Define a new format
+def defFormat(id, params, code, lineno):
+ # make sure we haven't already defined this one
+ if formatMap.get(id, None) != None:
+ error(lineno, 'format %s redefined.' % id)
+ # create new object and store in global map
+ formatMap[id] = Format(id, params, code)
#####################################################################
#
@@ -833,164 +352,6 @@ class GenCode(object):
def wrap_decode_block(self, pre, post = ''):
self.decode_block = pre + indent(self.decode_block) + post
-################
-# Format object.
-#
-# A format object encapsulates an instruction format. It must provide
-# a defineInst() method that generates the code for an instruction
-# definition.
-
-exportContextSymbols = ('InstObjParams', 'makeList', 're', 'string')
-
-exportContext = {}
-
-def updateExportContext():
- exportContext.update(exportDict(*exportContextSymbols))
- exportContext.update(parser.templateMap)
-
-def exportDict(*symNames):
- return dict([(s, eval(s)) for s in symNames])
-
-
-class Format(object):
- def __init__(self, id, params, code):
- # constructor: just save away arguments
- self.id = id
- self.params = params
- label = 'def format ' + id
- self.user_code = compile(fixPythonIndentation(code), label, 'exec')
- param_list = string.join(params, ", ")
- f = '''def defInst(_code, _context, %s):
- my_locals = vars().copy()
- exec _code in _context, my_locals
- return my_locals\n''' % param_list
- c = compile(f, label + ' wrapper', 'exec')
- exec c
- self.func = defInst
-
- def defineInst(self, name, args, lineno):
- context = {}
- updateExportContext()
- context.update(exportContext)
- if len(name):
- Name = name[0].upper()
- if len(name) > 1:
- Name += name[1:]
- context.update({ 'name': name, 'Name': Name })
- try:
- vars = self.func(self.user_code, context, *args[0], **args[1])
- except Exception, exc:
- error(lineno, 'error defining "%s": %s.' % (name, exc))
- for k in vars.keys():
- if k not in ('header_output', 'decoder_output',
- 'exec_output', 'decode_block'):
- del vars[k]
- return GenCode(**vars)
-
-# Special null format to catch an implicit-format instruction
-# definition outside of any format block.
-class NoFormat(object):
- def __init__(self):
- self.defaultInst = ''
-
- def defineInst(self, name, args, lineno):
- error(lineno,
- 'instruction definition "%s" with no active format!' % name)
-
-# This dictionary maps format name strings to Format objects.
-formatMap = {}
-
-# Define a new format
-def defFormat(id, params, code, lineno):
- # make sure we haven't already defined this one
- if formatMap.get(id, None) != None:
- error(lineno, 'format %s redefined.' % id)
- # create new object and store in global map
- formatMap[id] = Format(id, params, code)
-
-
-##############
-# Stack: a simple stack object. Used for both formats (formatStack)
-# and default cases (defaultStack). Simply wraps a list to give more
-# stack-like syntax and enable initialization with an argument list
-# (as opposed to an argument that's a list).
-
-class Stack(list):
- def __init__(self, *items):
- list.__init__(self, items)
-
- def push(self, item):
- self.append(item);
-
- def top(self):
- return self[-1]
-
-# The global format stack.
-formatStack = Stack(NoFormat())
-
-# The global default case stack.
-defaultStack = Stack( None )
-
-# Global stack that tracks current file and line number.
-# Each element is a tuple (filename, lineno) that records the
-# *current* filename and the line number in the *previous* file where
-# it was included.
-fileNameStack = Stack()
-
-###################
-# Utility functions
-
-#
-# Indent every line in string 's' by two spaces
-# (except preprocessor directives).
-# Used to make nested code blocks look pretty.
-#
-def indent(s):
- return re.sub(r'(?m)^(?!#)', ' ', s)
-
-#
-# Munge a somewhat arbitrarily formatted piece of Python code
-# (e.g. from a format 'let' block) into something whose indentation
-# will get by the Python parser.
-#
-# The two keys here are that Python will give a syntax error if
-# there's any whitespace at the beginning of the first line, and that
-# all lines at the same lexical nesting level must have identical
-# indentation. Unfortunately the way code literals work, an entire
-# let block tends to have some initial indentation. Rather than
-# trying to figure out what that is and strip it off, we prepend 'if
-# 1:' to make the let code the nested block inside the if (and have
-# the parser automatically deal with the indentation for us).
