summaryrefslogtreecommitdiff
path: root/util/stats/info.py
diff options
context:
space:
mode:
authorNathan Binkert <binkertn@umich.edu>2005-10-21 16:29:13 -0400
committerNathan Binkert <binkertn@umich.edu>2005-10-21 16:29:13 -0400
commite00237e49e3cb171a1235f5de43587e8eb31ec2c (patch)
tree4430d3aae17e97a048be4f803264c6830a605df3 /util/stats/info.py
parent8ab674582e88582f06d729237d9cb1c00562451e (diff)
downloadgem5-e00237e49e3cb171a1235f5de43587e8eb31ec2c.tar.xz
Major cleanup of the statistics handling code
util/stats/db.py: Build a result object as the result of a query operation so it is easier to populate and contains a bit more information than just a big dict. Also change the next level data into a matrix instead of a dict of dicts. Move the "get" function into the Database object. (The get function is used by the output parsing function as the interface for accessing backend storage, same interface for profile stuff.) Change the old get variable to the method variable, it describes how the get works, (whether using sum, stdev, etc.) util/stats/display.py: Clean up the display functions, mostly formatting. Handle values the way they should be now. util/stats/info.py: Totally re-work how values are accessed from their data store. Access individual values on demand instead of calculating everything and passing up a huge result from the bottom. This impacts the way that proxying works, and in general, everything is now esentially a proxy for the lower level database. Provide new operators: unproxy, scalar, vector, value, values, total, and len which retrieve the proper result from the object they are called on. Move the ProxyGroup stuff (proxies of proxies!) here from the now gone proxy.py file and integrate the shared parts of the code. The ProxyGroup stuff allows you to write formulas without specifying the statistics until evaluation time. Get rid of global variables! util/stats/output.py: Move the dbinfo stuff into the Database itself. Each source should have it's own get() function for accessing it's data. This get() function behaves a bit differently than before in that it can return vectors as well, deal with these vectors and with no result conditions better. util/stats/stats.py: the info module no longer has the source global variable, just create the database source and pass it around as necessary --HG-- extra : convert_revision : 8e5aa228e5d3ae8068ef9c40f65b3a2f9e7c0cff
Diffstat (limited to 'util/stats/info.py')
-rw-r--r--util/stats/info.py669
1 files changed, 309 insertions, 360 deletions
diff --git a/util/stats/info.py b/util/stats/info.py
index ae5d3211f..9932d7922 100644
--- a/util/stats/info.py
+++ b/util/stats/info.py
@@ -27,391 +27,347 @@
from __future__ import division
import operator, re, types
-source = None
-display_run = 0
-global globalTicks
-globalTicks = None
-
-def total(f):
- if isinstance(f, FormulaStat):
- v = f.value
- else:
- v = f
-
- f = FormulaStat()
- if isinstance(v, (list, tuple)):
- f.value = reduce(operator.add, v)
- else:
- f.value = v
-
- return f
-
-def unaryop(op, f):
- if isinstance(f, FormulaStat):
- v = f.value
- else:
- v = f
-
- if isinstance(v, (list, tuple)):
- return map(op, v)
- else:
- return op(v)
-
-def zerodiv(lv, rv):
- if rv == 0.0:
- return 0.0
- else:
- return operator.truediv(lv, rv)
-
-def wrapop(op, lv, rv):
- if isinstance(lv, str):
- return lv
-
- if isinstance(rv, str):
- return rv
-
- return op(lv, rv)
-
-def same(lrun, rrun):
- for lx,rx in zip(lrun.keys(),rrun.keys()):
