diff options
Diffstat (limited to 'arch/alpha/isa')
-rw-r--r-- | arch/alpha/isa/branch.isa | 259 | ||||
-rw-r--r-- | arch/alpha/isa/decoder.isa | 799 | ||||
-rw-r--r-- | arch/alpha/isa/fp.isa | 300 | ||||
-rw-r--r-- | arch/alpha/isa/int.isa | 128 | ||||
-rw-r--r-- | arch/alpha/isa/main.isa | 2326 | ||||
-rw-r--r-- | arch/alpha/isa/mem.isa | 441 | ||||
-rw-r--r-- | arch/alpha/isa/pal.isa | 260 | ||||
-rw-r--r-- | arch/alpha/isa/unimp.isa | 165 | ||||
-rw-r--r-- | arch/alpha/isa/unknown.isa | 52 | ||||
-rw-r--r-- | arch/alpha/isa/util.isa | 112 |
10 files changed, 2534 insertions, 2308 deletions
diff --git a/arch/alpha/isa/branch.isa b/arch/alpha/isa/branch.isa new file mode 100644 index 000000000..e9c790c53 --- /dev/null +++ b/arch/alpha/isa/branch.isa @@ -0,0 +1,259 @@ +// -*- mode:c++ -*- + +// Copyright (c) 2003-2005 The Regents of The University of Michigan +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer; +// redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution; +// neither the name of the copyright holders nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +output header {{ + + /** + * Base class for instructions whose disassembly is not purely a + * function of the machine instruction (i.e., it depends on the + * PC). This class overrides the disassemble() method to check + * the PC and symbol table values before re-using a cached + * disassembly string. This is necessary for branches and jumps, + * where the disassembly string includes the target address (which + * may depend on the PC and/or symbol table). + */ + class PCDependentDisassembly : public AlphaStaticInst + { + protected: + /// Cached program counter from last disassembly + mutable Addr cachedPC; + /// Cached symbol table pointer from last disassembly + mutable const SymbolTable *cachedSymtab; + + /// Constructor + PCDependentDisassembly(const char *mnem, MachInst _machInst, + OpClass __opClass) + : AlphaStaticInst(mnem, _machInst, __opClass), + cachedPC(0), cachedSymtab(0) + { + } + + const std::string & + disassemble(Addr pc, const SymbolTable *symtab) const; + }; + + /** + * Base class for branches (PC-relative control transfers), + * conditional or unconditional. + */ + class Branch : public PCDependentDisassembly + { + protected: + /// Displacement to target address (signed). + int32_t disp; + + /// Constructor. + Branch(const char *mnem, MachInst _machInst, OpClass __opClass) + : PCDependentDisassembly(mnem, _machInst, __opClass), + disp(BRDISP << 2) + { + } + + Addr branchTarget(Addr branchPC) const; + + std::string + generateDisassembly(Addr pc, const SymbolTable *symtab) const; + }; + + /** + * Base class for jumps (register-indirect control transfers). In + * the Alpha ISA, these are always unconditional. + */ + class Jump : public PCDependentDisassembly + { + protected: + + /// Displacement to target address (signed). + int32_t disp; + + public: + /// Constructor + Jump(const char *mnem, MachInst _machInst, OpClass __opClass) + : PCDependentDisassembly(mnem, _machInst, __opClass), + disp(BRDISP) + { + } + + Addr branchTarget(ExecContext *xc) const; + + std::string + generateDisassembly(Addr pc, const SymbolTable *symtab) const; + }; +}}; + +output decoder {{ + Addr + Branch::branchTarget(Addr branchPC) const + { + return branchPC + 4 + disp; + } + + Addr + Jump::branchTarget(ExecContext *xc) const + { + Addr NPC = xc->readPC() + 4; + uint64_t Rb = xc->readIntReg(_srcRegIdx[0]); + return (Rb & ~3) | (NPC & 1); + } + + const std::string & + PCDependentDisassembly::disassemble(Addr pc, + const SymbolTable *symtab) const + { + if (!cachedDisassembly || + pc != cachedPC || symtab != cachedSymtab) + { + if (cachedDisassembly) + delete cachedDisassembly; + + cachedDisassembly = + new std::string(generateDisassembly(pc, symtab)); + cachedPC = pc; + cachedSymtab = symtab; + } + + return *cachedDisassembly; + } + + std::string + Branch::generateDisassembly(Addr pc, const SymbolTable *symtab) const + { + std::stringstream ss; + + ccprintf(ss, "%-10s ", mnemonic); + + // There's only one register arg (RA), but it could be + // either