-#
-# We don't want to do this if (1) the code block is empty or (2) the
-# first line of the block doesn't have any whitespace at the front.
-
-def fixPythonIndentation(s):
- # get rid of blank lines first
- s = re.sub(r'(?m)^\s*\n', '', s);
- if (s != '' and re.match(r'[ \t]', s[0])):
- s = 'if 1:\n' + s
- return s
-
-# Error handler. Just call exit. Output formatted to work under
-# Emacs compile-mode. Optional 'print_traceback' arg, if set to True,
-# prints a Python stack backtrace too (can be handy when trying to
-# debug the parser itself).
-def error(lineno, string, print_traceback = False):
- spaces = ""
- for (filename, line) in fileNameStack[0:-1]:
- print spaces + "In file included from " + filename + ":"
- spaces += " "
- # Print a Python stack backtrace if requested.
- if (print_traceback):
- traceback.print_exc()
- if lineno != 0:
- line_str = "%d:" % lineno
- else:
- line_str = ""
- sys.exit(spaces + "%s:%s %s" % (fileNameStack[-1][0], line_str, string))
-
-
#####################################################################
#
# Bitfield Operator Support
@@ -1032,94 +393,6 @@ def substBitOps(code):
return code
-####################
-# Template objects.
-#
-# Template objects are format strings that allow substitution from
-# the attribute spaces of other objects (e.g. InstObjParams instances).
-
-labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
-
-class Template(object):
- def __init__(self, t):
- self.template = t
-
- def subst(self, d):
- myDict = None
-
- # Protect non-Python-dict substitutions (e.g. if there's a printf
- # in the templated C++ code)
- template = protect_non_subst_percents(self.template)
- # CPU-model-specific substitutions are handled later (in GenCode).
- template = protect_cpu_symbols(template)
-
- # Build a dict ('myDict') to use for the template substitution.
- # Start with the template namespace. Make a copy since we're
- # going to modify it.
- myDict = parser.templateMap.copy()
-
- if isinstance(d, InstObjParams):
- # If we're dealing with an InstObjParams object, we need
- # to be a little more sophisticated. The instruction-wide
- # parameters are already formed, but the parameters which
- # are only function wide still need to be generated.
- compositeCode = ''
-
- myDict.update(d.__dict__)
- # The "operands" and "snippets" attributes of the InstObjParams
- # objects are for internal use and not substitution.
- del myDict['operands']
- del myDict['snippets']
-
- snippetLabels = [l for l in labelRE.findall(template)
- if d.snippets.has_key(l)]
-
- snippets = dict([(s, mungeSnippet(d.snippets[s]))
- for s in snippetLabels])
-
- myDict.update(snippets)
-
- compositeCode = ' '.join(map(str, snippets.values()))
-
- # Add in template itself in case it references any
- # operands explicitly (like Mem)
- compositeCode += ' ' + template
-
- operands = SubOperandList(compositeCode, d.operands)
-
- myDict['op_decl'] = operands.concatAttrStrings('op_decl')
-
- is_src = lambda op: op.is_src
- is_dest = lambda op: op.is_dest
-
- myDict['op_src_decl'] = \
- operands.concatSomeAttrStrings(is_src, 'op_src_decl')
- myDict['op_dest_decl'] = \
- operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
-
- myDict['op_rd'] = operands.concatAttrStrings('op_rd')
- myDict['op_wb'] = operands.concatAttrStrings('op_wb')
-
- if d.operands.memOperand:
- myDict['mem_acc_size'] = d.operands.memOperand.mem_acc_size
- myDict['mem_acc_type'] = d.operands.memOperand.mem_acc_type
-
- elif isinstance(d, dict):
- # if the argument is a dictionary, we just use it.
- myDict.update(d)
- elif hasattr(d, '__dict__'):
- # if the argument is an object, we use its attribute map.
- myDict.update(d.__dict__)
- else:
- raise TypeError, "Template.subst() arg must be or have dictionary"
- return template % myDict
-
- # Convert to string. This handles the case when a template with a
- # CPU-specific term gets interpolated into another template or into
- # an output block.
