summaryrefslogtreecommitdiff
path: root/util/plot_dram/PlotPowerStates.py
diff options
context:
space:
mode:
authorRadhika Jagtap <radhika.jagtap@arm.com>2017-06-21 11:17:43 +0100
committerAndreas Sandberg <andreas.sandberg@arm.com>2017-11-16 16:39:19 +0000
commit9b4e797cdd7e10ace8de83626ea844a6acabcafb (patch)
tree88547cd0654d49f48bf1f648608961fc964e2302 /util/plot_dram/PlotPowerStates.py
parent1695c9933b53a606ba7044e1b2dfcfe8c203018e (diff)
downloadgem5-9b4e797cdd7e10ace8de83626ea844a6acabcafb.tar.xz
util: Add script to plot DRAM low power sweep
This change adds a script to generate graphs from the stats file output by the configuration script low_power_sweep.py. The graphs show stacked bars for time spent and energy consumed wherein each component of the stacked bar represents a DRAM power state (Idle, Refresh, Active, Active Power-down, Precharge Power-down and Self-refresh). The script generates one plot per delay value. It also generates a pdf (--pdf option) in which the graphs are laid out such that you can easily compare how the increasing delay and other swept params affect the resulting energy. Change-Id: Id80b0947bfde27e11e5505b23a3adb30f793a43f Reviewed-by: Wendy Elsasser <wendy.elsasser@arm.com> Reviewed-on: https://gem5-review.googlesource.com/5727 Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Diffstat (limited to 'util/plot_dram/PlotPowerStates.py')
-rwxr-xr-xutil/plot_dram/PlotPowerStates.py308
1 files changed, 308 insertions, 0 deletions
diff --git a/util/plot_dram/PlotPowerStates.py b/util/plot_dram/PlotPowerStates.py
new file mode 100755
index 000000000..8dca0e069
--- /dev/null
+++ b/util/plot_dram/PlotPowerStates.py
@@ -0,0 +1,308 @@
+# Copyright (c) 2017 ARM Limited
+# All rights reserved
+#
+# The license below extends only to copyright in the software and shall
+# not be construed as granting a license to any other intellectual
+# property including but not limited to intellectual property relating
+# to a hardware implementation of the functionality of the software
+# licensed hereunder. You may use the software subject to the license
+# terms below provided that you ensure that this notice is replicated
+# unmodified and in its entirety in all distributions of the software,
+# modified or unmodified, in source code or in binary form.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are
+# met: redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer;
+# redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in the
+# documentation and/or other materials provided with the distribution;
+# neither the name of the copyright holders nor the names of its
+# contributors may be used to endorse or promote products derived from
+# this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+#
+# Authors: Radhika Jagtap
+
+import matplotlib
+matplotlib.use('Agg')
+import matplotlib.pyplot as plt
+from matplotlib.font_manager import FontProperties
+import numpy as np
+import os
+
+# global results dict
+results = {}
+idleResults = {}
+
+# global vars for bank utilisation and seq_bytes values swept in the experiment
+bankUtilValues = []
+seqBytesValues = []
+delayValues = []
+
+# settings for 3 values of bank util and 3 values of seq_bytes
+stackHeight = 6.0
+stackWidth = 18.0
+barWidth = 0.5
+plotFontSize = 18
+
+States = ['IDLE', 'ACT', 'REF', 'ACT_PDN', 'PRE_PDN', 'SREF']
+
+EnergyStates = ['ACT_E',
+'PRE_E',
+'READ_E',
+'REF_E',
+'ACT_BACK_E',
+'PRE_BACK_E',
+'ACT_PDN_E',
+'PRE_PDN_E',
+'SREF_E']
+
+StackColors = {
+'IDLE' : 'black', # time spent in states
+'ACT' : 'lightskyblue',
+'REF' : 'limegreen',
+'ACT_PDN' : 'crimson',
+'PRE_PDN' : 'orange',
+'SREF' : 'gold',
+'ACT_E' : 'lightskyblue', # energy of states
+'PRE_E' : 'black',
+'READ_E' : 'white',
+'REF_E' : 'limegreen',
+'ACT_BACK_E' : 'lightgray',
+'PRE_BACK_E' : 'gray',
+'ACT_PDN_E' : 'crimson',
+'PRE_PDN_E' : 'orange',
+'SREF_E' : 'gold'
+}
+
+StatToKey = {
+'system.mem_ctrls_0.actEnergy' : 'ACT_E',
+'system.mem_ctrls_0.preEnergy' : 'PRE_E',
+'system.mem_ctrls_0.readEnergy' : 'READ_E',
+'system.mem_ctrls_0.refreshEnergy' : 'REF_E',
+'system.mem_ctrls_0.actBackEnergy' : 'ACT_BACK_E',
+'system.mem_ctrls_0.preBackEnergy' : 'PRE_BACK_E',
+'system.mem_ctrls_0.actPowerDownEnergy' : 'ACT_PDN_E',
+'system.mem_ctrls_0.prePowerDownEnergy' : 'PRE_PDN_E',
+'system.mem_ctrls_0.selfRefreshEnergy' : 'SREF_E'
+}
+# Skipping write energy, the example script issues 100% reads by default
+# 'system.mem_ctrls_0.writeEnergy' : "WRITE"
+
+def plotLowPStates(plot_dir, stats_fname, bank_util_list, seqbytes_list,
+ delay_list):
+ """
+ plotLowPStates generates plots by parsing statistics output by the DRAM
+ sweep simulation described in the the configs/dram/low_power_sweep.py
+ script.