a source (the condition for conditional + // branches) or a destination (the link reg for + // unconditional branches) + if (_numSrcRegs > 0) { + printReg(ss, _srcRegIdx[0]); + ss << ","; + } + else if (_numDestRegs > 0) { + printReg(ss, _destRegIdx[0]); + ss << ","; + } + +#ifdef SS_COMPATIBLE_DISASSEMBLY + if (_numSrcRegs == 0 && _numDestRegs == 0) { + printReg(ss, 31); + ss << ","; + } +#endif + + Addr target = pc + 4 + disp; + + std::string str; + if (symtab && symtab->findSymbol(target, str)) + ss << str; + else + ccprintf(ss, "0x%x", target); + + return ss.str(); + } + + std::string + Jump::generateDisassembly(Addr pc, const SymbolTable *symtab) const + { + std::stringstream ss; + + ccprintf(ss, "%-10s ", mnemonic); + +#ifdef SS_COMPATIBLE_DISASSEMBLY + if (_numDestRegs == 0) { + printReg(ss, 31); + ss << ","; + } +#endif + + if (_numDestRegs > 0) { + printReg(ss, _destRegIdx[0]); + ss << ","; + } + + ccprintf(ss, "(r%d)", RB); + + return ss.str(); + } +}}; + +def template JumpOrBranchDecode {{ + return (RA == 31) + ? (StaticInst<AlphaISA> *)new %(class_name)s(machInst) + : (StaticInst<AlphaISA> *)new %(class_name)sAndLink(machInst); +}}; + +def format CondBranch(code) {{ + code = 'bool cond;\n' + code + '\nif (cond) NPC = NPC + disp;\n'; + iop = InstObjParams(name, Name, 'Branch', CodeBlock(code), + ('IsDirectControl', 'IsCondControl')) + header_output = BasicDeclare.subst(iop) + decoder_output = BasicConstructor.subst(iop) + decode_block = BasicDecode.subst(iop) + exec_output = BasicExecute.subst(iop) +}}; + +let {{ +def UncondCtrlBase(name, Name, base_class, npc_expr, flags): + # Declare basic control transfer w/o link (i.e. link reg is R31) + nolink_code = 'NPC = %s;\n' % npc_expr + nolink_iop = InstObjParams(name, Name, base_class, + CodeBlock(nolink_code), flags) + header_output = BasicDeclare.subst(nolink_iop) + decoder_output = BasicConstructor.subst(nolink_iop) + exec_output = BasicExecute.subst(nolink_iop) + + # Generate declaration of '*AndLink' version, append to decls + link_code = 'Ra = NPC & ~3;\n' + nolink_code + link_iop = InstObjParams(name, Name + 'AndLink', base_class, + CodeBlock(link_code), flags) + header_output += BasicDeclare.subst(link_iop) + decoder_output += BasicConstructor.subst(link_iop) + exec_output += BasicExecute.subst(link_iop) + + # need to use link_iop for the decode template since it is expecting + # the shorter version of class_name (w/o "AndLink") + + return (header_output, decoder_output, + JumpOrBranchDecode.subst(nolink_iop), exec_output) +}}; + +def format UncondBranch(*flags) {{ + flags += ('IsUncondControl', 'IsDirectControl') + (header_output, decoder_output, decode_block, exec_output) = \ + UncondCtrlBase(name, Name, 'Branch', 'NPC + disp', flags) +}}; + +def format Jump(*flags) {{ + flags += ('IsUncondControl', 'IsIndirectControl') + (header_output, decoder_output, decode_block, exec_output) = \ + UncondCtrlBase(name, Name, 'Jump', '(Rb & ~3) | (NPC & 1)', flags) +}}; + + diff --git a/arch/alpha/isa/decoder.isa b/arch/alpha/isa/decoder.isa new file mode 100644 index 000000000..6a35fa229 --- /dev/null +++ b/arch/alpha/isa/decoder.isa @@ -0,0 +1,799 @@ +// -*- mode:c++ -*- + +// Copyright (c) 2003-2005 The Regents of The University of Michigan +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer; +// redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution; +// neither the name of the copyright holders nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +decode OPCODE default Unknown::unknown() { + + format LoadAddress { + 0x08: lda({{ Ra = Rb + disp; }}); + 0x09: ldah({{ Ra = Rb + (disp << 16); }}); + } + + format LoadOrNop { + 0x0a: ldbu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.ub; }}); + 0x0c: ldwu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uw; }}); + 0x0b: ldq_u({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}); + 0x23: ldt({{ EA = Rb + disp; }}, {{ Fa = Mem.df; }}); + 0x2a: ldl_l({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}, LOCKED); + 0x2b: ldq_l({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, LOCKED); + 