- def __str__(self):
- return expand_cpu_symbols_to_string(self.template)
-
#####################################################################
#
# Code Parser
@@ -1878,6 +1151,35 @@ class InstObjParams(object):
else:
self.fp_enable_check = ''
+##############
+# Stack: a simple stack object. Used for both formats (formatStack)
+# and default cases (defaultStack). Simply wraps a list to give more
+# stack-like syntax and enable initialization with an argument list
+# (as opposed to an argument that's a list).
+
+class Stack(list):
+ def __init__(self, *items):
+ list.__init__(self, items)
+
+ def push(self, item):
+ self.append(item);
+
+ def top(self):
+ return self[-1]
+
+# The global format stack.
+formatStack = Stack(NoFormat())
+
+# The global default case stack.
+defaultStack = Stack(None)
+
+# Global stack that tracks current file and line number.
+# Each element is a tuple (filename, lineno) that records the
+# *current* filename and the line number in the *previous* file where
+# it was included.
+fileNameStack = Stack()
+
+
#######################
#
# Output file template
@@ -1919,6 +1221,702 @@ namespace %(namespace)s {
'''
+class ISAParser(Grammar):
+ def __init__(self, *args, **kwargs):
+ super(ISAParser, self).__init__(*args, **kwargs)
+ self.templateMap = {}
+
+ #####################################################################
+ #
+ # Lexer
+ #
+ # The PLY lexer module takes two things as input:
+ # - A list of token names (the string list 'tokens')
+ # - A regular expression describing a match for each token. The
+ # regexp for token FOO can be provided in two ways:
+ # - as a string variable named t_FOO
+ # - as the doc string for a function named t_FOO. In this case,
+ # the function is also executed, allowing an action to be
+ # associated with each token match.
+ #
+ #####################################################################
+
+ # Reserved words. These are listed separately as they are matched
+ # using the same regexp as generic IDs, but distinguished in the
+ # t_ID() function. The PLY documentation suggests this approach.
+ reserved = (
+ 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
+ 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
+ 'OUTPUT', 'SIGNED', 'TEMPLATE'
+ )
+
+ # List of tokens. The lex module requires this.
+ tokens = reserved + (
+ # identifier
+ 'ID',
+
+ # integer literal
+ 'INTLIT',
+
+ # string literal
+ 'STRLIT',
+
+ # code literal
+ 'CODELIT',
+
+ # ( ) [ ] { } < > , ; . : :: *
+ 'LPAREN', 'RPAREN',
+ 'LBRACKET', 'RBRACKET',
+ 'LBRACE', 'RBRACE',
+ 'LESS', 'GREATER', 'EQUALS',
+ 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
+ 'ASTERISK',
+
+ # C preprocessor directives
+ 'CPPDIRECTIVE'
+
+ # The following are matched but never returned. commented out to
+ # suppress PLY warning
+ # newfile directive
+ # 'NEWFILE',
+
+ # endfile directive
+ # 'ENDFILE'
+ )
+
+ # Regular expressions for token matching
+ t_LPAREN = r'\('
+ t_RPAREN = r'\)'
+ t_LBRACKET = r'\['
+ t_RBRACKET = r'\]'
+ t_LBRACE = r'\{'
+ t_RBRACE = r'\}'
+ t_LESS = r'\<'
+ t_GREATER = r'\>'
+ t_EQUALS = r'='
+ t_COMMA = r','
+ t_SEMI = r';'
+ t_DOT = r'\.'
+ t_COLON = r':'
+ t_DBLCOLON = r'::'
+ t_ASTERISK = r'\*'
+
+ # Identifiers and reserved words
+ reserved_map = { }
+ for r in reserved:
+ reserved_map[r.lower()] = r
+
+ def t_ID(self, t):
+ r'[A-Za-z_]\w*'
+ t.type = self.reserved_map.get(t.value, 'ID')
+ return t
+
+ # Integer literal
+ def t_INTLIT(self, t):
+ r'-?(0x[\da-fA-F]+)|\d+'
+ try:
+ t.value = int(t.value,0)
+ except ValueError:
+ error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
+ t.value = 0
+ return t
+
+ # String literal. Note that these use only single quotes, and
+ # can span multiple lines.
