diff options
-rw-r--r-- | arch/mips/isa_desc/bitfields.h (renamed from arch/sparc/isa_desc/bitfields.h) | 0 | ||||
-rw-r--r-- | arch/mips/isa_desc/decoder.h | 991 | ||||
-rw-r--r-- | arch/mips/isa_desc/formats.h (renamed from arch/sparc/isa_desc/formats.h) | 0 | ||||
-rw-r--r-- | arch/mips/isa_desc/formats/basic.format (renamed from arch/sparc/isa_desc/formats/basic.format) | 0 | ||||
-rw-r--r-- | arch/mips/isa_desc/formats/branch.format (renamed from arch/sparc/isa_desc/formats/branch.format) | 0 | ||||
-rw-r--r-- | arch/mips/isa_desc/formats/integerop.format (renamed from arch/sparc/isa_desc/formats/integerop.format) | 0 | ||||
-rw-r--r-- | arch/mips/isa_desc/formats/mem.format (renamed from arch/sparc/isa_desc/formats/mem.format) | 0 | ||||
-rw-r--r-- | arch/mips/isa_desc/formats/noop.format (renamed from arch/sparc/isa_desc/formats/noop.format) | 0 | ||||
-rw-r--r-- | arch/mips/isa_desc/formats/trap.format (renamed from arch/sparc/isa_desc/formats/trap.format) | 0 | ||||
-rw-r--r-- | arch/mips/isa_desc/includes.h (renamed from arch/sparc/isa_desc/includes.h) | 0 | ||||
-rw-r--r-- | arch/mips/isa_desc/operands.h (renamed from arch/sparc/isa_desc/operands.h) | 0 | ||||
-rw-r--r-- | arch/mips/isa_traits.cc (renamed from arch/sparc/isa_traits.cc) | 0 | ||||
-rw-r--r-- | arch/mips/isa_traits.hh (renamed from arch/sparc/isa_traits.hh) | 0 | ||||
-rw-r--r-- | arch/sparc/isa_desc/decoder.h | 638 |
14 files changed, 991 insertions, 638 deletions
diff --git a/arch/sparc/isa_desc/bitfields.h b/arch/mips/isa_desc/bitfields.h index b0ac57575..b0ac57575 100644 --- a/arch/sparc/isa_desc/bitfields.h +++ b/arch/mips/isa_desc/bitfields.h diff --git a/arch/mips/isa_desc/decoder.h b/arch/mips/isa_desc/decoder.h new file mode 100644 index 000000000..5d71968ce --- /dev/null +++ b/arch/mips/isa_desc/decoder.h @@ -0,0 +1,991 @@ +//////////////////////////////////////////////////////////////////// +// +// The actual MIPS32 ISA decoder +// ----------------------------- +// The following instructions are specified in the MIPS32 ISA +// Specification. Decoding closely follows the style specified +// in the MIPS32 ISAthe specification document starting with Table +// A-2 (document available @ www.mips.com) +// +// +decode OPCODE_HI default FailUnimpl::unknown() { + + // Derived From ... Table A-2 MIPS32 ISA Manual + 0x0: decode OPCODE_LO { + + 0x0: decode SPECIAL { + 0x0:; + 0x1:; + 0x2:; + 0x3:; + 0x4:; + 0x5:; + 0x6:; + } + + 0x1: decode REGIMM { + 0x0:; + 0x1:; + 0x2:; + 0x3:; + 0x4:; + 0x5:; + 0x6:; + } + + format Jump { + 0x2: j({{ }}); + 0x3: jal({{ }}); + } + + format Branch { + 0x4: beq({{ }}); + 0x5: bne({{ }}); + 0x6: blez({{ }}); + 0x7: bgtz({{ }}); + } + }; + + 0x1: decode OPCODE_LO { + format IntImmediate { + 0x0: addi({{ }}); + 0x1: addiu({{ }}); + 0x2: slti({{ }}); + 0x3: sltiu({{ }}); + 0x4: andi({{ }}); + 0x5: ori({{ }}); + 0x6: xori({{ }}); + 0x7: lui({{ }}); + }; + }; + + 0x2: decode OPCODE_LO { + format FailUnimpl{ + 0x0: coprocessor_op({{ }}); + 0x1: coprocessor_op({{ }}); + 0x2: coprocessor_op({{ }}); + 0x3: coprocessor_op({{ }}); + }; + + //MIPS obsolete instructions + 0x4: beql({{ }}); + 0x5: bnel({{ }}); + 0x6: blezl({{ }}); + 0x7: bgtzl({{ }}); + }; + + 0x3: decode OPCODE_LO { + format FailUnimpl{ + 0x0: reserved({{ }}) + 0x1: reserved({{ }}) + 0x2: reserved({{ }}) + 0x3: reserved({{ }}) + 0x5: reserved({{ }}) + 0x6: reserved({{ }}) + }; + + 4: decode SPECIAL2 { + 0x0:; + 0x1:; + 0x2:; + 0x3:; + 0x4:; + 0x5:; + 0x6:; + } + + 7: decode SPECIAL3 { + 0x0:; + 0x1:; + 0x2:; + 0x3:; + 0x4:; + 0x5:; + 0x6:; + } + }; + + 0x4: decode OPCODE_LO { + format LoadMemory{ + 0x0: lb({{ }}); + 0x1: lh({{ }}); + 0x2: lwl({{ }}); + 0x3: lw({{ }}); + 0x4: lbu({{ }}); + 0x5: lhu({{ }}); + 0x6: lhu({{ }}); + }; + + 0x7: FailUnimpl::reserved({{ }}); + }; + + 0x5: decode OPCODE_LO { + format StoreMemory{ + 0x0: sb({{ }}); + 0x1: sh({{ }}); + 0x2: swl({{ }}); + 0x3: sw({{ }}); + 0x6: swr({{ }}); + }; + + format FailUnimpl{ + 0x4: reserved({{ }}); + 0x5: reserved({{ }}); + 0x2: cache({{ }}); + }; + + }; + + 0x6: decode OPCODE_LO { + format LoadMemory{ + 0x0: ll({{ }}); + 0x1: lwc1({{ }}); + 0x5: ldc1({{ }}); + }; + + format FailUnimpl{ + 0x2: lwc2({{ }}); + 0x3: pref({{ }}); + 0x4: reserved({{ }}); + 0x6: ldc2({{ }}); + 0x7: reserved({{ }}); + }; + + }; + + 0x7: decode OPCODE_LO { + format StoreMemory{ + 0x0: sc({{ }}); + 0x1: swc1({{ }}); + 0x5: sdc1({{ }}); + }; + + format FailUnimpl{ + 0x2: swc2({{ }}); + 0x3: reserved({{ }}); + 0x4: reserved({{ }}); + 0x6: sdc2({{ }}); + 0x7: reserved({{ }}); + }; + + }; + + + //Table 3-1 CPU Arithmetic Instructions ( ) + format IntegerOperate { + + 0x10: decode INTFUNC { // integer arithmetic operations + + //ADD Add Word + + //ADDI Add Immediate Word + + //ADDIU Add Immediate Unsigned Word + + //ADDU Add Unsigned Word + + 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }}); + 0x40: addlv({{ + uint32_t tmp = Ra.sl + Rb_or_imm.sl; + // signed overflow occurs when operands have same sign + // and sign of result does not match. + if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) + fault = Integer_Overflow_Fault; + Rc.sl = tmp; + }}); + 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }}); + 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }}); + + 0x20: addq({{ Rc = Ra + Rb_or_imm; }}); + 0x60: addqv({{ + uint64_t tmp = Ra + Rb_or_imm; + // signed overflow occurs when operands have same sign + // and sign of result does not match. + if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>) + fault = Integer_Overflow_Fault; + Rc = tmp; + }}); + 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }}); + 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }}); + + 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }}); + 0x49: sublv({{ + uint32_t tmp = Ra.sl - Rb_or_imm.sl; + // signed overflow detection is same as for add, + // except we need to look at the *complemented* + // sign bit of the subtrahend (Rb), i.e., if the initial + // signs are the *same* then no overflow can occur + if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) + fault = Integer_Overflow_Fault; + Rc.sl = tmp; + }}); + 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }}); + 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }}); + + 0x29: subq({{ Rc = Ra - Rb_or_imm; }}); + 0x69: subqv({{ + uint64_t tmp = Ra - Rb_or_imm; + // signed overflow detection is same as for add, + // except we need to look at the *complemented* + // sign