summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorGabe Black <gblack@eecs.umich.edu>2007-04-04 14:31:59 +0000
committerGabe Black <gblack@eecs.umich.edu>2007-04-04 14:31:59 +0000
commit4285990a96bad869bc1046f28f99cf7f4b5c8de0 (patch)
tree80b92e77e93ef76d5b8a154ad71813727e6e2be9 /src
parent7f5409f2babd4fe26c364aedf7faf4cdcb0eb3f0 (diff)
downloadgem5-4285990a96bad869bc1046f28f99cf7f4b5c8de0.tar.xz
Reworking how x86's isa description works. I'm adopting the following definitions to make figuring out what's what a little easier:
MicroOp: A single operation actually implemented in hardware. MacroOp: A collection of microops which are executed as a unit. Instruction: An architected instruction which can be implemented with a macroop or a microop. --HG-- extra : convert_revision : 1cfc8409cc686c75220767839f55a30551aa6f13
Diffstat (limited to 'src')
-rw-r--r--src/arch/x86/isa/decoder/one_byte_opcodes.isa22
-rw-r--r--src/arch/x86/isa/formats/multi.isa147
-rw-r--r--src/arch/x86/isa/main.isa3
-rw-r--r--src/arch/x86/isa/microasm.isa149
4 files changed, 169 insertions, 152 deletions
diff --git a/src/arch/x86/isa/decoder/one_byte_opcodes.isa b/src/arch/x86/isa/decoder/one_byte_opcodes.isa
index f7e6e3994..938904bc1 100644
--- a/src/arch/x86/isa/decoder/one_byte_opcodes.isa
+++ b/src/arch/x86/isa/decoder/one_byte_opcodes.isa
@@ -61,15 +61,12 @@
0x1: decode OPCODE_OP_TOP5 {
format WarnUnimpl {
0x00: decode OPCODE_OP_BOTTOM3 {
- 0x4: TaggedOp::add({{AddI %0 %0}}, [rAl]);
- 0x5: TaggedOp::add({{AddI %0 %0}}, [rAx]);
+ 0x4: Inst::addI(rAl,Ib);
+ 0x5: Inst::addI(rAx,Iz);
0x6: push_ES();
0x7: pop_ES();
- default: MultiOp::add(
- {{Add %0 %0 %1}},
- OPCODE_OP_BOTTOM3,
- [[Eb,Gb],[Ev,Gv],
- [Gb,Eb],[Gv,Ev]]);
+ default: MultiInst::add(OPCODE_OP_BOTTOM3,
+ [Eb,Gb],[Ev,Gv],[Gb,Eb],[Gv,Ev]);
}
0x01: decode OPCODE_OP_BOTTOM3 {
0x0: or_Eb_Gb();
@@ -126,16 +123,13 @@
0x7: das();
}
0x06: decode OPCODE_OP_BOTTOM3 {
- 0x4: TaggedOp::xor({{XorI %0 %0}}, [rAl]);
- 0x5: TaggedOp::xor({{XorI %0 %0}}, [rAx]);
+ 0x4: Inst::xorI(rAl,Ib);
+ 0x5: Inst::xorI(rAx,Iz);
0x6: M5InternalError::error(
{{"Tried to execute the SS segment override prefix!"}});
0x7: aaa();
- default: MultiOp::xor(
- {{Xor %0 %0 %1}},
- OPCODE_OP_BOTTOM3,
- [[Eb,Gb],[Ev,Gv],
- [Gb,Eb],[Gv,Ev]]);
+ default: MultiInst::xor(OPCODE_OP_BOTTOM3,
+ [Eb,Gb],[Ev,Gv],[Gb,Eb],[Gv,Ev]);
}
0x07: decode OPCODE_OP_BOTTOM3 {
0x0: cmp_Eb_Gb();
diff --git a/src/arch/x86/isa/formats/multi.isa b/src/arch/x86/isa/formats/multi.isa
index 9fceec2b0..7ad5ecd48 100644
--- a/src/arch/x86/isa/formats/multi.isa
+++ b/src/arch/x86/isa/formats/multi.isa
@@ -61,151 +61,26 @@
//
let {{
- # This builds either a regular or macro op to implement the sequence of
- # ops we give it.
- def genInst(name, Name, ops):
- # If we can implement this instruction with exactly one microop, just
- # use that directly.