+ def t_STRLIT(self, t):
+ r"(?m)'([^'])+'"
+ # strip off quotes
+ t.value = t.value[1:-1]
+ t.lexer.lineno += t.value.count('\n')
+ return t
+
+
+ # "Code literal"... like a string literal, but delimiters are
+ # '{{' and '}}' so they get formatted nicely under emacs c-mode
+ def t_CODELIT(self, t):
+ r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
+ # strip off {{ & }}
+ t.value = t.value[2:-2]
+ t.lexer.lineno += t.value.count('\n')
+ return t
+
+ def t_CPPDIRECTIVE(self, t):
+ r'^\#[^\#].*\n'
+ t.lexer.lineno += t.value.count('\n')
+ return t
+
+ def t_NEWFILE(self, t):
+ r'^\#\#newfile\s+"[\w/.-]*"'
+ fileNameStack.push((t.value[11:-1], t.lexer.lineno))
+ t.lexer.lineno = 0
+
+ def t_ENDFILE(self, t):
+ r'^\#\#endfile'
+ (old_filename, t.lexer.lineno) = fileNameStack.pop()
+
+ #
+ # The functions t_NEWLINE, t_ignore, and t_error are
+ # special for the lex module.
+ #
+
+ # Newlines
+ def t_NEWLINE(self, t):
+ r'\n+'
+ t.lexer.lineno += t.value.count('\n')
+
+ # Comments
+ def t_comment(self, t):
+ r'//.*'
+
+ # Completely ignored characters
+ t_ignore = ' \t\x0c'
+
+ # Error handler
+ def t_error(self, t):
+ error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
+ t.skip(1)
+
+ #####################################################################
+ #
+ # Parser
+ #
+ # Every function whose name starts with 'p_' defines a grammar
+ # rule. The rule is encoded in the function's doc string, while
+ # the function body provides the action taken when the rule is
+ # matched. The argument to each function is a list of the values
+ # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
+ # symbols on the RHS. For tokens, the value is copied from the
+ # t.value attribute provided by the lexer. For non-terminals, the
+ # value is assigned by the producing rule; i.e., the job of the
+ # grammar rule function is to set the value for the non-terminal
+ # on the LHS (by assigning to t[0]).
+ #####################################################################
+
+ # The LHS of the first grammar rule is used as the start symbol
+ # (in this case, 'specification'). Note that this rule enforces
+ # that there will be exactly one namespace declaration, with 0 or
+ # more global defs/decls before and after it. The defs & decls
+ # before the namespace decl will be outside the namespace; those
+ # after will be inside. The decoder function is always inside the
+ # namespace.
+ def p_specification(self, t):
+ 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
+ global_code = t[1]
+ isa_name = t[2]
+ namespace = isa_name + "Inst"
+ # wrap the decode block as a function definition
+ t[4].wrap_decode_block('''
+StaticInstPtr
+%(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst)
+{
+ using namespace %(namespace)s;
+''' % vars(), '}')
+ # both the latter output blocks and the decode block are in
+ # the namespace
+ namespace_code = t[3] + t[4]
+ # pass it all back to the caller of yacc.parse()
+ t[0] = (isa_name, namespace, global_code, namespace_code)
+
+ # ISA name declaration looks like "namespace <foo>;"
+ def p_name_decl(self, t):
+ 'name_decl : NAMESPACE ID SEMI'
+ t[0] = t[2]
+
+ # 'opt_defs_and_outputs' is a possibly empty sequence of
+ # def and/or output statements.
+ def p_opt_defs_and_outputs_0(self, t):
+ 'opt_defs_and_outputs : empty'
+ t[0] = GenCode()
+
+ def p_opt_defs_and_outputs_1(self, t):
+ 'opt_defs_and_outputs : defs_and_outputs'
+ t[0] = t[1]
+
+ def p_defs_and_outputs_0(self, t):
+ 'defs_and_outputs : def_or_output'
+ t[0] = t[1]
+
+ def p_defs_and_outputs_1(self, t):
+ 'defs_and_outputs : defs_and_outputs def_or_output'
+ t[0] = t[1] + t[2]
+
+ # The list of possible definition/output statements.
+ def p_def_or_output(self, t):
+ '''def_or_output : def_format
+ | def_bitfield
+ | def_bitfield_struct
+ | def_template
+ | def_operand_types
+ | def_operands
+ | output_header
+ | output_decoder
+ | output_exec
+ | global_let'''
+ t[0] = t[1]
+
+ # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
+ # directly to the appropriate output section.