0x20: copy_load({{EA = Ra;}}, + {{fault = xc->copySrcTranslate(EA);}}, + IsMemRef, IsLoad, IsCopy); + } + + format LoadOrPrefetch { + 0x28: ldl({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}); + 0x29: ldq({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, EVICT_NEXT); + // IsFloating flag on lds gets the prefetch to disassemble + // using f31 instead of r31... funcitonally it's unnecessary + 0x22: lds({{ EA = Rb + disp; }}, {{ Fa.uq = s_to_t(Mem.ul); }}, + PF_EXCLUSIVE, IsFloating); + } + + format Store { + 0x0e: stb({{ EA = Rb + disp; }}, {{ Mem.ub = Ra<7:0>; }}); + 0x0d: stw({{ EA = Rb + disp; }}, {{ Mem.uw = Ra<15:0>; }}); + 0x2c: stl({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }}); + 0x2d: stq({{ EA = Rb + disp; }}, {{ Mem.uq = Ra.uq; }}); + 0x0f: stq_u({{ EA = (Rb + disp) & ~7; }}, {{ Mem.uq = Ra.uq; }}); + 0x26: sts({{ EA = Rb + disp; }}, {{ Mem.ul = t_to_s(Fa.uq); }}); + 0x27: stt({{ EA = Rb + disp; }}, {{ Mem.df = Fa; }}); + 0x24: copy_store({{EA = Rb;}}, + {{fault = xc->copy(EA);}}, + IsMemRef, IsStore, IsCopy); + } + + format StoreCond { + 0x2e: stl_c({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }}, + {{ + uint64_t tmp = Mem_write_result; + // see stq_c + Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; + }}, LOCKED); + 0x2f: stq_c({{ EA = Rb + disp; }}, {{ Mem.uq = Ra; }}, + {{ + uint64_t tmp = Mem_write_result; + // If the write operation returns 0 or 1, then + // this was a conventional store conditional, + // and the value indicates the success/failure + // of the operation. If another value is + // returned, then this was a Turbolaser + // mailbox access, and we don't update the + // result register at all. + Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; + }}, LOCKED); + } + + format IntegerOperate { + + 0x10: decode INTFUNC { // integer arithmetic operations + + 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }}); + 0x40: addlv({{ + uint32_t tmp = Ra.sl + Rb_or_imm.sl; + // signed overflow occurs when operands have same sign + // and sign of result does not match. + if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) + fault = Integer_Overflow_Fault; + Rc.sl = tmp; + }}); + 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }}); + 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }}); + + 0x20: addq({{ Rc = Ra + Rb_or_imm; }}); + 0x60: addqv({{ + uint64_t tmp = Ra + Rb_or_imm; + // signed overflow occurs when operands have same sign + // and sign of result does not match. + if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>) + fault = Integer_Overflow_Fault; + Rc = tmp; + }}); + 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }}); + 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }}); + + 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }}); + 0x49: sublv({{ + uint32_t tmp = Ra.sl - Rb_or_imm.sl; + // signed overflow detection is same as for add, + // except we need to look at the *complemented* + // sign bit of the subtrahend (Rb), i.e., if the initial + // signs are the *same* then no overflow can occur + if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) + fault = Integer_Overflow_Fault; + Rc.sl = tmp; + }}); + 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }}); + 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }}); + + 0x29: subq({{ Rc = Ra - Rb_or_imm; }}); + 0x69: subqv({{ + uint64_t tmp = Ra - Rb_or_imm; + // signed overflow detection is same as for add, + // except we need to look at the *complemented* + // sign bit of the subtrahend (Rb), i.e., if the initial + // signs are the *same* then no overflow can occur + if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>) + fault = Integer_Overflow_Fault; + Rc = tmp; + }}); + 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }}); + 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }}); + + 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }}); + 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }}); + 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }}); + 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }}); + 