bit of the subtrahend (Rb), i.e., if the initial + // signs are the *same* then no overflow can occur + if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>) + fault = Integer_Overflow_Fault; + Rc = tmp; + }}); + 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }}); + 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }}); + + 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }}); + 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }}); + 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }}); + 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }}); + 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }}); + + 0x0f: cmpbge({{ + int hi = 7; + int lo = 0; + uint64_t tmp = 0; + for (int i = 0; i < 8; ++i) { + tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i; + hi += 8; + lo += 8; + } + Rc = tmp; + }}); + } + + 0x11: decode INTFUNC { // integer logical operations + + 0x00: and({{ Rc = Ra & Rb_or_imm; }}); + 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }}); + 0x20: bis({{ Rc = Ra | Rb_or_imm; }}); + 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }}); + 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }}); + 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }}); + + // conditional moves + 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }}); + 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }}); + 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }}); + 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }}); + 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }}); + 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }}); + 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }}); + 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }}); + + // For AMASK, RA must be R31. + 0x61: decode RA { + 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }}); + } + + // For IMPLVER, RA must be R31 and the B operand + // must be the immediate value 1. + 0x6c: decode RA { + 31: decode IMM { + 1: decode INTIMM { + // return EV5 for FULL_SYSTEM and EV6 otherwise + 1: implver({{ +#if FULL_SYSTEM + Rc = 1; +#else + Rc = 2; +#endif + }}); + } + } + } + +#if FULL_SYSTEM + // The mysterious 11.25... + 0x25: WarnUnimpl::eleven25(); +#endif + } + + 0x12: decode INTFUNC { + 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }}); + 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }}); + 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }}); + + 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }}); + 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }}); + 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }}); + 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }}); + + 0x52: mskwh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra; + }}); + 0x62: msklh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra; + }}); + 0x72: mskqh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra; + }}); + + 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }}); + 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }}); + 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }}); + 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }}); + + 0x5a: extwh({{ + Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }}); + 0x6a: extlh({{ + Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }}); + 0x7a: extqh({{ + Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }}); + + 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }}); + 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }}); + 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }}); + 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }}); + + 0x57: inswh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0; + }}); + 0x67: inslh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0; + }}); + 0x77: insqh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0; + }}); + + 0x30: zap({{ + uint64_t zapmask = 0; + for (int i = 0; i < 8; ++i) { + if (Rb_or_imm<i:>) + zapmask |= (mask(8) << (i * 8)); + } + Rc = Ra & ~zapmask; + }}); + 0x31: zapnot({{ + uint64_t zapmask = 0; + for (int i = 0; i < 8; ++i) { + if (!Rb_or_imm<i:>) + zapmask |= (mask(8) << (i * 8)); + } + Rc = Ra & ~zapmask; + }}); + } + + 0x13: decode INTFUNC { // integer multiplies + 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp); + 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp); + 0x30: umulh({{ + uint64_t hi, lo; + mul128(Ra, Rb_or_imm, hi, lo); + Rc = hi; + }}, IntMultOp); + 0x40: mullv({{ + // 32-bit multiply with trap on overflow + int64_t Rax = Ra.sl; // sign extended version of Ra.sl + int64_t Rbx = Rb_or_imm.sl; + int64_t tmp = Rax * Rbx; + // To avoid overflow, all the upper 32 bits must match + // the sign bit of the lower 32. We code this as + // checking the upper 33 bits for all 0s or all 1s. + uint64_t sign_bits = tmp<63:31>; + if (sign_bits != 0 && sign_bits != mask(33)) + fault = Integer_Overflow_Fault; + Rc.sl = tmp<31:0>; + }}, IntMultOp); + 0x60: mulqv({{ + // 64-bit multiply with trap on overflow + uint64_t hi, lo; + mul128(Ra, Rb_or_imm, hi, lo); + // all the upper 64 bits must match the sign bit of + // the lower 64 + if (!((hi == 0 && lo<63:> == 0) || + (hi == mask(64) && lo<63:> == 1))) + fault = Integer_Overflow_Fault; + Rc = lo; + }}, IntMultOp); + } + + 0x1c: decode INTFUNC { + 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); } + 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); } + 0x32: ctlz({{ + uint64_t count = 0; + uint64_t temp = Rb; + if (temp<63:32>) temp >>= 32; else count += 32; + if (temp<31:16>) temp >>= 16; else count += 16; + if (temp<15:8>) temp >>= 8; else count += 8; + if (temp<7:4>) temp >>= 4; else count += 4; + if (temp<3:2>) temp >>= 2; else count += 2; + if (temp<1:1>) temp >>= 1; else count += 1; + if ((temp<0:0>) != 0x1) count += 1; + Rc = count; + }}, IntAluOp); + + 0x33: cttz({{ + uint64_t count = 0; + uint64_t temp = Rb; + if (!(temp<31:0>)) { temp >>= 32; count += 32; } + if (!(temp<15:0>)) { temp >>= 16; count += 16; } + if (!(temp<7:0>)) { temp >>= 8; count += 8; } + if (!(temp<3:0>)) { temp >>= 4; count += 4; } + if (!(temp<1:0>)) { temp >>= 2; count += 2; } + if (!