- if lx != rx:
- print 'lx != rx'
- print lx, rx
- print lrun.keys()
- print rrun.keys()
- return False
- for ly,ry in zip(lrun[lx].keys(),rrun[rx].keys()):
- if ly != ry:
- print 'ly != ry'
- print ly, ry
- print lrun[lx].keys()
- print rrun[rx].keys()
- return False
- return True
-
-
-def binaryop(op, lf, rf):
- result = {}
-
- if isinstance(lf, FormulaStat) and isinstance(rf, FormulaStat):
- lv = lf.value
- rv = rf.value
-
- theruns = []
- for r in lv.keys():
- if rv.has_key(r):
- if same(lv[r], rv[r]):
- theruns.append(r)
- else:
- raise AttributeError
-
- for run in theruns:
- result[run] = {}
- for x in lv[run].keys():
- result[run][x] = {}
- for y in lv[run][x].keys():
- result[run][x][y] = wrapop(op, lv[run][x][y],
- rv[run][x][y])
- elif isinstance(lf, FormulaStat):
- lv = lf.value
- for run in lv.keys():
- result[run] = {}
- for x in lv[run].keys():
- result[run][x] = {}
- for y in lv[run][x].keys():
- result[run][x][y] = wrapop(op, lv[run][x][y], rf)
- elif isinstance(rf, FormulaStat):
- rv = rf.value
- for run in rv.keys():
- result[run] = {}
- for x in rv[run].keys():
- result[run][x] = {}
- for y in rv[run][x].keys():
- result[run][x][y] = wrapop(op, lf, rv[run][x][y])
-
+def unproxy(proxy):
+ if hasattr(proxy, '__unproxy__'):
+ return proxy.__unproxy__()
+
+ return proxy
+
+def scalar(stat):
+ stat = unproxy(stat)
+ assert(stat.__scalar__() != stat.__vector__())
+ return stat.__scalar__()
+
+def vector(stat):
+ stat = unproxy(stat)
+ assert(stat.__scalar__() != stat.__vector__())
+ return stat.__vector__()
+
+def value(stat, *args):
+ stat = unproxy(stat)
+ return stat.__value__(*args)
+
+def values(stat, run):
+ stat = unproxy(stat)
+ result = []
+ for i in xrange(len(stat)):
+ val = value(stat, run.run, i)
+ if val is None:
+ return None
+ result.append(val)
return result
-def sums(x, y):
- if isinstance(x, (list, tuple)):
- return map(lambda x, y: x + y, x, y)
- else:
- return x + y
-
-def alltrue(seq):
- return reduce(lambda x, y: x and y, seq)
-
-def allfalse(seq):
- return not reduce(lambda x, y: x or y, seq)
-
-def enumerate(seq):
- return map(None, range(len(seq)), seq)
-
-def cmp(a, b):
- if a < b:
- return -1
- elif a == b:
- return 0
- else:
- return 1
-
-class Statistic(object):
-
- def __init__(self, data):
- self.__dict__.update(data.__dict__)
- if not self.__dict__.has_key('value'):
- self.__dict__['value'] = None
- if not self.__dict__.has_key('bins'):
- self.__dict__['bins'] = None
- if not self.__dict__.has_key('ticks'):
- self.__dict__['ticks'] = None
- if 'vc' not in self.__dict__:
- self.vc = {}
-
- def __getattribute__(self, attr):
- if attr == 'ticks':
- if self.__dict__['ticks'] != globalTicks:
- self.__dict__['value'] = None
- self.__dict__['ticks'] = globalTicks
- return self.__dict__['ticks']
- if attr == 'value':
- if self.__dict__['ticks'] != globalTicks:
- if self.__dict__['ticks'] != None and \
- len(self.__dict__['ticks']) == 1:
- self.vc[self.__dict__['ticks'][0]] = self.__dict__['value']
- self.__dict__['ticks'] = globalTicks
- if len(globalTicks) == 1 and self.vc.has_key(globalTicks[0]):
- self.__dict__['value'] = self.vc[globalTicks[0]]
- else:
- self.__dict__['value'] = None
- if self.__dict__['value'] == None:
- self.__dict__['value'] = self.getValue()
- return self.__dict__['value']
- else:
- return super(Statistic, self).__getattribute__(attr)
-
- def __setattr__(self, attr, value):
- if attr == 'bins' or attr == 'ticks':
- if attr == 'bins':
- if value is not None:
- value = source.getBin(value)
- #elif attr == 'ticks' and type(value) is str:
- # value = [ int(x) for x in value.split() ]
-
- self.__dict__[attr] = value
- self.__dict__['value'] = None
- self.vc = {}
- else:
- super(Statistic, self).__setattr__(attr, value)
+def total(stat, run):
+ return sum(values(stat, run))
- def getValue(self):
- raise AttributeError, 'getValue() must be defined'
-
- def zero(self):
- return False
+def len(stat):
+ stat = unproxy(stat)
+ return stat.__len__()
- def __ne__(self, other):
- return not (self == other)
+class Value(object):
+ def __scalar__(self):
+ raise AttributeError, "must define __scalar__ for %s" % (type (self))
+ def __vector__(self):
+ raise AttributeError, "must define __vector__ for %s" % (type (self))
- def __str__(self):
- return '%f' % (float(self))
-
-class FormulaStat(object):
def __add__(self, other):
- f = FormulaStat()
- f.value = binaryop(operator.add, self, other)
- return f
+ return BinaryProxy(operator.__add__, self, other)
def __sub__(self, other):
- f = FormulaStat()
- f.value = binaryop(operator.sub, self, other)
- return f
+ return BinaryProxy(operator.__sub__, self, other)
def __mul__(self, other):
- f = FormulaStat()
- f.value = binaryop(operator.mul, self, other)
- return f
+ return BinaryProxy(operator.__mul__, self, other)
+ def __div__(self, other):
+ return BinaryProxy(operator.__div__, self, other)
def __truediv__(self, other):
- f = FormulaStat()
- f.value = binaryop(zerodiv, self, other)
- return f
- def __mod__(self, other):
- f = FormulaStat()
- f.value = binaryop(operator.mod, self, other)
- return f
+ return BinaryProxy(operator.__truediv__, self, other)
+ def __floordiv__(self, other):
+ return BinaryProxy(operator.__floordiv__, self, other)
+
def __radd__(self, other):
- f = FormulaStat()
- f.value = binaryop(operator.add, other, self)
- return f
+ return BinaryProxy(operator.__add__, other, self)
def __rsub__(self, other):
- f = FormulaStat()
- f.value = binaryop(operator.sub, other, self)
- return f
+ return BinaryProxy(operator.__sub__, other, self)
def __rmul__(self, other):
- f = FormulaStat()
- f.value = binaryop(operator.mul, other, self)
- return f
+ return BinaryProxy(operator.__mul__, other, self)
+ def __rdiv__(self, other):
+ return BinaryProxy(operator.__div__, other, self)
def __rtruediv__(self, other):
- f = FormulaStat()
- f.value = binaryop(zerodiv, other, self)
- return f
- def __rmod__(self, other):
- f = FormulaStat()
- f.value = binaryop(operator.mod, other, self)
- return f
+ return BinaryProxy(operator.__truediv__, other, self)
+ def __rfloordiv__(self, other):
+ return BinaryProxy(operator.__floordiv__, other, self)
+
def __neg__(self):
- f = FormulaStat()
- f.value = unaryop(operator.neg, self)
- return f
- def __getitem__(self, idx):
- f = FormulaStat()
- f.value = {}
- for key in self.value.keys():
- f.value[key] = {}
- f.value[key][0] = {}
- f.value[key][0][0] = self.value[key][idx][0]
- return f
-
- def __float__(self):
- if isinstance(self.value, FormulaStat):
- return float(self.value)
- if not self.value.has_key(display_run):
- return (1e300*1e300)
- if len(self.value[display_run]) == 1:
- return self.value[display_run][0][0]
- else:
- #print self.value[display_run]
- return self.value[display_run][4][0]
- #raise ValueError
+ return UnaryProxy(operator.__neg__, self)
+ def __pos__(self):
+ return UnaryProxy(operator.__pos__, self)
+ def __abs__(self):
+ return UnaryProxy(operator.__abs__, self)
+
+class Scalar(Value):