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }}); + + 0x0f: cmpbge({{ + int hi = 7; + int lo = 0; + uint64_t tmp = 0; + for (int i = 0; i < 8; ++i) { + tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i; + hi += 8; + lo += 8; + } + Rc = tmp; + }}); + } + + 0x11: decode INTFUNC { // integer logical operations + + 0x00: and({{ Rc = Ra & Rb_or_imm; }}); + 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }}); + 0x20: bis({{ Rc = Ra | Rb_or_imm; }}); + 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }}); + 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }}); + 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }}); + + // conditional moves + 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }}); + 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }}); + 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }}); + 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }}); + 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }}); + 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }}); + 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }}); + 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }}); + + // For AMASK, RA must be R31. + 0x61: decode RA { + 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }}); + } + + // For IMPLVER, RA must be R31 and the B operand + // must be the immediate value 1. + 0x6c: decode RA { + 31: decode IMM { + 1: decode INTIMM { + // return EV5 for FULL_SYSTEM and EV6 otherwise + 1: implver({{ +#if FULL_SYSTEM + Rc = 1; +#else + Rc = 2; +#endif + }}); + } + } + } + +#if FULL_SYSTEM + // The mysterious 11.25... + 0x25: WarnUnimpl::eleven25(); +#endif + } + + 0x12: decode INTFUNC { + 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }}); + 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }}); + 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }}); + + 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }}); + 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }}); + 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }}); + 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }}); + + 0x52: mskwh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra; + }}); + 0x62: msklh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra; + }}); + 0x72: mskqh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra; + }}); + + 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }}); + 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }}); + 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }}); + 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }}); + + 0x5a: extwh({{ + Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }}); + 0x6a: extlh({{ + Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }}); + 0x7a: extqh({{ + Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }}); + + 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }}); + 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }}); + 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }}); + 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }}); + + 0x57: inswh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0; + }}); + 0x67: inslh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0; + }}); + 0x77: insqh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0; + }}); + + 0x30: zap({{ + uint64_t zapmask = 0; + for (int i = 0; i < 8; ++i) { + if (Rb_or_imm<i:>) + zapmask |= (mask(8) << (i * 8)); + } + Rc = Ra & ~zapmask; + }}); + 0x31: zapnot({{ + uint64_t zapmask = 0; + for (int i = 0; i < 8; ++i) { + if (!Rb_or_imm<i:>) + zapmask |= (mask(8) << (i * 8)); + } + Rc = Ra & ~zapmask; + }}); + } + + 0x13: decode INTFUNC { // integer multiplies + 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp); + 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp); + 0x30: umulh({{ + uint64_t hi, lo; + mul128(Ra, Rb_or_imm, hi, lo); + Rc = hi; + }}, IntMultOp); + 0x40: mullv({{ + // 32-bit multiply with trap on overflow + int64_t Rax = Ra.sl; // sign extended version of Ra.sl + int64_t Rbx = Rb_or_imm.sl; + int64_t tmp = Rax * Rbx; + // To avoid overflow, all the upper 32 bits must match + // the sign bit of the lower 32. We code this as + // checking the upper 33 bits for all 0s or all 1s. + uint64_t sign_bits = tmp<63:31>; + if (sign_bits != 0 && sign_bits != mask(33)) + fault = Integer_Overflow_Fault; + Rc.sl = tmp<31:0>; + }}, IntMultOp); + 0x60: mulqv({{ + // 64-bit multiply with trap on overflow + uint64_t hi, lo; + mul128(Ra, Rb_or_imm, hi, lo); + // all the upper 64 bits must match the sign bit of + // the lower 64 + if (!