- newStmnt = ''
- if len(ops) == 1:
- decode_block = "return (X86StaticInst *)(%s);" % \
- ops[0].getAllocator()
- return ('', '', decode_block, '')
- else:
- # Build a macroop to contain the sequence of microops we've
- # been given.
- return genMacroOp(name, Name, ops)
+ def doInst(name, Name, opTypeSet):
+ if not instDict.has_key(Name):
+ raise Exception, "Unrecognized instruction: %s" % Name
+ inst = instDict[Name]()
+ return inst.emit(opTypeSet)
}};
-let {{
- # This code builds up a decode block which decodes based on switchval.
- # vals is a dict which matches case values with what should be decoded to.
- # builder is called on the exploded contents of "vals" values to generate
- # whatever code should be used.
- def doMultiOp(name, Name, builder, switchVal, vals, default = None):
- header_output = ''
- decoder_output = ''
- decode_block = 'switch(%s) {\n' % switchVal
- exec_output = ''
- for (val, todo) in vals.items():
- (new_header_output,
- new_decoder_output,
- new_decode_block,
- new_exec_output) = builder(name, Name, *todo)
- header_output += new_header_output
- decoder_output += new_decoder_output
- decode_block += '\tcase %s: %s\n' % (val, new_decode_block)
- exec_output += new_exec_output
- if default:
- (new_header_output,
- new_decoder_output,
- new_decode_block,
- new_exec_output) = builder(name, Name, *default)
- header_output += new_header_output
- decoder_output += new_decoder_output
- decode_block += '\tdefault: %s\n' % new_decode_block
- exec_output += new_exec_output
- decode_block += '}\n'
- return (header_output, decoder_output, decode_block, exec_output)
-}};
-
-let {{
-
- # This function specializes the given piece of code to use a particular
- # set of argument types described by "opTags". These are "implemented"
- # in reverse order.
- def doCompOps(name, Name, code, opTags, postfix):
- opNum = len(opTags) - 1
- while len(opTags):
- # print "Building a composite op with tags", opTags
- # print "And code", code
- opNum = len(opTags) - 1
- # A regular expression to find the operand placeholders we're
- # interested in.
- opRe = re.compile("%%(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
- tag = opTags[opNum]
- # Build up a name for this instructions class using the argument
- # types. Each variation will get its own name this way.
- postfix = '_' + tag + postfix
- tagParser = re.compile(r"(?P<tagType>[A-Z][A-Z]*)(?P<tagSize>[a-z][a-z]*)|(r(?P<tagReg>[A-Za-z0-9][A-Za-z0-9]*))")
- tagMatch = tagParser.search(tag)
- if tagMatch == None:
- raise Exception, "Problem parsing operand tag %s" % tag
- reg = tagMatch.group("tagReg")
- tagType = tagMatch.group("tagType")
- tagSize = tagMatch.group("tagSize")
- if reg:
- #Figure out what to do with fixed register operands
- if reg in ("Ax", "Bx", "Cx", "Dx"):
- code = opRe.sub("{INTREG_R%s}" % reg.upper(), code)
- elif reg == "Al":
- # We need a way to specify register width
- code = opRe.sub("{INTREG_RAX}", code)
- else:
- print "Didn't know how to encode fixed register %s!" % reg
- elif tagType == None or tagSize == None:
- raise Exception, "Problem parsing operand tag: %s" % tag
- elif tagType == "C" or tagType == "D" or tagType == "G" or \
- tagType == "P" or tagType == "S" or \
- tagType == "T" or tagType == "V":
- # Use the "reg" field of the ModRM byte to select the register
- code = opRe.sub("{(uint8_t)MODRM_REG}", code)
- elif tagType == "E" or tagType == "Q" or tagType == "W":
- # This might refer to memory or to a register. We need to
- # divide it up farther.
- regCode = opRe.sub("{(uint8_t)MODRM_RM}", code)
- regTags = copy.copy(opTags)
- regTags.pop(-1)
- # This needs to refer to memory, but we'll fill in the details
- # later. It needs to take into account unaligned memory
- # addresses.
- memCode = opRe.sub("0", code)
- memTags = copy.copy(opTags)
- memTags.pop(-1)
- return doMultiOp(name, Name, doCompOps, "MODRM_MOD",
- {"3" : (regCode, regTags, postfix)},
- (memCode, memTags, postfix))
- elif tagType == "I" or tagType == "J":
- # Substitute in an immediate
- code = opRe.sub("{IMMEDIATE}", code)
- elif tagType == "M":
- # This needs to refer to memory, but we'll fill in the details
- # later. It needs to take into account unaligned memory
- # addresses.