(temp<0:0> & ULL(0x1))) count += 1; + Rc = count; + }}, IntAluOp); + + format FailUnimpl { + 0x30: ctpop(); + 0x31: perr(); + 0x34: unpkbw(); + 0x35: unpkbl(); + 0x36: pkwb(); + 0x37: pklb(); + 0x38: minsb8(); + 0x39: minsw4(); + 0x3a: minub8(); + 0x3b: minuw4(); + 0x3c: maxub8(); + 0x3d: maxuw4(); + 0x3e: maxsb8(); + 0x3f: maxsw4(); + } + + format BasicOperateWithNopCheck { + 0x70: decode RB { + 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp); + } + 0x78: decode RB { + 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }}, + FloatCvtOp); + } + } + } + } + + //Table 3-2 CPU Branch and Jump Instructions ( ) + //Table 3-10 Obsolete CPU Branch Instructions ( ) + + //Table 3-3 CPU Instruction Control Instructions ( ) + + //Table 3-4 CPU Load, Store, and Memory Control Instructions ( ) + + //Table 3-5 CPU Logical Instructions ( ) + + //Table 3-6 CPU Insert/Extract Instructions ( ) + + //Table 3-7 CPU Move Instructions ( ) + + //Table 3-9 CPU Trap Instructions ( ) + + //Table 3-11 FPU Arithmetic Instructions ( ) + + //Table 3-12 FPU Branch Instructions ( ) + //Table 3-17 Obsolete FPU Branch Instructions () + + //Table 3-13 FPU Compare Instructions ( ) + + //Table 3-14 FPU Convert Instructions ( ) + + //Table 3-15 FPU Load, Store, and Memory Control Instructions ( ) + + //Table 3-16 FPU Move Instructions ( ) + + //Tables 3-18 thru 3-22 are Co-Processor Instructions ( ) + + //Table 3-23 Privileged Instructions ( ) + + //Table 3-24 EJTAG Instructions ( ) + + + + + format LoadAddress { + 0x08: lda({{ Ra = Rb + disp; }}); + 0x09: ldah({{ Ra = Rb + (disp << 16); }}); + } + + format LoadOrNop { + 0x0a: ldbu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.ub; }}); + 0x0c: ldwu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uw; }}); + 0x0b: ldq_u({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}); + 0x23: ldt({{ EA = Rb + disp; }}, {{ Fa = Mem.df; }}); + 0x2a: ldl_l({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}, LOCKED); + 0x2b: ldq_l({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, LOCKED); + 0x20: copy_load({{EA = Ra;}}, + {{fault = xc->copySrcTranslate(EA);}}, + IsMemRef, IsLoad, IsCopy); + } + + format LoadOrPrefetch { + 0x28: ldl({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}); + 0x29: ldq({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, EVICT_NEXT); + // IsFloating flag on lds gets the prefetch to disassemble + // using f31 instead of r31... funcitonally it's unnecessary + 0x22: lds({{ EA = Rb + disp; }}, {{ Fa.uq = s_to_t(Mem.ul); }}, + PF_EXCLUSIVE, IsFloating); + } + + format Store { + 0x0e: stb({{ EA = Rb + disp; }}, {{ Mem.ub = Ra<7:0>; }}); + 0x0d: stw({{ EA = Rb + disp; }}, {{ Mem.uw = Ra<15:0>; }}); + 0x2c: stl({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }}); + 0x2d: stq({{ EA = Rb + disp; }}, {{ Mem.uq = Ra.uq; }}); + 0x0f: stq_u({{ EA = (Rb + disp) & ~7; }}, {{ Mem.uq = Ra.uq; }}); + 0x26: sts({{ EA = Rb + disp; }}, {{ Mem.ul = t_to_s(Fa.uq); }}); + 0x27: stt({{ EA = Rb + disp; }}, {{ Mem.df = Fa; }}); + 0x24: copy_store({{EA = Rb;}}, + {{fault = xc->copy(EA);}}, + IsMemRef, IsStore, IsCopy); + } + + format StoreCond { + 0x2e: stl_c({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }}, + {{ + uint64_t tmp = Mem_write_result; + // see stq_c + Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; + }}, LOCKED); + 0x2f: stq_c({{ EA = Rb + disp; }}, {{ Mem.uq = Ra; }}, + {{ + uint64_t tmp = Mem_write_result; + // If the write operation returns 0 or 1, then + // this was a conventional store conditional, + // and the value indicates the success/failure + // of the operation. If another value is + // returned, then this was a Turbolaser + // mailbox access, and we don't update the + // result register at all. + Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; + }}, LOCKED); + } + + + + // Conditional branches. + format CondBranch { + 0x39: beq({{ cond = (Ra == 0); }}); + 0x3d: bne({{ cond = (Ra != 0); }}); + 0x3e: bge({{ cond = (Ra.sq >= 0); }}); + 0x3f: bgt({{ cond = (Ra.sq > 0); }}); + 0x3b: ble({{ cond = (Ra.sq <= 0); }}); + 0x3a: blt({{ cond = (Ra.sq < 0); }}); + 0x38: blbc({{ cond = ((Ra & 1) == 0); }}); + 0x3c: blbs({{ cond = ((Ra & 1) == 1); }}); + + 0x31: fbeq({{ cond = (Fa == 0); }}); + 0x35: fbne({{ cond = (Fa != 0); }}); + 0x36: fbge({{ cond = (Fa >= 0); }}); + 0x37: fbgt({{ cond = (Fa > 0); }}); + 0x33: fble({{ cond = (Fa <= 0); }}); + 0x32: fblt({{ cond = (Fa < 0); }}); + } + + // unconditional branches + format UncondBranch { + 0x30: br(); + 0x34: bsr(IsCall); + } + + // indirect branches + 0x1a: decode JMPFUNC { + format Jump { + 0: jmp(); + 1: jsr(IsCall); + 2: ret(IsReturn); + 3: jsr_coroutine(IsCall, IsReturn); + } + } + + // Square root and integer-to-FP moves + 0x14: decode FP_SHORTFUNC { + // Integer to FP register moves must have RB == 31 + 0x4: decode RB { + 31: decode FP_FULLFUNC { + format BasicOperateWithNopCheck { + 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp); + 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp); + 0x014: FailUnimpl::itoff(); // VAX-format conversion + } + } + } + + // Square root instructions must have FA == 31 + 0xb: decode FA { + 31: decode FP_TYPEFUNC { + format FloatingPointOperate { +#if SS_COMPATIBLE_FP + 0x0b: sqrts({{ + if (Fb < 0.0) + fault = Arithmetic_Fault; + Fc = sqrt(Fb); + }}, FloatSqrtOp); +#else + 0x0b: sqrts({{ + if (Fb.sf < 0.0) + fault = Arithmetic_Fault; + Fc.sf = sqrt(Fb.sf); + }}, FloatSqrtOp); +#endif + 0x2b: sqrtt({{ + if (Fb < 0.0) + fault = Arithmetic_Fault; + Fc = sqrt(Fb); + }}, FloatSqrtOp); + } + } + } + + // VAX-format sqrtf and sqrtg are not implemented + 0xa: FailUnimpl::sqrtfg(); + } + + // IEEE floating point + 0x16: decode FP_SHORTFUNC_TOP2 { + // The top two bits of the short function code break this + // space into four groups: binary ops, compares, reserved, and + // conversions. See Table 4-12 of AHB. There are different + // special cases in these different groups, so we decode on + // these top two bits first just to select a decode strategy. + // Most of these instructions may have various trapping and + // rounding mode flags set; these are decoded in the + // FloatingPointDecode template used by the + // FloatingPointOperate format. + + // add/sub/mul/div: just decode on the short function code + // and source type. All valid trapping and rounding modes apply. + 0: decode FP_TRAPMODE { + // check for valid trapping modes here + 0,1,5,7: decode FP_TYPEFUNC { + format FloatingPointOperate { +#if SS_COMPATIBLE_FP + 0x00: adds({{ Fc = Fa + Fb; }}); + 0x01: subs({{ Fc = Fa - Fb; }}); + 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp); + 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp); +#else + 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }}); + 