+ def __scalar__(self):
+ return True
- def display(self):
- import display
- d = display.VectorDisplay()
- d.flags = 0
- d.precision = 1
- d.name = 'formula'
- d.desc = 'formula'
- val = self.value[display_run]
- d.value = [ val[x][0] for x in val.keys() ]
- d.display()
+ def __vector__(self):
+ return False
+ def __value__(self, run):
+ raise AttributeError, '__value__ must be defined'
-class Scalar(Statistic,FormulaStat):
- def getValue(self):
- return source.data(self, self.bins, self.ticks)
+class VectorItemProxy(Value):
+ def __init__(self, proxy, index):
+ self.proxy = proxy
+ self.index = index
- def display(self):
- import display
- p = display.Print()
- p.name = self.name
- p.desc = self.desc
- p.value = float(self)
- p.flags = self.flags
- p.precision = self.precision
- if display.all or (self.flags & flags.printable):
- p.display()
+ def __scalar__(self):
+ return True
- def comparable(self, other):
- return self.name == other.name
+ def __vector__(self):
+ return False
- def __eq__(self, other):
- return self.value == other.value
+ def __value__(self, run):
+ return value(self.proxy, run, self.index)
- def __isub__(self, other):
- self.value -= other.value
- return self
+class Vector(Value):
+ def __scalar__(self):
+ return False
- def __iadd__(self, other):
- self.value += other.value
- return self
+ def __vector__(self):
+ return True
- def __itruediv__(self, other):
- if not other:
- return self
- self.value /= other
- return self
+ def __value__(self, run, index):
+ raise AttributeError, '__value__ must be defined'
-class Vector(Statistic,FormulaStat):
- def getValue(self):
- return source.data(self, self.bins, self.ticks);
+ def __getitem__(self, index):
+ return VectorItemProxy(self, index)
- def display(self):
- import display
- if not display.all and not (self.flags & flags.printable):
- return
+class ScalarConstant(Scalar):
+ def __init__(self, constant):
+ self.constant = constant
+ def __value__(self, run):
+ return self.constant
- d = display.VectorDisplay()
- d.__dict__.update(self.__dict__)
- d.display()
+class VectorConstant(Vector):
+ def __init__(self, constant):
+ self.constant = constant
+ def __value__(self, run, index):
+ return self.constant[index]
+ def __len__(self):
+ return len(self.constant)
- def comparable(self, other):
- return self.name == other.name and \
- len(self.value) == len(other.value)
+def WrapValue(value):
+ if isinstance(value, (int, long, float)):
+ return ScalarConstant(value)
+ if isinstance(value, (list, tuple)):
+ return VectorConstant(value)
+ if isinstance(value, Value):
+ return value
- def __eq__(self, other):
- if isinstance(self.value, (list, tuple)) != \
- isinstance(other.value, (list, tuple)):
- return False
+ raise AttributeError, 'Only values can be wrapped'
- if isinstance(self.value, (list, tuple)):
- if len(self.value) != len(other.value):
- return False
- else:
- for v1,v2 in zip(self.value, other.value):
- if v1 != v2:
- return False
- return True
- else:
- return self.value == other.value
+class Statistic(object):
+ def __getattr__(self, attr):
+ if attr in ('data', 'x', 'y'):
+ result = self.source.data(self, self.bins, self.ticks)
+ self.data = result.data
+ self.x = result.x
+ self.y = result.y
+ return super(Statistic, self).__getattribute__(attr)
- def __isub__(self, other):
- self.value = binaryop(operator.sub, self.value, other.value)
- return self
+ def __setattr__(self, attr, value):
+ if attr == 'stat':
+ raise AttributeError, '%s is read only' % stat