- code = opRe.sub("0", code)
- elif tagType == "PR" or tagType == "R" or tagType == "VR":
- # There should probably be a check here to verify that mod
- # is equal to 11b
- code = opRe.sub("{(uint8_t)MODRM_RM}", code)
- else:
- raise Exception, "Unrecognized tag %s." % tag
- opTags.pop(-1)
-
- # At this point, we've built up "code" to have all the necessary extra
- # instructions needed to implement whatever types of operands were
- # specified. Now we'll assemble it it into a microOp sequence.
- ops = assembleMicro(code)
-
- # Build a macroop to contain the sequence of microops we've
- # constructed. The decode block will be used to fill in our
- # inner decode structure, and the rest will be concatenated and
- # passed back.
- return genInst(name, Name + postfix, ops)
-}};
-
-def format TaggedOp(code, tagSet) {{
+def format Inst(*opTypeSet) {{
(header_output,
decoder_output,
decode_block,
- exec_output) = doCompOps(name, Name, code, tagSet, '')
+ exec_output) = doInst(name, Name, list(opTypeSet))
}};
-def format MultiOp(code, switchVal, opTags, *opt_flags) {{
+def format MultiInst(switchVal, *opTypeSets) {{
switcher = {}
- for (count, tagSet) in zip(xrange(len(opTags) - 1), opTags):
- switcher[count] = (code, tagSet, '')
+ for (count, opTypeSet) in zip(xrange(len(opTypeSets)), opTypeSets):
+ switcher[count] = (opTypeSet,)
(header_output,
decoder_output,
decode_block,
- exec_output) = doMultiOp(name, Name, doCompOps, switchVal, switcher)
+ exec_output) = doSplitDecode(name, Name, doInst, switchVal, switcher)
}};
diff --git a/src/arch/x86/isa/main.isa b/src/arch/x86/isa/main.isa
index fe1d4e515..cc3a9bee4 100644
--- a/src/arch/x86/isa/main.isa
+++ b/src/arch/x86/isa/main.isa
@@ -84,6 +84,9 @@ namespace X86ISA;
//Include the base class for x86 instructions, and some support code
##include "base.isa"
+//Include the instruction definitions
+##include "insts/insts.isa"
+
//Include the definitions for the instruction formats
##include "formats/formats.isa"
diff --git a/src/arch/x86/isa/microasm.isa b/src/arch/x86/isa/microasm.isa
index 711ebf667..6d428881e 100644
--- a/src/arch/x86/isa/microasm.isa
+++ b/src/arch/x86/isa/microasm.isa
@@ -57,11 +57,154 @@
////////////////////////////////////////////////////////////////////
//
-// Code to "assemble" microcode sequences
+// Code to "specialize" a microcode sequence to use a particular
+// variety of operands
//
let {{
- class MicroOpStatement:
+ # This builds either a regular or macro op to implement the sequence of
+ # ops we give it.
+ def genInst(name, Name, ops):
+ # If we can implement this instruction with exactly one microop, just
+ # use that directly.
+ newStmnt = ''
+ if len(ops) == 1:
+ decode_block = "return (X86StaticInst *)(%s);" % \
+ ops[0].getAllocator()
+ return ('', '', decode_block, '')
+ else:
+ # Build a macroop to contain the sequence of microops we've
+ # been given.
+ return genMacroOp(name, Name, ops)
+}};
+
+let {{
+ # This code builds up a decode block which decodes based on switchval.
+ # vals is a dict which matches case values with what should be decoded to.
+ # builder is called on the exploded contents of "vals" values to generate
+ # whatever code should be used.