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }}); + 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp); + 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp); +#endif + + 0x20: addt({{ Fc = Fa + Fb; }}); + 0x21: subt({{ Fc = Fa - Fb; }}); + 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp); + 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp); + } + } + } + + // Floating-point compare instructions must have the default + // rounding mode, and may use the default trapping mode or + // /SU. Both trapping modes are treated the same by M5; the + // only difference on the real hardware (as far a I can tell) + // is that without /SU you'd get an imprecise trap if you + // tried to compare a NaN with something else (instead of an + // "unordered" result). + 1: decode FP_FULLFUNC { + format BasicOperateWithNopCheck { + 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }}, + FloatCmpOp); + 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }}, + FloatCmpOp); + 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }}, + FloatCmpOp); + 0x0a4, 0x5a4: cmptun({{ // unordered + Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0; + }}, FloatCmpOp); + } + } + + // The FP-to-integer and integer-to-FP conversion insts + // require that FA be 31. + 3: decode FA { + 31: decode FP_TYPEFUNC { + format FloatingPointOperate { + 0x2f: decode FP_ROUNDMODE { + format FPFixedRounding { + // "chopped" i.e. round toward zero + 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }}, + Chopped); + // round to minus infinity + 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }}, + MinusInfinity); + } + default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }}); + } + + // The cvtts opcode is overloaded to be cvtst if the trap + // mode is 2 or 6 (which are not valid otherwise) + 0x2c: decode FP_FULLFUNC { + format BasicOperateWithNopCheck { + // trap on denorm version "cvtst/s" is + // simulated same as cvtst + 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }}); + } + default: cvtts({{ Fc.sf = Fb; }}); + } + + // The trapping mode for integer-to-FP conversions + // must be /SUI or nothing; /U and /SU are not + // allowed. The full set of rounding modes are + // supported though. + 0x3c: decode FP_TRAPMODE { + 0,7: cvtqs({{ Fc.sf = Fb.sq; }}); + } + 0x3e: decode FP_TRAPMODE { + 0,7: cvtqt({{ Fc = Fb.sq; }}); + } + } + } + } + } + + // misc FP operate + 0x17: decode FP_FULLFUNC { + format BasicOperateWithNopCheck { + 0x010: cvtlq({{ + Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>; + }}); + 0x030: cvtql({{ + Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); + }}); + + // We treat the precise & imprecise trapping versions of + // cvtql identically. + 0x130, 0x530: cvtqlv({{ + // To avoid overflow, all the upper 32 bits must match + // the sign bit of the lower 32. We code this as + // checking the upper 33 bits for all 0s or all 1s. + uint64_t sign_bits = Fb.uq<63:31>; + if (sign_bits != 0 && sign_bits != mask(33)) + fault = Integer_Overflow_Fault; + Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); + }}); + + 0x020: cpys({{ // copy sign + Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>; + }}); + 0x021: cpysn({{ // copy sign negated + Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>; + }}); + 0x022: cpyse({{ // copy sign and exponent + Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>; + }}); + + 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }}); + 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }}); + 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }}); + 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }}); + 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }}); + 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }}); + + 0x024: mt_fpcr({{ FPCR = Fa.uq; }}); + 0x025: mf_fpcr({{ Fa.uq = FPCR; }}); + } + } + + // miscellaneous mem-format ops + 0x18: decode MEMFUNC { + format WarnUnimpl { + 0x8000: fetch(); + 0xa000: fetch_m(); + 0xe800: ecb(); + } + + format MiscPrefetch { + 0xf800: wh64({{ EA = Rb & ~ULL(63); }}, + {{ xc->writeHint(EA, 64, memAccessFlags); }}, + IsMemRef, IsDataPrefetch, IsStore, MemWriteOp, + NO_FAULT); + } + + format BasicOperate { + 0xc000: rpcc({{ +#if FULL_SYSTEM + /* Rb is a fake dependency so here is a fun way to get + * the parser to understand that. + */ + Ra = xc->readIpr(MipsISA::IPR_CC, fault) + (Rb & 0); + +#else + Ra = curTick; +#endif + }}); + + // All of the barrier instructions below do nothing in + // their execute() methods (hence the empty code blocks). + // All of their functionality is hard-coded in the + // pipeline based on the flags IsSerializing, + // IsMemBarrier, and IsWriteBarrier. In the current + // detailed CPU model, the execute() function only gets + // called at fetch, so there's no way to generate pipeline + // behavior at any other stage. Once we go to an + // exec-in-exec CPU model we should be able to get rid of + // these flags and implement this behavior via the + // execute() methods. + + // trapb is just a barrier on integer traps, where excb is + // a barrier on integer and FP traps. "EXCB is thus a + // superset of TRAPB." (Mips ARM, Sec 4.11.4) We treat + // them the same though. + 0x0000: trapb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass); + 0x0400: excb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass); + 0x4000: mb({{ }}, IsMemBarrier, MemReadOp); + 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp); + } + +#if FULL_SYSTEM + format BasicOperate { + 0xe000: rc({{ + Ra = xc->readIntrFlag(); + xc->setIntrFlag(0); + }}, IsNonSpeculative); + 0xf000: rs({{ + Ra = xc->readIntrFlag(); + xc->setIntrFlag(1); + }}, IsNonSpeculative); + } +#else + format FailUnimpl { + 0xe000: rc(); + 0xf000: rs(); + } +#endif + } + +#if FULL_SYSTEM + 0x00: CallPal::call_pal({{ + if (!palValid || + (palPriv + && xc->readIpr(MipsISA::IPR_ICM, fault) != MipsISA::mode_kernel)) { + // invalid pal function code, or attempt to do privileged + // PAL call in non-kernel mode + fault = Unimplemented_Opcode_Fault; + } + else { + // check to see if simulator wants to do something special + // on this PAL call (including maybe suppress it) + bool dopal = xc->simPalCheck(palFunc); + + if (dopal) { + MipsISA::swap_palshadow(&xc->xcBase()->regs, true); + xc->setIpr(MipsISA::IPR_EXC_ADDR, NPC); + NPC = xc->readIpr(MipsISA::IPR_PAL_BASE, fault) + palOffset; + } + } + }}, IsNonSpeculative); +#else + 0x00: decode PALFUNC { + format