+
+ The function outputs eps format images for the following plots
+ (1) time spent in the DRAM Power states as a stacked bar chart
+ (2) energy consumed by the DRAM Power states as a stacked bar chart
+ (3) idle plot for the last stats dump corresponding to an idle period
+
+ For all plots, the time and energy values of the first rank (i.e. rank0)
+ are plotted because the way the script is written means stats across ranks
+ are similar.
+
+ @param plot_dir: the dir to output the plots
+ @param stats_fname: the stats file name of the low power sweep sim
+ @param bank_util_list: list of bank utilisation values (e.g. [1, 4, 8])
+ @param seqbytes_list: list of seq_bytes values (e.g. [64, 456, 512])
+ @param delay_list: list of itt max multipliers (e.g. [1, 20, 200])
+
+ """
+ stats_file = open(stats_fname, 'r')
+
+ global bankUtilValues
+ bankUtilValues = bank_util_list
+
+ global seqBytesValues
+ seqBytesValues = seqbytes_list
+
+ global delayValues
+ delayValues = delay_list
+ initResults()
+
+ # throw away the first two lines of the stats file
+ stats_file.readline()
+ stats_file.readline() # the 'Begin' line
+
+ #######################################
+ # Parse stats file and gather results
+ ########################################
+
+ for delay in delayValues:
+ for bank_util in bankUtilValues:
+ for seq_bytes in seqBytesValues:
+
+ for line in stats_file:
+ if 'Begin' in line:
+ break
+
+ if len(line.strip()) == 0:
+ continue
+
+ #### state time values ####
+ if 'system.mem_ctrls_0.memoryStateTime' in line:
+ # remove leading and trailing white spaces
+ line = line.strip()
+ # Example format:
+ # 'system.mem_ctrls_0.memoryStateTime::ACT 1000000'
+ statistic, stime = line.split()[0:2]
+ # Now grab the state, i.e. 'ACT'
+ state = statistic.split('::')[1]
+ # store the value of the stat in the results dict
+ results[delay][bank_util][seq_bytes][state] = \
+ int(stime)
+ #### state energy values ####
+ elif line.strip().split()[0] in StatToKey.keys():
+ # Example format:
+ # system.mem_ctrls_0.actEnergy 35392980
+ statistic, e_val = line.strip().split()[0:2]
+ senergy = int(float(e_val))
+ state = StatToKey[statistic]
+ # store the value of the stat in the results dict
+ results[delay][bank_util][seq_bytes][state] = senergy
+
+ # To add last traffic gen idle period stats to the results dict
+ for line in stats_file:
+ if 'system.mem_ctrls_0.memoryStateTime' in line:
+ line = line.strip() # remove leading and trailing white spaces
+ # Example format:
+ # 'system.mem_ctrls_0.memoryStateTime::ACT 1000000'
+ statistic, stime = line.split()[0:2]
+ # Now grab the state energy, .e.g 'ACT'
+ state = statistic.split('::')[1]
+ idleResults[state] = int(stime)
+ if state == 'ACT_PDN':
+ break
+
+ ########################################
+ # Call plot functions
+ ########################################
+ # one plot per delay value
+ for delay in delayValues:
+ plot_path = plot_dir + delay + '-'
+
+ plotStackedStates(delay, States, 'IDLE', stateTimePlotName(plot_path),
+ 'Time (ps) spent in a power state')
+ plotStackedStates(delay, EnergyStates, 'ACT_E',
+ stateEnergyPlotName(plot_path),
+ 'Energy (pJ) of a power state')
+ plotIdle(plot_dir)
+
+def plotIdle(plot_dir):
+ """
+ Create a bar chart for the time spent in power states during the idle phase
+
+ @param plot_dir: the dir to output the plots
+ """
+ fig, ax = plt.subplots()
+ width = 0.35
+ ind = np.arange(len(States))
+ l1 = ax.bar(ind, map(lambda x : idleResults[x], States), width)
+
+ ax.xaxis.set_ticks(ind + width/2)
+ ax.xaxis.set_ticklabels(States)
+ ax.set_ylabel('Time (ps) spent in a power state')
+ fig.suptitle("Idle 50 us")
+
+ print "saving plot:", idlePlotName(plot_dir)
+ plt.savefig(idlePlotName(plot_dir), format='eps')
+ plt.close(fig)
+
+def plotStackedStates(delay, states_list, bottom_state, plot_name, ylabel_str):
+ """
+ Create a stacked bar chart for the list that is passed in as arg, which
+ is either time spent or energy consumed in power states.