+ def doSplitDecode(name, Name, builder, switchVal, vals, default = None):
+ header_output = ''
+ decoder_output = ''
+ decode_block = 'switch(%s) {\n' % switchVal
+ exec_output = ''
+ for (val, todo) in vals.items():
+ (new_header_output,
+ new_decoder_output,
+ new_decode_block,
+ new_exec_output) = builder(name, Name, *todo)
+ header_output += new_header_output
+ decoder_output += new_decoder_output
+ decode_block += '\tcase %s: %s\n' % (val, new_decode_block)
+ exec_output += new_exec_output
+ if default:
+ (new_header_output,
+ new_decoder_output,
+ new_decode_block,
+ new_exec_output) = builder(name, Name, *default)
+ header_output += new_header_output
+ decoder_output += new_decoder_output
+ decode_block += '\tdefault: %s\n' % new_decode_block
+ exec_output += new_exec_output
+ decode_block += '}\n'
+ return (header_output, decoder_output, decode_block, exec_output)
+}};
+
+let {{
+ class OpType(object):
+ parser = re.compile(r"(?P<tag>[A-Z][A-Z]*)(?P<size>[a-z][a-z]*)|(r(?P<reg>[A-Za-z0-9][A-Za-z0-9]*))")
+ def __init__(self, opTypeString):
+ match = OpType.parser.search(opTypeString)
+ if match == None:
+ raise Exception, "Problem parsing operand type %s" % opTypeString
+ self.reg = match.group("reg")
+ self.tag = match.group("tag")
+ self.size = match.group("size")
+}};
+
+let {{
+
+ # This function specializes the given piece of code to use a particular
+ # set of argument types described by "opTypes". These are "implemented"
+ # in reverse order.
+ def specializeInst(name, Name, code, opTypes):
+ opNum = len(opTypes) - 1
+ while len(opTypes):
+ # print "Building a composite op with tags", opTypes
+ # print "And code", code
+ opNum = len(opTypes) - 1
+ # A regular expression to find the operand placeholders we're
+ # interested in.
+ opRe = re.compile("%%(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
+
+ # Parse the operand type strign we're working with
+ print "About to parse tag %s" % opTypes[opNum]
+ opType = OpType(opTypes[opNum])
+
+ if opType.reg:
+ #Figure out what to do with fixed register operands
+ if opType.reg in ("Ax", "Bx", "Cx", "Dx"):
+ code = opRe.sub("{INTREG_R%s}" % opType.reg.upper(), code)
+ elif opType.reg == "Al":
+ # We need a way to specify register width
+ code = opRe.sub("{INTREG_RAX}", code)
+ else:
+ print "Didn't know how to encode fixed register %s!" % opType.reg
+ elif opType.tag == None or opType.size == None:
+ raise Exception, "Problem parsing operand tag: %s" % opType.tag
+ elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"):
+ # Use the "reg" field of the ModRM byte to select the register
+ code = opRe.sub("{(uint8_t)MODRM_REG}", code)
+ elif opType.tag in ("E", "Q", "W"):
+ # This might refer to memory or to a register. We need to
+ # divide it up farther.
+ regCode = opRe.sub("{(uint8_t)MODRM_RM}", code)
+ regTypes = copy.copy(opTypes)
+ regTypes.pop(-1)
+ # This needs to refer to memory, but we'll fill in the details
+ # later. It needs to take into account unaligned memory
+ # addresses.
+ memCode = opRe.sub("0", code)
+ memTypes = copy.copy(opTypes)
+ memTypes.pop(-1)
+ return doSplitDecode(name, Name, specializeInst, "MODRM_MOD",
+ {"3" : (regCode, regTypes)}, (memCode, memTypes))
+ elif opType.tag in ("I", "J"):
+ # Immediates are already in the instruction, so don't leave in
+ # those parameters
+ code = opRe.sub("", code)
+ elif opType.tag == "M":
+ # This needs to refer to memory, but we'll fill in the details
+ # later. It needs to take into account unaligned memory
+ # addresses.
+ code = opRe.sub("0", code)
+ elif opType.tag in ("PR", "R", "VR"):
+ # There should probably be a check here to verify that mod
+ # is equal to 11b
+ code = opRe.sub("{(uint8_t)MODRM_RM}", code)
+ else:
+ raise Exception, "Unrecognized tag %s." % opType.tag
+ opTypes.pop(-1)
+
+ # At this point, we've built up "code" to have all the necessary extra
+ # instructions needed to implement whatever types of operands were
+ # specified. Now we'll assemble it it into a microOp sequence.
+ ops = assembleMicro(code)
+
+ # Build a macroop to contain the sequence of microops we've
+ # constructed. The decode block will be used to fill in our
+ # inner decode structure, and the rest will be concatenated and
+ # passed back.
+ return genInst(name, Name, ops)
+}};
+
+////////////////////////////////////////////////////////////////////
+//
+// The microcode assembler
+//
+
+let {{
+ class MicroOpStatement(object):
def __init__(self):
self.className = ''
self.label = ''
@@ -101,7 +244,9 @@ let {{
labels[op.label] = count
micropc += 1
return labels
+}};
+let{{
def assembleMicro(code):
# This function takes in a block of microcode assembly and returns
# a python list of objects which describe it.