((hi == 0 && lo<63:> == 0) || + (hi == mask(64) && lo<63:> == 1))) + fault = Integer_Overflow_Fault; + Rc = lo; + }}, IntMultOp); + } + + 0x1c: decode INTFUNC { + 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); } + 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); } + 0x32: ctlz({{ + uint64_t count = 0; + uint64_t temp = Rb; + if (temp<63:32>) temp >>= 32; else count += 32; + if (temp<31:16>) temp >>= 16; else count += 16; + if (temp<15:8>) temp >>= 8; else count += 8; + if (temp<7:4>) temp >>= 4; else count += 4; + if (temp<3:2>) temp >>= 2; else count += 2; + if (temp<1:1>) temp >>= 1; else count += 1; + if ((temp<0:0>) != 0x1) count += 1; + Rc = count; + }}, IntAluOp); + + 0x33: cttz({{ + uint64_t count = 0; + uint64_t temp = Rb; + if (!(temp<31:0>)) { temp >>= 32; count += 32; } + if (!(temp<15:0>)) { temp >>= 16; count += 16; } + if (!(temp<7:0>)) { temp >>= 8; count += 8; } + if (!(temp<3:0>)) { temp >>= 4; count += 4; } + if (!(temp<1:0>)) { temp >>= 2; count += 2; } + if (!(temp<0:0> & ULL(0x1))) count += 1; + Rc = count; + }}, IntAluOp); + + format FailUnimpl { + 0x30: ctpop(); + 0x31: perr(); + 0x34: unpkbw(); + 0x35: unpkbl(); + 0x36: pkwb(); + 0x37: pklb(); + 0x38: minsb8(); + 0x39: minsw4(); + 0x3a: minub8(); + 0x3b: minuw4(); + 0x3c: maxub8(); + 0x3d: maxuw4(); + 0x3e: maxsb8(); + 0x3f: maxsw4(); + } + + format BasicOperateWithNopCheck { + 0x70: decode RB { + 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp); + } + 0x78: decode RB { + 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }}, + FloatCvtOp); + } + } + } + } + + // Conditional branches. + format CondBranch { + 0x39: beq({{ cond = (Ra == 0); }}); + 0x3d: bne({{ cond = (Ra != 0); }}); + 0x3e: bge({{ cond = (Ra.sq >= 0); }}); + 0x3f: bgt({{ cond = (Ra.sq > 0); }}); + 0x3b: ble({{ cond = (Ra.sq <= 0); }}); + 0x3a: blt({{ cond = (Ra.sq < 0); }}); + 0x38: blbc({{ cond = ((Ra & 1) == 0); }}); + 0x3c: blbs({{ cond = ((Ra & 1) == 1); }}); + + 0x31: fbeq({{ cond = (Fa == 0); }}); + 0x35: fbne({{ cond = (Fa != 0); }}); + 0x36: fbge({{ cond = (Fa >= 0); }}); + 0x37: fbgt({{ cond = (Fa > 0); }}); + 0x33: fble({{ cond = (Fa <= 0); }}); + 0x32: fblt({{ cond = (Fa < 0); }}); + } + + // unconditional branches + format UncondBranch { + 0x30: br(); + 0x34: bsr(IsCall); + } + + // indirect branches + 0x1a: decode JMPFUNC { + format Jump { + 0: jmp(); + 1: jsr(IsCall); + 2: ret(IsReturn); + 3: jsr_coroutine(IsCall, IsReturn); + } + } + + // Square root and integer-to-FP moves + 0x14: decode FP_SHORTFUNC { + // Integer to FP register moves must have RB == 31 + 0x4: decode RB { + 31: decode FP_FULLFUNC { + format BasicOperateWithNopCheck { + 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp); + 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp); + 0x014: FailUnimpl::itoff(); // VAX-format conversion + } + } + } + + // Square root instructions must have FA == 31 + 0xb: decode FA { + 31: decode FP_TYPEFUNC { + format FloatingPointOperate { +#if SS_COMPATIBLE_FP + 0x0b: sqrts({{ + if (Fb < 0.0) + fault = Arithmetic_Fault; + Fc = sqrt(Fb); + }}, FloatSqrtOp); +#else + 0x0b: sqrts({{ + if (Fb.sf < 0.0) + fault = Arithmetic_Fault; + Fc.sf = sqrt(Fb.sf); + }}, FloatSqrtOp); +#endif + 0x2b: sqrtt({{ + if (Fb < 0.0) + fault = Arithmetic_Fault; + Fc = sqrt(Fb); + }}, FloatSqrtOp); + } + } + } + + // VAX-format sqrtf and sqrtg are not implemented + 0xa: FailUnimpl::sqrtfg(); + } + + // IEEE floating point + 0x16: decode FP_SHORTFUNC_TOP2 { + // The top two bits of the short function code break this + // space into four groups: binary ops, compares, reserved, and + // conversions. See Table 4-12 of AHB. There are