+
+ @param delay: one plot is output per delay value
+ @param states_list: list of either time or energy state names
+ @param bottom_state: the bottom-most component of the stacked bar
+ @param plot_name: the file name of the image to write the plot to
+ @param ylabel_str: Y-axis label depending on plotting time or energy
+ """
+ fig, ax = plt.subplots(1, len(bankUtilValues), sharey=True)
+ fig.set_figheight(stackHeight)
+ fig.set_figwidth(stackWidth)
+ width = barWidth
+ plt.rcParams.update({'font.size': plotFontSize})
+
+ # Get the number of seq_bytes values
+ N = len(seqBytesValues)
+ ind = np.arange(N)
+
+ for sub_idx, bank_util in enumerate(bankUtilValues):
+
+ l_states = {}
+ p_states = {}
+
+ # Must have a bottom of the stack first
+ state = bottom_state
+
+ l_states[state] = map(lambda x: results[delay][bank_util][x][state],
+ seqBytesValues)
+ p_states[state] = ax[sub_idx].bar(ind, l_states[state], width,
+ color=StackColors[state])
+
+ time_sum = l_states[state]
+ for state in states_list[1:]:
+ l_states[state] = map(lambda x:
+ results[delay][bank_util][x][state],
+ seqBytesValues)
+ # Now add on top of the bottom = sum of values up until now
+ p_states[state] = ax[sub_idx].bar(ind, l_states[state], width,
+ color=StackColors[state],
+ bottom=time_sum)
+ # Now add the bit of the stack that we just ploted to the bottom
+ # resulting in a new bottom for the next iteration
+ time_sum = [prev_sum + new_s for prev_sum, new_s in \
+ zip(time_sum, l_states[state])]
+
+ ax[sub_idx].set_title('Bank util %s' % bank_util)
+ ax[sub_idx].xaxis.set_ticks(ind + width/2.)
+ ax[sub_idx].xaxis.set_ticklabels(seqBytesValues, rotation=45)
+ ax[sub_idx].set_xlabel('Seq. bytes')
+ if bank_util == bankUtilValues[0]:
+ ax[sub_idx].set_ylabel(ylabel_str)
+
+ myFontSize='small'
+ fontP = FontProperties()
+ fontP.set_size(myFontSize)
+ fig.legend(map(lambda x: p_states[x], states_list), states_list,
+ prop=fontP)
+
+ plt.savefig(plot_name, format='eps', bbox_inches='tight')
+ print "saving plot:", plot_name
+ plt.close(fig)
+
+# These plat name functions are also called in the main script
+def idlePlotName(plot_dir):
+ return (plot_dir + 'idle.eps')
+
+def stateTimePlotName(plot_dir):
+ return (plot_dir + 'state-time.eps')
+
+def stateEnergyPlotName(plot_dir):
+ return (plot_dir + 'state-energy.eps')
+
+def initResults():
+ for delay in delayValues:
+ results[delay] = {}
+ for bank_util in bankUtilValues:
+ results[delay][bank_util] = {}
+ for seq_bytes in seqBytesValues:
+ results[delay][bank_util][seq_bytes] = {}