+ if attr in ('source', 'bins', 'ticks'):
+ if getattr(self, attr) != value:
+ if hasattr(self, 'data'):
+ delattr(self, 'data')
+
+ super(Statistic, self).__setattr__(attr, value)
+
+class ValueProxy(Value):
+ def __getattr__(self, attr):
+ if attr == '__value__':
+ if scalar(self):
+ return self.__scalarvalue__
+ if vector(self):
+ return self.__vectorvalue__
+ if attr == '__len__':
+ if vector(self):
+ return self.__vectorlen__
+ return super(ValueProxy, self).__getattribute__(attr)
+
+class UnaryProxy(ValueProxy):
+ def __init__(self, op, arg):
+ self.op = op
+ self.arg = WrapValue(arg)
+
+ def __scalar__(self):
+ return scalar(self.arg)
+
+ def __vector__(self):
+ return vector(self.arg)
+
+ def __scalarvalue__(self, run):
+ val = value(self.arg, run)
+ if val is None:
+ return None
+ return self.op(val)
+
+ def __vectorvalue__(self, run, index):
+ val = value(self.arg, run, index)
+ if val is None:
+ return None
+ return self.op(val)
+
+ def __vectorlen__(self):
+ return len(unproxy(self.arg))
+
+class BinaryProxy(ValueProxy):
+ def __init__(self, op, arg0, arg1):
+ super(BinaryProxy, self).__init__()
+ self.op = op
+ self.arg0 = WrapValue(arg0)
+ self.arg1 = WrapValue(arg1)
+
+ def __scalar__(self):
+ return scalar(self.arg0) and scalar(self.arg1)
+
+ def __vector__(self):
+ return vector(self.arg0) or vector(self.arg1)
+
+ def __scalarvalue__(self, run):
+ val0 = value(self.arg0, run)
+ val1 = value(self.arg1, run)
+ if val0 is None or val1 is None:
+ return None
+ return self.op(val0, val1)
+
+ def __vectorvalue__(self, run, index):
+ if scalar(self.arg0):
+ val0 = value(self.arg0, run)
+ if vector(self.arg0):
+ val0 = value(self.arg0, run, index)
+ if scalar(self.arg1):
+ val1 = value(self.arg1, run)
+ if vector(self.arg1):
+ val1 = value(self.arg1, run, index)
+
+ if val0 is None or val1 is None:
+ return None
+
+ return self.op(val0, val1)
+
+ def __vectorlen__(self):
+ if vector(self.arg0) and scalar(self.arg1):
+ return len(self.arg0)
+ if scalar(self.arg0) and vector(self.arg1):
+ return len(self.arg1)
+
+ len0 = len(self.arg0)
+ len1 = len(self.arg1)
+
+ if len0 != len1:
+ raise AttributeError, \
+ "vectors of different lengths %d != %d" % (len0, len1)
+
+ return len0
+
+class Proxy(Value):
+ def __init__(self, name, dict):
+ self.name = name
+ self.dict = dict
+
+ def __unproxy__(self):
+ return unproxy(self.dict[self.name])
+
+ def __getitem__(self, index):
+ return ItemProxy(self, index)
+
+ def __getattr__(self, attr):
+ return AttrProxy(self, attr)
+
+class ItemProxy(Proxy):
+ def __init__(self, proxy, index):
+ self.proxy = proxy
+ self.index = index
+
+ def __unproxy__(self):
+ return unproxy(unproxy(self.proxy)[self.index])
- def __iadd__(self, other):
- self.value = binaryop(operator.add, self.value, other.value)
- return self
+class AttrProxy(Proxy):
+ def __init__(self, proxy, attr):
+ self.proxy = proxy
+ self.attr = attr
- def __itruediv__(self, other):
- if not other:
- return self
- if isinstance(self.value, (list, tuple)):
- for i in xrange(len(self.value)):
- self.value[i] /= other
- else:
- self.value /= other
- return self
+ def __unproxy__(self):
+ return unproxy(getattr(unproxy(self.proxy), self.attr))
-class Formula(Vector):
- def getValue(self):
- formula = re.sub(':', '__', self.formula)
- x = eval(formula, source.stattop)
- return x.value
+class ProxyGroup(object):
+ def __init__(self, dict=None, **kwargs):
+ self.__dict__['dict'] = {}
- def comparable(self, other):