different + // special cases in these different groups, so we decode on + // these top two bits first just to select a decode strategy. + // Most of these instructions may have various trapping and + // rounding mode flags set; these are decoded in the + // FloatingPointDecode template used by the + // FloatingPointOperate format. + + // add/sub/mul/div: just decode on the short function code + // and source type. All valid trapping and rounding modes apply. + 0: decode FP_TRAPMODE { + // check for valid trapping modes here + 0,1,5,7: decode FP_TYPEFUNC { + format FloatingPointOperate { +#if SS_COMPATIBLE_FP + 0x00: adds({{ Fc = Fa + Fb; }}); + 0x01: subs({{ Fc = Fa - Fb; }}); + 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp); + 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp); +#else + 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }}); + 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }}); + 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp); + 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp); +#endif + + 0x20: addt({{ Fc = Fa + Fb; }}); + 0x21: subt({{ Fc = Fa - Fb; }}); + 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp); + 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp); + } + } + } + + // Floating-point compare instructions must have the default + // rounding mode, and may use the default trapping mode or + // /SU. Both trapping modes are treated the same by M5; the + // only difference on the real hardware (as far a I can tell) + // is that without /SU you'd get an imprecise trap if you + // tried to compare a NaN with something else (instead of an + // "unordered" result). + 1: decode FP_FULLFUNC { + format BasicOperateWithNopCheck { + 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }}, + FloatCmpOp); + 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }}, + FloatCmpOp); + 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }}, + FloatCmpOp); + 0x0a4, 0x5a4: cmptun({{ // unordered + Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0; + }}, FloatCmpOp); + } + } + + // The FP-to-integer and integer-to-FP conversion insts + // require that FA be 31. + 3: decode FA { + 31: decode FP_TYPEFUNC { + format FloatingPointOperate { + 0x2f: decode FP_ROUNDMODE { + format FPFixedRounding { + // "chopped" i.e. round toward zero + 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }}, + Chopped); + // round to minus infinity + 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }}, + MinusInfinity); + } + default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }}); + } + + // The cvtts opcode is overloaded to be cvtst if the trap + // mode is 2 or 6 (which are not valid otherwise) + 0x2c: decode FP_FULLFUNC { + format BasicOperateWithNopCheck { + // trap on denorm version "cvtst/s" is + // simulated same as cvtst + 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }}); + } + default: cvtts({{ Fc.sf = Fb; }}); + } + + // The trapping mode for integer-to-FP conversions + // must be /SUI or nothing; /U and /SU are not + // allowed. The full set of rounding modes are + // supported though. + 0x3c: decode FP_TRAPMODE { + 0,7: cvtqs({{ Fc.sf = Fb.sq; }}); + } + 0x3e: decode FP_TRAPMODE { + 0,7: cvtqt({{ Fc = Fb.sq; }}); + } + } + } + } + } + + // misc FP operate + 0x17: decode FP_FULLFUNC { + format BasicOperateWithNopCheck { + 0x010: cvtlq({{ + Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>; + }}); + 0x030: cvtql({{ + Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); + }}); + + // We treat the precise & imprecise trapping versions of + // cvtql identically. + 0x130, 0x530: cvtqlv({{ + // To avoid overflow, all the upper 32 bits must match + // the sign bit of the lower 32. We code this as + // checking the upper 33 bits for all 0s or all 1s. + uint64_t sign_bits = Fb.uq<63:31>; + if (sign_bits != 0 && sign_bits != mask(33)) + fault = Integer_Overflow_Fault; + Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); + }}); + + 0x020: cpys({{ // copy sign + Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>; + }}); + 0x021: cpysn({{ // copy sign negated + Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>; + }}); + 0x022: cpyse({{ // copy sign and exponent + Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>; + }}); + + 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }}); + 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }}); + 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }}); + 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }}); + 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }}); + 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }}); + + 0x024: mt_fpcr({{ FPCR = Fa.uq; }}); + 0x025: mf_fpcr({{ Fa.uq = FPCR; }}); + } + } + + // miscellaneous mem-format ops + 0x18: decode MEMFUNC { + format WarnUnimpl { + 0x8000: fetch(); + 0xa000: fetch_m(); + 0xe800: ecb(); + } + + format MiscPrefetch { + 0xf800: wh64({{ EA = Rb & ~ULL(63); }}, + {{ xc->writeHint(EA, 64, memAccessFlags); }}, + IsMemRef, IsDataPrefetch, IsStore, MemWriteOp, + NO_FAULT); + } + + format BasicOperate { + 0xc000: rpcc({{ +#if FULL_SYSTEM + /* Rb is a fake dependency so here is a fun way to get + * the parser to understand that. + */ + Ra = xc->readIpr(AlphaISA::IPR_CC, fault) + (Rb & 0); + +#else + Ra = curTick; +#endif + }}); + + // All of the barrier instructions below do nothing in + // their execute() methods (hence the empty code blocks). + // All of their functionality is hard-coded in the + // pipeline based on the flags IsSerializing, + // IsMemBarrier, and IsWriteBarrier. In the current + // detailed CPU model, the execute() function only gets + // called at fetch, so there's no way to generate pipeline + // behavior at any other stage. Once we go to an + // exec-in-exec CPU model we should be able to get rid of + // these flags and implement this behavior via the + // execute() methods. + + // trapb is just a barrier on integer traps, where excb is + // a barrier on integer and FP traps. "EXCB is thus a + // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat + // them the same though. + 0x0000: trapb({{ }}, IsSerializing, No_OpClass); + 0x0400: excb({{ }}, IsSerializing, No_OpClass); + 0x4000: mb({{ }}, IsMemBarrier, MemReadOp); + 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp); + } + +#if FULL_SYSTEM + format BasicOperate { + 0xe000: rc({{ + Ra = xc->readIntrFlag(); + xc->setIntrFlag(0); + }}, IsNonSpeculative); + 0xf000: rs({{ + Ra = xc->readIntrFlag(); + xc->setIntrFlag(1); + }}, IsNonSpeculative); + } +#else + format FailUnimpl { + 0xe000: rc(); + 0xf000: rs(); + } +#endif + } + +#if FULL_SYSTEM + 0x00: CallPal::call_pal({{ + if (!palValid || + (palPriv + && xc->readIpr(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) { + // invalid pal function code, or attempt to do privileged + // PAL call in non-kernel mode + fault = Unimplemented_Opcode_Fault; + } + else { + // check to see if simulator wants to do something special + // on this PAL call (including maybe suppress it) + bool dopal = xc->simPalCheck(palFunc); + + if (dopal) { + AlphaISA::swap_palshadow(&xc->xcBase()->regs, true); + xc->setIpr(AlphaISA::IPR_EXC_ADDR, NPC); + NPC = xc->readIpr(AlphaISA::IPR_PAL_BASE, fault) + palOffset; + } + } + }}, IsNonSpeculative); +#else + 0x00: decode PALFUNC { + format EmulatedCallPal { + 0x00: halt ({{ + SimExit(curTick, "halt instruction encountered"); + }}, IsNonSpeculative); + 0x83: callsys({{ + xc->syscall(); + }}, IsNonSpeculative); + // Read uniq reg into ABI return value register (r0) + 0x9e: rduniq({{ R0 = Runiq; }}); + // Write uniq reg with value from ABI arg register (r16) + 0x9f: wruniq({{ Runiq = R16; }}); + } + } +#endif + +#if FULL_SYSTEM + format HwLoadStore { + 0x1b: decode HW_LDST_QUAD { + 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L); + 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q); + } + + 0x1f: decode HW_LDST_COND { + 0: decode HW_LDST_QUAD { + 0: hw_st({{ EA = (Rb + disp) & ~3; }}, + {{ Mem.ul = Ra<31:0>; }}, L); + 1: hw_st({{ EA = (Rb + disp) & ~7; }}, + {{ Mem.uq = Ra.uq; }}, Q); + } + + 1: FailUnimpl::hw_st_cond(); + } + } + + format HwMoveIPR { + 0x19: hw_mfpr({{ + // this instruction is only