+
+ # Massage output block by substituting in template definitions and
+ # bit operators. We handle '%'s embedded in the string that don't
+ # indicate template substitutions (or CPU-specific symbols, which
+ # get handled in GenCode) by doubling them first so that the
+ # format operation will reduce them back to single '%'s.
+ def process_output(self, s):
+ s = protect_non_subst_percents(s)
+ # protects cpu-specific symbols too
+ s = protect_cpu_symbols(s)
+ return substBitOps(s % self.templateMap)
+
+ def p_output_header(self, t):
+ 'output_header : OUTPUT HEADER CODELIT SEMI'
+ t[0] = GenCode(header_output = self.process_output(t[3]))
+
+ def p_output_decoder(self, t):
+ 'output_decoder : OUTPUT DECODER CODELIT SEMI'
+ t[0] = GenCode(decoder_output = self.process_output(t[3]))
+
+ def p_output_exec(self, t):
+ 'output_exec : OUTPUT EXEC CODELIT SEMI'
+ t[0] = GenCode(exec_output = self.process_output(t[3]))
+
+ # global let blocks 'let {{...}}' (Python code blocks) are
+ # executed directly when seen. Note that these execute in a
+ # special variable context 'exportContext' to prevent the code
+ # from polluting this script's namespace.
+ def p_global_let(self, t):
+ 'global_let : LET CODELIT SEMI'
+ updateExportContext()
+ exportContext["header_output"] = ''
+ exportContext["decoder_output"] = ''
+ exportContext["exec_output"] = ''
+ exportContext["decode_block"] = ''
+ try:
+ exec fixPythonIndentation(t[2]) in exportContext
+ except Exception, exc:
+ error(t.lexer.lineno,
+ 'error: %s in global let block "%s".' % (exc, t[2]))
+ t[0] = GenCode(header_output = exportContext["header_output"],
+ decoder_output = exportContext["decoder_output"],
+ exec_output = exportContext["exec_output"],
+ decode_block = exportContext["decode_block"])
+
+ # Define the mapping from operand type extensions to C++ types and
+ # bit widths (stored in operandTypeMap).
+ def p_def_operand_types(self, t):
+ 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
+ try:
+ user_dict = eval('{' + t[3] + '}')
+ except Exception, exc:
+ error(t.lexer.lineno,
+ 'error: %s in def operand_types block "%s".' % (exc, t[3]))
+ buildOperandTypeMap(user_dict, t.lexer.lineno)
+ t[0] = GenCode() # contributes nothing to the output C++ file
+
+ # Define the mapping from operand names to operand classes and
+ # other traits. Stored in operandNameMap.
+ def p_def_operands(self, t):
+ 'def_operands : DEF OPERANDS CODELIT SEMI'
+ if not globals().has_key('operandTypeMap'):
+ error(t.lexer.lineno,
+ 'error: operand types must be defined before operands')
+ try:
+ user_dict = eval('{' + t[3] + '}', exportContext)
+ except Exception, exc:
+ error(t.lexer.lineno,
+ 'error: %s in def operands block "%s".' % (exc, t[3]))
+ buildOperandNameMap(user_dict, t.lexer.lineno)
+ t[0] = GenCode() # contributes nothing to the output C++ file
+
+ # A bitfield definition looks like:
+ # 'def [signed] bitfield <ID> [<first>:<last>]'
+ # This generates a preprocessor macro in the output file.
+ def p_def_bitfield_0(self, t):
+ 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
+ expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
+ if (t[2] == 'signed'):
+ expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
+ hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
+ t[0] = GenCode(header_output = hash_define)
+
+ # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
+ def p_def_bitfield_1(self, t):
+ 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
+ expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
+ if (t[2] == 'signed'):
+ expr = 'sext<%d>(%s)' % (1, expr)
+ hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
+ t[0] = GenCode(header_output = hash_define)
+
+ # alternate form for structure member: 'def bitfield <ID> <ID>'
+ def p_def_bitfield_struct(self, t):
+ 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
+ if (t[2] != ''):
+ error(t.lexer.lineno,
+ 'error: structure bitfields are always unsigned.')