EmulatedCallPal { + 0x00: halt ({{ + SimExit(curTick, "halt instruction encountered"); + }}, IsNonSpeculative); + 0x83: callsys({{ + xc->syscall(); + }}, IsNonSpeculative, IsSerializeAfter); + // Read uniq reg into ABI return value register (r0) + 0x9e: rduniq({{ R0 = Runiq; }}); + // Write uniq reg with value from ABI arg register (r16) + 0x9f: wruniq({{ Runiq = R16; }}); + } + } +#endif + +#if FULL_SYSTEM + format HwLoadStore { + 0x1b: decode HW_LDST_QUAD { + 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L); + 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q); + } + + 0x1f: decode HW_LDST_COND { + 0: decode HW_LDST_QUAD { + 0: hw_st({{ EA = (Rb + disp) & ~3; }}, + {{ Mem.ul = Ra<31:0>; }}, L); + 1: hw_st({{ EA = (Rb + disp) & ~7; }}, + {{ Mem.uq = Ra.uq; }}, Q); + } + + 1: FailUnimpl::hw_st_cond(); + } + } + + format HwMoveIPR { + 0x19: hw_mfpr({{ + // this instruction is only valid in PAL mode + if (!xc->inPalMode()) { + fault = Unimplemented_Opcode_Fault; + } + else { + Ra = xc->readIpr(ipr_index, fault); + } + }}); + 0x1d: hw_mtpr({{ + // this instruction is only valid in PAL mode + if (!xc->inPalMode()) { + fault = Unimplemented_Opcode_Fault; + } + else { + xc->setIpr(ipr_index, Ra); + if (traceData) { traceData->setData(Ra); } + } + }}); + } + + format BasicOperate { + 0x1e: hw_rei({{ xc->hwrei(); }}, IsSerializing, IsSerializeBefore); + + // M5 special opcodes use the reserved 0x01 opcode space + 0x01: decode M5FUNC { + 0x00: arm({{ + MipsPseudo::arm(xc->xcBase()); + }}, IsNonSpeculative); + 0x01: quiesce({{ + MipsPseudo::quiesce(xc->xcBase()); + }}, IsNonSpeculative); + 0x10: ivlb({{ + MipsPseudo::ivlb(xc->xcBase()); + }}, No_OpClass, IsNonSpeculative); + 0x11: ivle({{ + MipsPseudo::ivle(xc->xcBase()); + }}, No_OpClass, IsNonSpeculative); + 0x20: m5exit_old({{ + MipsPseudo::m5exit_old(xc->xcBase()); + }}, No_OpClass, IsNonSpeculative); + 0x21: m5exit({{ + MipsPseudo::m5exit(xc->xcBase()); + }}, No_OpClass, IsNonSpeculative); + 0x30: initparam({{ Ra = xc->xcBase()->cpu->system->init_param; }}); + 0x40: resetstats({{ + MipsPseudo::resetstats(xc->xcBase()); + }}, IsNonSpeculative); + 0x41: dumpstats({{ + MipsPseudo::dumpstats(xc->xcBase()); + }}, IsNonSpeculative); + 0x42: dumpresetstats({{ + MipsPseudo::dumpresetstats(xc->xcBase()); + }}, IsNonSpeculative); + 0x43: m5checkpoint({{ + MipsPseudo::m5checkpoint(xc->xcBase()); + }}, IsNonSpeculative); + 0x50: m5readfile({{ + MipsPseudo::readfile(xc->xcBase()); + }}, IsNonSpeculative); + 0x51: m5break({{ + MipsPseudo::debugbreak(xc->xcBase()); + }}, IsNonSpeculative); + 0x52: m5switchcpu({{ + MipsPseudo::switchcpu(xc->xcBase()); + }}, IsNonSpeculative); + 0x53: m5addsymbol({{ + MipsPseudo::addsymbol(xc->xcBase()); + }}, IsNonSpeculative); + + } + } +#endif +} + diff --git a/arch/sparc/isa_desc/formats.h b/arch/mips/isa_desc/formats.h index 733a093f5..733a093f5 100644 --- a/arch/sparc/isa_desc/formats.h +++ b/arch/mips/isa_desc/formats.h diff --git a/arch/sparc/isa_desc/formats/basic.format b/arch/mips/isa_desc/formats/basic.format index 1994df41c..1994df41c 100644 --- a/arch/sparc/isa_desc/formats/basic.format +++ b/arch/mips/isa_desc/formats/basic.format diff --git a/arch/sparc/isa_desc/formats/branch.format b/arch/mips/isa_desc/formats/branch.format index c4c0a90af..c4c0a90af 100644 --- a/arch/sparc/isa_desc/formats/branch.format +++ b/arch/mips/isa_desc/formats/branch.format diff --git a/arch/sparc/isa_desc/formats/integerop.format b/arch/mips/isa_desc/formats/integerop.format index 275a346d3..275a346d3 100644 --- a/arch/sparc/isa_desc/formats/integerop.format +++ b/arch/mips/isa_desc/formats/integerop.format diff --git a/arch/sparc/isa_desc/formats/mem.format b/arch/mips/isa_desc/formats/mem.format index abc00b6f2..abc00b6f2 100644 --- a/arch/sparc/isa_desc/formats/mem.format +++ b/arch/mips/isa_desc/formats/mem.format diff --git a/arch/sparc/isa_desc/formats/noop.format b/arch/mips/isa_desc/formats/noop.format index bc83e3261..bc83e3261 100644 --- a/arch/sparc/isa_desc/formats/noop.format +++ b/arch/mips/isa_desc/formats/noop.format diff --git a/arch/sparc/isa_desc/formats/trap.format b/arch/mips/isa_desc/formats/trap.format index bee77fe69..bee77fe69 100644 --- a/arch/sparc/isa_desc/formats/trap.format +++ b/arch/mips/isa_desc/formats/trap.format diff --git a/arch/sparc/isa_desc/includes.h b/arch/mips/isa_desc/includes.h index ff7cb7d1d..ff7cb7d1d 100644 --- a/arch/sparc/isa_desc/includes.h +++ b/arch/mips/isa_desc/includes.h diff --git a/arch/sparc/isa_desc/operands.h b/arch/mips/isa_desc/operands.h index 77de6c9c4..77de6c9c4 100644 --- a/arch/sparc/isa_desc/operands.h +++ b/arch/mips/isa_desc/operands.h diff --git a/arch/sparc/isa_traits.cc b/arch/mips/isa_traits.cc index c7a25f88d..c7a25f88d 100644 --- a/arch/sparc/isa_traits.cc +++ b/arch/mips/isa_traits.cc diff --git a/arch/sparc/isa_traits.hh b/arch/mips/isa_traits.hh index 9513b99fc..9513b99fc 100644 --- a/arch/sparc/isa_traits.hh +++ b/arch/mips/isa_traits.hh diff --git a/arch/sparc/isa_desc/decoder.h b/arch/sparc/isa_desc/decoder.h deleted file mode 100644 index 06834ecc3..000000000 --- a/arch/sparc/isa_desc/decoder.h +++ /dev/null @@ -1,638 +0,0 @@ -//////////////////////////////////////////////////////////////////// -// -// The actual decoder specification -// - -decode OP default Trap::unknown({{illegal_instruction}}) { - - 0x0: decode OP2 { - 0x0: Trap::illtrap({{illegal_instruction}}); //ILLTRAP - 0x1: Branch::bpcc({{ - switch((CC12 << 1) | CC02) - { - case 1: case 3: - throw illegal_instruction; - case 0: - if(passesCondition(xc->regs.MiscRegs.ccrFields.icc, COND2)) - ;//branchHere - break; - case 2: - if(passesCondition(xc->regs.MiscRegs.ccrFields.xcc, COND2)) - ;//branchHere - break; - } - }});//BPcc - 0x2: Branch::bicc({{ - if(passesCondition(xc->regs.MiscRegs.ccrFields.icc, COND2)) - ;//branchHere - }});//Bicc - 0x3: Branch::bpr({{ - switch(RCOND) - { - case 0: case 4: - throw illegal_instruction; - case 1: - if(Rs1 == 0) ;//branchHere - break; - case 2: - if(Rs1 <= 0) ;//branchHere - break; - case 3: - if(Rs1 < 0) ;//branchHere - break; - case 5: - if(Rs1 != 0) ;//branchHere - break; - case 6: - if(Rs1 > 0) ;//branchHere - break; - case 7: - if(Rs1 >= 0) ;//branchHere - break; - } - }}); //BPr - 0x4: IntegerOp::sethi({{Rd = (IMM22 << 10) & 0xFFFFFC00;}}); //SETHI (or NOP if rd == 0 and imm == 0) - 0x5: Trap::fbpfcc({{throw fp_disabled;}}); //FBPfcc - 0x6: Trap::fbfcc({{throw fp_disabled;}}); //FBfcc - } - 0x1: Branch::call({{ - //branch here - Rd = xc->pc; - }}); - 0x2: decode OP3 { - format IntegerOp { - 0x00: add({{ - INT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - Rd = Rs1.sdw + val2; - }});//ADD - 0x01: and({{ - UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw); - Rd = Rs1.udw & val2; - }});//AND - 0x02: or({{ - UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw); - Rd = Rs1.udw | val2; - }});//OR - 0x03: xor({{ - UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw); - Rd = Rs1.udw ^ val2; - }});//XOR - 0x04: sub({{ - INT64 val2 = ~((UINT64)(I ? SIMM13.sdw : Rs2.udw))+1; - Rd = Rs1.sdw + val2; - }});//SUB - 0x05: andn({{ - UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw); - Rd = Rs1.udw & ~val2; - }});//ANDN - 0x06: orn({{ - UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw); - Rd = Rs1.udw | ~val2; - }});//ORN - 0x07: xnor({{ - UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw); - Rd = ~(Rs1.udw ^ val2); - }});//XNOR - 0x08: addc({{ - INT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - INT64 carryin = xc->regs.MiscRegs.ccrfields.iccfields.c; - Rd = Rs1.sdw + val2 + carryin; - }});//ADDC - 0x09: mulx({{ - INT64 val2 = (I ? SIMM13.sdw : Rs2); - Rd = Rs1 * val2; - }});//MULX - 0x0A: umul({{ - UINT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2.udw); - Rd = resTemp = Rs1.udw<31:0> * val2<31:0>; - xc->regs.MiscRegs.yFields.value = resTemp<63:32>; - }});//UMUL - 0x0B: smul({{ - INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2.sdw); - rd.sdw = resTemp = Rs1.sdw<31:0> * val2<31:0>; - xc->regs.MiscRegs.yFields.value = resTemp<63:32>; - }});//SMUL - 0x0C: subc({{ - INT64 val2 = ~((INT64)(I ? SIMM13.sdw : Rs2.sdw))+1; - INT64 carryin = xc->regs.MiscRegs.ccrfields.iccfields.c; - Rd.sdw = Rs1.sdw + val2 + carryin; - }});//SUBC - 0x0D: udivx({{ - UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw); - if(val2 == 0) throw division_by_zero; - Rd.udw = Rs1.udw / val2; - }});//UDIVX - 0x0E: udiv({{ - UINT32 resTemp, val2 = (I ? SIMM13.sw : Rs2.udw<31:0>); - if(val2 == 0) throw division_by_zero; - resTemp = (UINT64)((xc->regs.MiscRegs.yFields.value << 32) | Rs1.udw<31:0>) / val2; - INT32 overflow = (resTemp<63:32> != 0); - if(overflow) rd.udw = resTemp = 0xFFFFFFFF; - else rd.udw = resTemp; - }}); //UDIV - 0x0F: sdiv({{ - INT32 resTemp, val2 = (I ? SIMM13.sw : Rs2.sdw<31:0>); - if(val2 == 0) throw division_by_zero; - Rd.sdw = resTemp = (INT64)((xc->regs.MiscRegs.yFields.value << 32) | Rs1.sdw<31:0>) / val2; - INT32 overflow = (resTemp<63:31> != 0); - INT32 underflow = (resTemp<63:> && resTemp<62:31> != 0xFFFFFFFF); - if(overflow) rd.udw = resTemp = 0x7FFFFFFF; - else if(underflow) rd.udw = resTemp = 0xFFFFFFFF80000000; - else rd.udw = resTemp; - }});//SDIV - } - format IntegerOpCc { - 0x10: addcc({{ - INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2); - Rd = resTemp = Rs1 + val2;}}, - {{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}}, - {{Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>}}, - {{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}}, - {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}} - );//ADDcc - 0x11: andcc({{ - INT64 val2 = (I ? SIMM13.sdw : Rs2); - Rd = Rs1 & val2;}} - ,{{0}},{{0}},{{0}},{{0}});//ANDcc - 0x12: orcc({{ - INT64 val2 = (I ? SIMM13.sdw : Rs2); - Rd = Rs1 | val2;}} - ,{{0}},{{0}},{{0}},{{0}});//ORcc - 0x13: xorcc({{ - INT64 val2 = (I ? SIMM13.sdw : Rs2); - Rd = Rs1 ^ val2;}} - ,{{0}},{{0}},{{0}},{{0}});//XORcc - 0x14: subcc({{ - INT64 resTemp, val2 = (INT64)(I ? SIMM13.sdw : Rs2); - Rd = resTemp = Rs1 - val2;}}, - {{((Rs1 & 0xFFFFFFFF + (~val2) & 0xFFFFFFFF + 1) >> 31)}}, - {{Rs1<31:> != val2<31:> && Rs1<31:> != resTemp<31:>}}, - {{((Rs1 >> 1) + (~val2) >> 1) + ((Rs1 | ~val2) & 0x1))<63:>}}, - {{Rs1<63:> != val2<63:> && Rs1<63:> != resTemp<63:>}} - );//SUBcc - 0x15: andncc({{ - INT64 val2 = (I ? SIMM13.sdw : Rs2); - Rd = Rs1 & ~val2;}} - ,{{0}},{{0}},{{0}},{{0}});//ANDNcc - 0x16: orncc({{ - INT64 val2 = (I ? SIMM13.sdw : Rs2); - Rd = Rs1 | ~val2;}} - ,{{0}},{{0}},{{0}},{{0}});//ORNcc - 0x17: xnorcc({{ - INT64 val2 = (I ? SIMM13.sdw : Rs2); - Rd = ~(Rs1 ^ val2);}} - ,{{0}},{{0}},{{0}},{{0}});//XNORcc - 0x18: addccc({{ - INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2); - INT64 carryin = xc->regs.MiscRegs.ccrfields.iccfields.c; - Rd = resTemp = Rs1 + val2 + carryin;}}, - {{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31 + carryin)}}, - {{Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>}}, - {{((Rs1 >> 1) + (val2 >> 1) + ((Rs1 & val2) | (carryin & (Rs1 | val2)) & 0x1))<63:>}}, - {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}} - );//ADDCcc - 0x1A: umulcc({{ - UINT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2); - Rd = resTemp = Rs1.udw<31:0> * val2<31:0>; - xc->regs.MiscRegs.yFields.value = resTemp<63:32>;}} - ,{{0}},{{0}},{{0}},{{0}});//UMULcc - 0x1B: smulcc({{ - INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2); - Rd = resTemp = Rs1.sdw<31:0> * val2<31:0>; - xc->regs.MiscRegs.yFields.value = resTemp<63:32>;}} - ,{{0}},{{0}},{{0}},{{0}});//SMULcc - 0x1C: subccc({{ - INT64 resTemp, val2 = (INT64)(I ? SIMM13.sdw : Rs2); - INT64 carryin = xc->regs.MiscRegs.ccrfields.iccfields.c; - Rd = resTemp = Rs1 + ~(val2 + carryin) + 1;}}, - {{((Rs1 & 0xFFFFFFFF + (~(val2 + carryin)) & 0xFFFFFFFF + 1) >> 31)}}, - {{Rs1<31:> != val2<31:> && Rs1<31:> != resTemp<31:>}}, - {{((Rs1 >> 1) + (~(val2 + carryin)) >> 1) + ((Rs1 | ~(val2+carryin)) & 0x1))<63:>}}, - {{Rs1<63:> != val2<63:> && Rs1<63:> != resTemp<63:>}} - );//SUBCcc - 0x1D: udivxcc({{ - UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw); - if(val2 == 0) throw division_by_zero; - Rd.udw = Rs1.udw / val2;}} - ,{{0}},{{0}},{{0}},{{0}});//UDIVXcc - 0x1E: udivcc({{ - UINT32 resTemp, val2 = (I ? SIMM13.sw : Rs2.udw<31:0>); - if(val2 == 0) throw division_by_zero; - resTemp = (UINT64)((xc->regs.MiscRegs.yFields.value << 32) | Rs1.udw<31:0>) / val2; - INT32 overflow = (resTemp<63:32> != 0); - if(overflow) rd.udw = resTemp = 0xFFFFFFFF; - else rd.udw = resTemp;}}, - {{0}}, - {{overflow}}, - {{0}}, - {{0}} - );//UDIVcc - 0x1F: sdivcc({{ - INT32 resTemp, val2 = (I ? SIMM13.sw : Rs2.sdw<31:0>); - if(val2 == 0) throw division_by_zero; - Rd.sdw = resTemp = (INT64)((xc->regs.MiscRegs.yFields.value << 32) | Rs1.sdw<31:0>) / val2; - INT32 overflow = (resTemp<63:31> != 0); - INT32 underflow = (resTemp<63:> && resTemp<62:31> != 0xFFFFFFFF); - if(overflow) rd.udw = resTemp = 0x7FFFFFFF; - else if(underflow) rd.udw = resTemp = 0xFFFFFFFF80000000; - else rd.udw = resTemp;}}, - {{0}}, - {{overflow || underflow}}, - {{0}}, - {{0}} - );//SDIVcc - 0x20: taddcc({{ - INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2); - Rd = resTemp = Rs1 + val2; - INT32 overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);}}, - {{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}}, - {{overflow}}, - {{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}}, - {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}} - );//TADDcc - 0x21: tsubcc({{ - INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2); - Rd = resTemp = Rs1 + val2; - INT32 overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);}}, - {{(Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}}, - {{overflow}}, - {{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}}, - {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}} - );//TSUBcc - 0x22: taddcctv({{ - INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2); - Rd = resTemp = Rs1 + val2; - INT32 overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>); - if(overflow) throw tag_overflow;}}, - {{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}}, - {{overflow}}, - {{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}}, - {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}} - );//TADDccTV - 0x23: tsubcctv({{ - INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2); - Rd = resTemp = Rs1 + val2; - INT32 overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>); - if(overflow) throw tag_overflow;}}, - {{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}}, - {{overflow}}, - {{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}}, - {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}} - );//TSUBccTV - 0x24: mulscc({{ - INT64 resTemp, multiplicand = (I ? SIMM13.sdw : Rs2); - INT32 multiplier = Rs1<31:0>; - INT32 savedLSB = Rs1<0:>; - multiplier = multipler<31:1> | - ((xc->regs.MiscRegs.ccrFields.iccFields.n - ^ xc->regs.MiscRegs.ccrFields.iccFields.v) << 32); - if(!xc->regs.MiscRegs.yFields.value<0:>) - multiplicand = 0; - Rd = resTemp = multiplicand + multiplier; - xc->regs.MiscRegs.yFields.value = xc->regs.MiscRegs.yFields.value<31:1> | (savedLSB << 31);}}, - {{((multiplicand & 0xFFFFFFFF + multiplier & 0xFFFFFFFF) >> 31)}}, - {{multiplicand<31:> == multiplier<31:> && multiplier<31:> != resTemp<31:>}}, - {{((multiplicand >> 1) + (multiplier >> 1) + (multiplicand & multiplier & 0x1))<63:>}}, - {{multiplicand<63:> == multiplier<63:> && multiplier<63:> != resTemp<63:>}} - );//MULScc - } - format IntegerOp - { - 0x25: decode X { - 0x0: sll({{Rd = Rs1 << (I ? SHCNT32 : Rs2<4:0>);}}); //SLL - 0x1: sllx({{Rd = Rs1 << (I ? SHCNT64 : Rs2<5:0>);}}); //SLLX - } - 0x26: decode X { - 0x0: srl({{Rd = Rs1.udw<31:0> >> (I ? SHCNT32 : Rs2<4:0>);}}); //SRL - 0x1: srlx({{Rd = Rs1.udw >> (I ? SHCNT64 : Rs2<5:0>);}});//SRLX - } - 0x27: decode X { - 0x0: sra({{Rd = Rs1.sdw<31:0> >> (I ? SHCNT32 : Rs2<4:0>);}}); //SRA - 0x1: srax({{Rd = Rs1.sdw >> (I ? SHCNT64 : Rs2<5:0>);}});//SRAX - } - 0x28: decode RS1 { - 0x0: rdy({{Rd = xc->regs.MiscRegs.yFields.value;}}); //RDY - 0x2: rdccr({{Rd = xc->regs.MiscRegs.ccr;}}); //RDCCR - 0x3: rdasi({{Rd = xc->regs.MiscRegs.asi;}}); //RDASI - 0x4: rdtick({{ - if(xc->regs.MiscRegs.pstateFields.priv == 0 && - xc->regs.MiscRegs.tickFields.npt == 1) - throw privileged_action; - Rd = xc->regs.MiscRegs.tick; - }});//RDTICK - 0x5: rdpc({{Rd = xc->regs.pc;}}); //RDPC - 0x6: rdfprs({{Rd = xc->regs.MiscRegs.fprs;}}); //RDFPRS - 0xF: decode I { - 0x0: Noop::membar({{//Membar isn't needed yet}}); //MEMBAR - 0x1: Noop::stbar({{//Stbar isn/'t needed yet}}); //STBAR - } - } - - 0x2A: decode RS1 { - 0x0: rdprtpc({{checkPriv Rd = xc->regs.MiscRegs.tpc[xc->regs.MiscRegs.tl];}}); - 0x1: rdprtnpc({{checkPriv Rd = xc->regs.MiscRegs.tnpc[xc->regs.MiscRegs.tl];}}); - 0x2: rdprtstate({{checkPriv Rd = xc->regs.MiscRegs.tstate[xc->regs.MiscRegs.tl];}}); - 0x3: rdprtt({{checkPriv Rd = xc->regs.MiscRegs.tt[xc->regs.MiscRegs.tl];}}); - 0x4: rdprtick({{checkPriv Rd = xc->regs.MiscRegs.tick;}}); - 0x5: rdprtba({{checkPriv Rd = xc->regs.MiscRegs.tba;}}); - 0x6: rdprpstate({{checkPriv Rd = xc->regs.MiscRegs.pstate;}}); - 0x7: rdprtl({{checkPriv Rd = xc->regs.MiscRegs.tl;}}); - 0x8: rdprpil({{checkPriv Rd = xc->regs.MiscRegs.pil;}}); - 0x9: rdprcwp({{checkPriv Rd = xc->regs.MiscRegs.cwp;}}); - 0xA: rdprcansave({{checkPriv Rd = xc->regs.MiscRegs.cansave;}}); - 0xB: rdprcanrestore({{checkPriv Rd = xc->regs.MiscRegs.canrestore;}}); - 0xC: rdprcleanwin({{checkPriv Rd = xc->regs.MiscRegs.cleanwin;}}); - 0xD: rdprotherwin({{checkPriv Rd = xc->regs.MiscRegs.otherwin;}}); - 0xE: rdprwstate({{checkPriv Rd = xc->regs.MiscRegs.wstate;}}); - 0xF: rdprfq({{throw illegal_instruction;}}); //The floating point queue isn't implemented right now. - } - 0x2B: BasicOperate::flushw({{\\window toilet}}); //FLUSHW - 0x2C: movcc({{ - ccBank = (CC24 << 2) | (CC14 << 1) | (CC04 << 0); - switch(ccBank) - { - case 0: case 1: case 2: case 3: - throw fp_disabled; - break; - case 5: case 7: - throw illegal_instruction; - break; - case 4: - if(passesCondition(xc->regs.MiscRegs.ccrFields.icc, COND4)) - Rd = (I ? SIMM11.sdw : RS2); - break; - case 6: - if(passesCondition(xc->regs.MiscRegs.ccrFields.xcc, COND4)) - Rd = (I ? SIMM11.sdw : RS2); - break; - } - }});//MOVcc - 0x2D: sdivx({{ - INT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - if(val2 == 0) throw division_by_zero; - Rd.sdw = Rs1.sdw / val2; - }});//SDIVX - 0x2E: decode RS1 { - 0x0: IntegerOp::popc({{ - INT64 count = 0, val2 = (I ? SIMM13.sdw : Rs2.sdw); - UINT8 oneBits[] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4} - for(unsigned int x = 0; x < 16; x++) - { - count += oneBits[val2 & 0xF]; - val2 >> 4; - } - }});//POPC - } - 0x2F: movr({{ - UINT64 val2 = (I ? SIMM10.sdw : Rs2.sdw); - switch(RCOND) - { - case 0: case 4: - throw illegal_instruction; - break; - case 1: - if(Rs1 == 0) Rd = val2; - break; - case 2: - if(Rs1 <= 0) Rd = val2; - break; - case 3: - if(Rs1 = 0) Rd = val2; - break; - case 5: - if(Rs1 != 0) Rd = val2; - break; - case 6: - if(Rs1 > 0) Rd = val2; - break; - case 7: - if(Rs1 >= 0) Rd = val2; - break; - } - }});//MOVR - 0x30: decode RD { - 0x0: wry({{ - UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - xc->regs.MiscRegs.y = Rs1 ^ val2; - }});//WRY - 0x2: wrccr({{ - UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - xc->regs.MiscRegs.ccr = Rs1 ^ val2; - }});//WRCCR - 0x3: wrasi({{ - UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - xc->regs.MiscRegs.asi = Rs1 ^ val2; - }});//WRASI - 0x6: wrfprs({{ - UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - xc->regs.MiscRegs.asi = Rs1 ^ val2; - }});//WRFPRS - 0xF: Trap::sir({{software_initiated_reset}}); //SIR - } - 0x31: decode FCN { - 0x0: BasicOperate::saved({{\\Boogy Boogy}}); //SAVED - 0x1: BasicOperate::restored({{\\Boogy Boogy}}); //RESTORED - } - 0x32: decode RD { - 0x0: wrprtpc({{checkPriv - UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - xc->regs.MiscRegs.tpc[xc->regs.MiscRegs.tl] = Rs1 ^ val2; - }}); - 0x1: wrprtnpc({{checkPriv - UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - xc->regs.MiscRegs.tnpc[xc->regs.MiscRegs.tl] = Rs1 ^ val2; - }}); - 0x2: wrprtstate({{checkPriv - UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - xc->regs.MiscRegs.tstate[xc->regs.MiscRegs.tl] = Rs1 ^ val2; - }}); - 0x3: wrprtt({{checkPriv - UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - xc->regs.MiscRegs.tt[xc->regs.MiscRegs.tl] = Rs1 ^ val2; - }}); - 0x4: wrprtick({{checkPriv - UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - xc->regs.MiscRegs.tick = Rs1 ^ val2; - }}); - 0x5: wrprtba({{checkPriv - UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - xc->regs.MiscRegs.tba = Rs1 ^ val2; - }}); - 0x6: wrprpstate({{checkPriv - UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - xc->regs.MiscRegs.pstate = Rs1 ^ val2; - }}); - 0x7: wrprtl({{checkPriv - UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - xc->regs.MiscRegs.tl = Rs1 ^ val2; - }}); - 0x8: wrprpil({{checkPriv - UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - xc->regs.MiscRegs.pil = Rs1 ^ val2; - }}); - 0x9: wrprcwp({{checkPriv - UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - xc->regs.MiscRegs.cwp = Rs1 ^ val2; - }}); - 0xA: wrprcansave({{checkPriv - UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - xc->regs.MiscRegs.cansave = Rs1 ^ val2; - }}); - 0xB: wrprcanrestore({{checkPriv - UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - xc->regs.MiscRegs.canrestore = Rs1 ^ val2; - }}); - 0xC: wrprcleanwin({{checkPriv - UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - xc->regs.MiscRegs.cleanwin = Rs1 ^ val2; - }}); - 0xD: wrprotherwin({{checkPriv - UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - xc->regs.MiscRegs.otherwin = Rs1 ^ val2; - }}); - 0xE: wrprwstate({{checkPriv - UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw); - xc->regs.MiscRegs.wstate = Rs1 ^ val2; - }}); - } - - 0x34: Trap::fpop1({{Throw fp_disabled;}}); //FPOP1 - 0x35: Trap::fpop2({{Throw fp_disabled;}}); //FPOP2 - - - 0x38: Branch::jmpl({{//Stuff}}); //JMPL - 0x39: Branch::return({{//Other Stuff}}); //RETURN - 0x3A: Trap::tcc({{ - switch((CC14 << 1) | (CC04 << 0)) - { - case 1: case 3: - throw illegal_instruction; - case 0: - if(passesCondition(xc->regs.MiscRegs.ccrFields.icc, machInst<25:28>)) - throw trap_instruction; - break; - case 2: - if(passesCondition(xc->regs.MiscRegs.ccrFields.xcc, machInst<25:28>)) - throw trap_instruction; - break; - } - }}); //Tcc - 0x3B: BasicOperate::flush({{//Lala}}); //FLUSH - 0x3C: BasicOperate::save({{//leprechauns); //SAVE - 0x3D: BasicOperate::restore({{//Eat my short int}}); //RESTORE - 0x3E: decode FCN { - 0x1: BasicOperate::done({{//Done thing}}); //DONE - 0x2: BasicOperate::retry({{//Retry thing}}); //RETRY - } - } - } - 0x3: decode OP3 { - format Mem { - 0x00: lduw({{Rd.uw = Mem.uw;}}); //LDUW - 0x01: ldub({{Rd.ub = Mem.ub;}}); //LDUB - 0x02: lduh({{Rd.uhw = Mem.uhw;}}); //LDUH - 0x03: ldd({{ - UINT64 val = Mem.udw; - setIntReg(RD & (~1), val<31:0>); - setIntReg(RD | 1, val<63:32>); - }});//LDD - 0x04: stw({{Mem.sw = Rd.sw;}}); //STW - 0x05: stb({{Mem.sb = Rd.sb;}}); //STB - 0x06: sth({{Mem.shw = Rd.shw;}}); //STH - 0x07: std({{ - Mem.udw = readIntReg(RD & (~1))<31:0> | (readIntReg(RD | 1)<31:0> << 32); - }});//STD - 0x08: ldsw({{Rd.sw = Mem.sw;}}); //LDSW - 0x09: ldsb({{Rd.sb = Mem.sb;}}); //LDSB - 0x0A: ldsh({{Rd.shw = Mem.shw;}}); //LDSH - 0x0B: ldx({{Rd.udw = Mem.udw;}}); //LDX - - 0x0D: ldstub({{ - Rd.ub = Mem.ub; - Mem.ub = 0xFF; - }}); //LDSTUB - 0x0E: stx({{Rd.udw = Mem.udw;}}); //STX - 0x0F: swap({{ - UINT32 temp = Rd.uw; - Rd.uw = Mem.uw; - Mem.uw = temp; - }}); //SWAP - 0x10: lduwa({{Rd.uw = Mem.uw;}}); //LDUWA - 0x11: lduba({{Rd.ub = Mem.ub;}}); //LDUBA - 0x12: lduha({{Rd.uhw = Mem.uhw;}}); //LDUHA - 0x13: ldda({{ - UINT64 val = Mem.udw; - setIntReg(RD & (~1), val<31:0>); - setIntReg(RD | 1, val<63:32>); - }}); //LDDA - 0x14: stwa({{Mem.uw = Rd.uw;}}); //STWA - 0x15: stba({{Mem.ub = Rd.ub;}}); //STBA - 0x16: stha({{Mem.uhw = Rd.uhw;}}); //STHA - 0x17: stda({{ - Mem.udw = readIntReg(RD & (~1))<31:0> | (readIntReg(RD | 1)<31:0> << 32); - }}); //STDA - 0x18: ldswa({{Rd.sw = Mem.sw;}}); //LDSWA - 0x19: ldsba({{Rd.sb = Mem.sb;}}); //LDSBA - 0x1A: ldsha({{Rd.shw = Mem.shw;}}); //LDSHA - 0x1B: ldxa({{Rd.sdw = Mem.sdw;}}); //LDXA - - 0x1D: ldstuba({{ - Rd.ub = Mem.ub; - Mem.ub = 0xFF; - }}); //LDSTUBA - 0x1E: stxa({{Mem.sdw = Rd.sdw}}); //STXA - 0x1F: swapa({{ - UINT32 temp = Rd.uw; - Rd.uw = Mem.uw; - Mem.uw = temp; - }}); //SWAPA - 0x20: Trap::ldf({{throw fp_disabled;}}); //LDF - 0x21: decode X { - 0x0: Trap::ldfsr({{throw fp_disabled;}}); //LDFSR - 0x1: Trap::ldxfsr({{throw fp_disabled;}}); //LDXFSR - } - 0x22: Trap::ldqf({{throw fp_disabled;}}); //LDQF - 0x23: Trap::lddf({{throw fp_disabled;}}); //LDDF - 0x24: Trap::stf({{throw fp_disabled;}}); //STF - 0x25: decode X { - 0x0: Trap::stfsr({{throw fp_disabled;}}); //STFSR - 0x1: Trap::stxfsr({{throw fp_disabled;}}); //STXFSR - } - 0x26: Trap::stqf({{throw fp_disabled;}}); //STQF - 0x27: Trap::stdf({{throw fp_disabled;}}); //STDF - - - - - - 0x2D: Noop::prefetch({{ }}); //PREFETCH - - - 0x30: Trap::ldfa({{throw fp_disabled;}}); //LDFA - - 0x32: Trap::ldqfa({{throw fp_disabled;}}); //LDQFA - 0x33: Trap::lddfa({{throw fp_disabled;}}); //LDDFA - 0x34: Trap::stfa({{throw fp_disabled;}}); //STFA - 0x35: Trap::stqfa({{throw fp_disabled;}}); //STQFA - 0x36: Trap::stdfa({{throw fp_disabled;}}); //STDFA - - - - - - 0x3C: Cas::casa( - {{UINT64 val = Mem.uw; - if(Rs2.uw == val) - Mem.uw = Rd.uw; - Rd.uw = val; - }}); //CASA - 0x3D: Noop::prefetcha({{ }}); //PREFETCHA - 0x3E: Cas::casxa( - {{UINT64 val = Mem.udw; - if(Rs2 == val) - Mem.udw = Rd; - Rd = val; - }}); //CASXA - } - } -} |