- return self.name == other.name and \
- compare(self.dist, other.dist)
+ if dict is not None:
+ self.dict.update(dict)
- def __eq__(self, other):
- return self.value == other.value
+ if kwargs:
+ self.dict.update(kwargs)
- def __isub__(self, other):
- return self
+ def __getattr__(self, name):
+ return Proxy(name, self.dict)
- def __iadd__(self, other):
- return self
+ def __setattr__(self, attr, value):
+ self.dict[attr] = value
- def __itruediv__(self, other):
- if not other:
- return self
- return self
+class ScalarStat(Statistic,Scalar):
+ def __value__(self, run):
+ if run not in self.data:
+ return None
+ return self.data[run][0][0]
+
+ def display(self, run=None):
+ import display
+ p = display.Print()
+ p.name = self.name
+ p.desc = self.desc
+ p.value = value(self, run)
+ p.flags = self.flags
+ p.precision = self.precision
+ if display.all or (self.flags & flags.printable):
+ p.display()
+
+class VectorStat(Statistic,Vector):
+ def __value__(self, run, item):
+ if run not in self.data:
+ return None
+ return self.data[run][item][0]
+
+ def __len__(self):
+ return self.x
-class SimpleDist(object):
+ def display(self, run=None):
+ import display
+ d = display.VectorDisplay()
+ d.name = self.name
+ d.desc = self.desc
+ d.value = [ value(self, run, i) for i in xrange(len(self)) ]
+ d.flags = self.flags
+ d.precision = self.precision
+ d.display()
+
+class Formula(Value):
+ def __getattribute__(self, attr):
+ if attr not in ( '__scalar__', '__vector__', '__value__', '__len__' ):
+ return super(Formula, self).__getattribute__(attr)
+
+ formula = re.sub(':', '__', self.formula)
+ value = eval(formula, self.source.stattop)
+ return getattr(value, attr)
+
+class SimpleDist(Statistic):
def __init__(self, sums, squares, samples):
self.sums = sums
self.squares = squares
self.samples = samples
- def getValue(self):
- return 0.0
-
def display(self, name, desc, flags, precision):
import display
p = display.Print()
@@ -482,9 +438,6 @@ class FullDist(SimpleDist):
self.bsize = bsize
self.size = size
- def getValue(self):
- return 0.0
-
def display(self, name, desc, flags, precision):
import display
p = display.Print()
@@ -574,9 +527,6 @@ class FullDist(SimpleDist):
return self
class Dist(Statistic):
- def getValue(self):
- return 0.0
-
def display(self):
import display
if not display.all and not (self.flags & flags.printable):
@@ -606,9 +556,6 @@ class Dist(Statistic):
return self
class VectorDist(Statistic):
- def getValue(self):
- return 0.0
-
def display(self):
import display
if not display.all and not (self.flags & flags.printable):
@@ -694,9 +641,6 @@ class VectorDist(Statistic):
return self
class Vector2d(Statistic):
- def getValue(self):
- return 0.0
-
def display(self):
import display
if not display.all and not (self.flags & flags.printable):
@@ -748,20 +692,25 @@ class Vector2d(Statistic):
return self
return self
-def NewStat(data):
+def NewStat(source, data):
stat = None
if data.type == 'SCALAR':
- stat = Scalar(data)
+ stat = ScalarStat()
elif data.type == 'VECTOR':
- stat = Vector(data)
+ stat = VectorStat()
elif data.type == 'DIST':
- stat = Dist(data)
+ stat = Dist()
elif data.type == 'VECTORDIST':
- stat = VectorDist(data)
+ stat = VectorDist()
elif data.type == 'VECTOR2D':
- stat = Vector2d(data)
+ stat = Vector2d()
elif data.type == 'FORMULA':
- stat = Formula(data)
+ stat = Formula()
+
+ stat.__dict__['source'] = source
+ stat.__dict__['bins'] = None
+ stat.__dict__['ticks'] = None
+ stat.__dict__.update(data.__dict__)
return stat