+ expr = 'machInst.%s' % t[5]
+ hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
+ t[0] = GenCode(header_output = hash_define)
+
+ def p_id_with_dot_0(self, t):
+ 'id_with_dot : ID'
+ t[0] = t[1]
+
+ def p_id_with_dot_1(self, t):
+ 'id_with_dot : ID DOT id_with_dot'
+ t[0] = t[1] + t[2] + t[3]
+
+ def p_opt_signed_0(self, t):
+ 'opt_signed : SIGNED'
+ t[0] = t[1]
+
+ def p_opt_signed_1(self, t):
+ 'opt_signed : empty'
+ t[0] = ''
+
+ def p_def_template(self, t):
+ 'def_template : DEF TEMPLATE ID CODELIT SEMI'
+ self.templateMap[t[3]] = Template(t[4])
+ t[0] = GenCode()
+
+ # An instruction format definition looks like
+ # "def format <fmt>(<params>) {{...}};"
+ def p_def_format(self, t):
+ 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
+ (id, params, code) = (t[3], t[5], t[7])
+ defFormat(id, params, code, t.lexer.lineno)
+ t[0] = GenCode()
+
+ # The formal parameter list for an instruction format is a
+ # possibly empty list of comma-separated parameters. Positional
+ # (standard, non-keyword) parameters must come first, followed by
+ # keyword parameters, followed by a '*foo' parameter that gets
+ # excess positional arguments (as in Python). Each of these three
+ # parameter categories is optional.
+ #
+ # Note that we do not support the '**foo' parameter for collecting
+ # otherwise undefined keyword args. Otherwise the parameter list
+ # is (I believe) identical to what is supported in Python.
+ #
+ # The param list generates a tuple, where the first element is a
+ # list of the positional params and the second element is a dict
+ # containing the keyword params.
+ def p_param_list_0(self, t):
+ 'param_list : positional_param_list COMMA nonpositional_param_list'
+ t[0] = t[1] + t[3]
+
+ def p_param_list_1(self, t):
+ '''param_list : positional_param_list
+ | nonpositional_param_list'''
+ t[0] = t[1]
+
+ def p_positional_param_list_0(self, t):
+ 'positional_param_list : empty'
+ t[0] = []
+
+ def p_positional_param_list_1(self, t):
+ 'positional_param_list : ID'
+ t[0] = [t[1]]
+
+ def p_positional_param_list_2(self, t):
+ 'positional_param_list : positional_param_list COMMA ID'
+ t[0] = t[1] + [t[3]]
+
+ def p_nonpositional_param_list_0(self, t):
+ 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
+ t[0] = t[1] + t[3]
+
+ def p_nonpositional_param_list_1(self, t):
+ '''nonpositional_param_list : keyword_param_list
+ | excess_args_param'''
+ t[0] = t[1]
+
+ def p_keyword_param_list_0(self, t):
+ 'keyword_param_list : keyword_param'
+ t[0] = [t[1]]
+
+ def p_keyword_param_list_1(self, t):
+ 'keyword_param_list : keyword_param_list COMMA keyword_param'
+ t[0] = t[1] + [t[3]]
+
+ def p_keyword_param(self, t):
+ 'keyword_param : ID EQUALS expr'
+ t[0] = t[1] + ' = ' + t[3].__repr__()
+
+ def p_excess_args_param(self, t):
+ 'excess_args_param : ASTERISK ID'
+ # Just concatenate them: '*ID'. Wrap in list to be consistent
+ # with positional_param_list and keyword_param_list.
+ t[0] = [t[1] + t[2]]
+
+ # End of format definition-related rules.
+ ##############
+
+ #
+ # A decode block looks like:
+ # decode <field1> [, <field2>]* [default <inst>] { ... }
+ #
+ def p_decode_block(self, t):
+ 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
+ default_defaults = defaultStack.pop()
+ codeObj = t[5]
+ # use the "default defaults" only if there was no explicit
+ # default statement in decode_stmt_list
+ if not codeObj.has_decode_default:
+ codeObj += default_defaults
+ codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
+ t[0] = codeObj
+
+ # The opt_default statement serves only to push the "default
+ # defaults" onto defaultStack. This value will be used by nested
+ # decode blocks, and used and popped off when the current
+ # decode_block is processed (in p_decode_block() above).
+ def p_opt_default_0(self, t):
+ 'opt_default : empty'
+ # no default specified: reuse the one currently at the top of
+ # the stack
+ defaultStack.push(defaultStack.top())
+ # no meaningful value returned
+ t[0] = None
+
+ def p_opt_default_1(self, t):
+ 'opt_default : DEFAULT inst'
+ # push the new default
+ codeObj = t[2]
+ codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
+ defaultStack.push(codeObj)
+ # no meaningful value returned
+ t[0] = None
+
+ def p_decode_stmt_list_0(self, t):
+ 'decode_stmt_list : decode_stmt'
+ t[0] = t[1]
+
+ def p_decode_stmt_list_1(self, t):
+ 'decode_stmt_list : decode_stmt decode_stmt_list'
+ if (t[1].has_decode_default and t[2].has_decode_default):
+ error(t.lexer.lineno, 'Two default cases in decode block')
+ t[0] = t[1] + t[2]
+
+ #
+ # Decode statement rules
+ #
+ # There are four types of statements allowed in a decode block:
+ # 1. Format blocks 'format <foo> { ... }'
+ # 2. Nested decode blocks
+ # 3. Instruction definitions.
+ # 4. C preprocessor directives.
+
+
+ # Preprocessor directives found in a decode statement list are
+ # passed through to the output, replicated to all of the output
+ # code streams. This works well for ifdefs, so we can ifdef out
+ # both the declarations and the decode cases generated by an
+ # instruction definition. Handling them as part of the grammar
+ # makes it easy to keep them in the right place with respect to
+ # the code generated by the other statements.
+ def p_decode_stmt_cpp(self, t):
+ 'decode_stmt : CPPDIRECTIVE'
+ t[0] = GenCode(t[1], t[1], t[1], t[1])
+
+ # A format block 'format <foo> { ... }' sets the default
+ # instruction format used to handle instruction definitions inside
+ # the block. This format can be overridden by using an explicit
+ # format on the instruction definition or with a nested format
+ # block.
+ def p_decode_stmt_format(self, t):
+ 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
+ # The format will be pushed on the stack when 'push_format_id'
+ # is processed (see below). Once the parser has recognized
+ # the full production (though the right brace), we're done
+ # with the format, so now we can pop it.
+ formatStack.pop()
+ t[0] = t[4]
+
+ # This rule exists so we can set the current format (& push the
+ # stack) when we recognize the format name part of the format
+ # block.
+ def p_push_format_id(self, t):
+ 'push_format_id : ID'
+ try:
+ formatStack.push(formatMap[t[1]])
+ t[0] = ('', '// format %s' % t[1])
+ except KeyError:
+ error(t.lexer.lineno,
+ 'instruction format "%s" not defined.' % t[1])
+
+ # Nested decode block: if the value of the current field matches
+ # the specified constant, do a nested decode on some other field.
+ def p_decode_stmt_decode(self, t):
+ 'decode_stmt : case_label COLON decode_block'
+ label = t[1]
+ codeObj = t[3]
+ # just wrap the decoding code from the block as a case in the
+ # outer switch statement.
+ codeObj.wrap_decode_block('\n%s:\n' % label)
+ codeObj.has_decode_default = (label == 'default')
+ t[0] = codeObj
+
+ # Instruction definition (finally!).
+ def p_decode_stmt_inst(self, t):
+ 'decode_stmt : case_label COLON inst SEMI'
+ label = t[1]
+ codeObj = t[3]
+ codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
+ codeObj.has_decode_default = (label == 'default')
+ t[0] = codeObj
+
+ # The case label is either a list of one or more constants or
+ # 'default'
+ def p_case_label_0(self, t):
+ 'case_label : intlit_list'
+ def make_case(intlit):
+ if intlit >= 2**32:
+ return 'case ULL(%#x)' % intlit
+ else:
+ return 'case %#x' % intlit
+ t[0] = ': '.join(map(make_case, t[1]))
+
+ def p_case_label_1(self, t):
+ 'case_label : DEFAULT'
+ t[0] = 'default'
+
+ #
+ # The constant list for a decode case label must be non-empty, but
+ # may have one or more comma-separated integer literals in it.
+ #
+ def p_intlit_list_0(self, t):
+ 'intlit_list : INTLIT'
+ t[0] = [t[1]]
+
+ def p_intlit_list_1(self, t):
+ 'intlit_list : intlit_list COMMA INTLIT'
+ t[0] = t[1]
+ t[0].append(t[3])
+
+ # Define an instruction using the current instruction format
+ # (specified by an enclosing format block).
+ # "<mnemonic>(<args>)"
+ def p_inst_0(self, t):
+ 'inst : ID LPAREN arg_list RPAREN'
+ # Pass the ID and arg list to the current format class to deal with.
+ currentFormat = formatStack.top()
+ codeObj = currentFormat.defineInst(t[1], t[3], t.lexer.lineno)
+ args = ','.join(map(str, t[3]))
+ args = re.sub('(?m)^', '//', args)
+ args = re.sub('^//', '', args)
+ comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
+ codeObj.prepend_all(comment)
+ t[0] = codeObj
+
+ # Define an instruction using an explicitly specified format:
+ # "<fmt>::<mnemonic>(<args>)"
+ def p_inst_1(self, t):
+ 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
+ try:
+ format = formatMap[t[1]]
+ except KeyError:
+ error(t.lexer.lineno,
+ 'instruction format "%s" not defined.' % t[1])
+ codeObj = format.defineInst(t[3], t[5], t.lexer.lineno)
+ comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
+ codeObj.prepend_all(comment)
+ t[0] = codeObj
+
+ # The arg list generates a tuple, where the first element is a
+ # list of the positional args and the second element is a dict
+ # containing the keyword args.
+ def p_arg_list_0(self, t):
+ 'arg_list : positional_arg_list COMMA keyword_arg_list'
+ t[0] = ( t[1], t[3] )
+
+ def p_arg_list_1(self, t):
+ 'arg_list : positional_arg_list'
+ t[0] = ( t[1], {} )
+
+ def p_arg_list_2(self, t):
+ 'arg_list : keyword_arg_list'
+ t[0] = ( [], t[1] )
+
+ def p_positional_arg_list_0(self, t):
+ 'positional_arg_list : empty'
+ t[0] = []
+
+ def p_positional_arg_list_1(self, t):
+ 'positional_arg_list : expr'
+ t[0] = [t[1]]
+
+ def p_positional_arg_list_2(self, t):
+ 'positional_arg_list : positional_arg_list COMMA expr'
+ t[0] = t[1] + [t[3]]
+
+ def p_keyword_arg_list_0(self, t):
+ 'keyword_arg_list : keyword_arg'
+ t[0] = t[1]
+
+ def p_keyword_arg_list_1(self, t):
+ 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
+ t[0] = t[1]
+ t[0].update(t[3])
+
+ def p_keyword_arg(self, t):
+ 'keyword_arg : ID EQUALS expr'
+ t[0] = { t[1] : t[3] }
+
+ #
+ # Basic expressions. These constitute the argument values of
+ # "function calls" (i.e. instruction definitions in the decode
+ # block) and default values for formal parameters of format
+ # functions.
+ #
+ # Right now, these are either strings, integers, or (recursively)
+ # lists of exprs (using Python square-bracket list syntax). Note
+ # that bare identifiers are trated as string constants here (since
+ # there isn't really a variable namespace to refer to).
+ #
+ def p_expr_0(self, t):
+ '''expr : ID
+ | INTLIT
+ | STRLIT
+ | CODELIT'''
+ t[0] = t[1]
+
+ def p_expr_1(self, t):
+ '''expr : LBRACKET list_expr RBRACKET'''
+ t[0] = t[2]
+
+ def p_list_expr_0(self, t):
+ 'list_expr : expr'
+ t[0] = [t[1]]
+
+ def p_list_expr_1(self, t):
+ 'list_expr : list_expr COMMA expr'
+ t[0] = t[1] + [t[3]]
+
+ def p_list_expr_2(self, t):
+ 'list_expr : empty'
+ t[0] = []
+
+ #
+ # Empty production... use in other rules for readability.
+ #
+ def p_empty(self, t):
+ 'empty :'
+ pass
+
+ # Parse error handler. Note that the argument here is the
+ # offending *token*, not a grammar symbol (hence the need to use
+ # t.value)
+ def p_error(self, t):
+ if t:
+ error(t.lexer.lineno, "syntax error at '%s'" % t.value)
+ else:
+ error(0, "unknown syntax error", True)
+
+ # END OF GRAMMAR RULES
+
+# Now build the parser.
+parser = ISAParser()
# Update the output file only if the new contents are different from
# the current contents. Minimizes the files that need to be rebuilt