valid in PAL mode + if (!xc->inPalMode()) { + fault = Unimplemented_Opcode_Fault; + } + else { + Ra = xc->readIpr(ipr_index, fault); + } + }}); + 0x1d: hw_mtpr({{ + // this instruction is only valid in PAL mode + if (!xc->inPalMode()) { + fault = Unimplemented_Opcode_Fault; + } + else { + xc->setIpr(ipr_index, Ra); + if (traceData) { traceData->setData(Ra); } + } + }}); + } + + format BasicOperate { + 0x1e: hw_rei({{ xc->hwrei(); }}, IsSerializing); + + // M5 special opcodes use the reserved 0x01 opcode space + 0x01: decode M5FUNC { + 0x00: arm({{ + AlphaPseudo::arm(xc->xcBase()); + }}, IsNonSpeculative); + 0x01: quiesce({{ + AlphaPseudo::quiesce(xc->xcBase()); + }}, IsNonSpeculative); + 0x10: ivlb({{ + AlphaPseudo::ivlb(xc->xcBase()); + }}, No_OpClass, IsNonSpeculative); + 0x11: ivle({{ + AlphaPseudo::ivle(xc->xcBase()); + }}, No_OpClass, IsNonSpeculative); + 0x20: m5exit_old({{ + AlphaPseudo::m5exit_old(xc->xcBase()); + }}, No_OpClass, IsNonSpeculative); + 0x21: m5exit({{ + AlphaPseudo::m5exit(xc->xcBase()); + }}, No_OpClass, IsNonSpeculative); + 0x30: initparam({{ Ra = xc->xcBase()->cpu->system->init_param; }}); + 0x40: resetstats({{ + AlphaPseudo::resetstats(xc->xcBase()); + }}, IsNonSpeculative); + 0x41: dumpstats({{ + AlphaPseudo::dumpstats(xc->xcBase()); + }}, IsNonSpeculative); + 0x42: dumpresetstats({{ + AlphaPseudo::dumpresetstats(xc->xcBase()); + }}, IsNonSpeculative); + 0x43: m5checkpoint({{ + AlphaPseudo::m5checkpoint(xc->xcBase()); + }}, IsNonSpeculative); + 0x50: m5readfile({{ + AlphaPseudo::readfile(xc->xcBase()); + }}, IsNonSpeculative); + 0x51: m5break({{ + AlphaPseudo::debugbreak(xc->xcBase()); + }}, IsNonSpeculative); + 0x52: m5switchcpu({{ + AlphaPseudo::switchcpu(xc->xcBase()); + }}, IsNonSpeculative); + 0x53: m5addsymbol({{ + AlphaPseudo::addsymbol(xc->xcBase()); + }}, IsNonSpeculative); + + } + } +#endif +} diff --git a/arch/alpha/isa/fp.isa b/arch/alpha/isa/fp.isa new file mode 100644 index 000000000..0abc814be --- /dev/null +++ b/arch/alpha/isa/fp.isa @@ -0,0 +1,300 @@ +// -*- mode:c++ -*- + +// Copyright (c) 2003-2005 The Regents of The University of Michigan +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer; +// redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution; +// neither the name of the copyright holders nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +output exec {{ + /// Check "FP enabled" machine status bit. Called when executing any FP + /// instruction in full-system mode. + /// @retval Full-system mode: No_Fault if FP is enabled, Fen_Fault + /// if not. Non-full-system mode: always returns No_Fault. +#if FULL_SYSTEM + inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc) + { + Fault fault = No_Fault; // dummy... this ipr access should not fault + if (!EV5::ICSR_FPE(xc->readIpr(AlphaISA::IPR_ICSR, fault))) { + fault = Fen_Fault; + } + return fault; + } +#else + inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc) + { + return No_Fault; + } +#endif +}}; + +output header {{ + /** + * Base class for general floating-point instructions. Includes + * support for various Alpha rounding and trapping modes. Only FP + * instructions that require this support are derived from this + * class; the rest derive directly from AlphaStaticInst. + */ + class AlphaFP : public AlphaStaticInst + { + public: + /// Alpha FP rounding modes. + enum RoundingMode { + Chopped = 0, ///< round toward zero + Minus_Infinity = 1, ///< round toward minus infinity + Normal = 2, ///< round to nearest (default) + Dynamic = 3, ///< use FPCR setting (in instruction) + Plus_Infinity = 3 ///< round to plus inifinity (in FPCR) + }; + + /// Alpha FP trapping modes. + /// For instructions that produce integer results, the + /// "Underflow Enable" modes really mean "Overflow Enable", and + /// the assembly modifier is V rather than U. + enum TrappingMode { + /// default: nothing enabled + Imprecise = 0, ///< no modifier + /// underflow/overflow traps enabled, inexact disabled + Underflow_Imprecise = 1, ///< /U or /V + Underflow_Precise = 5, ///< /SU or /SV + /// underflow/overflow and inexact traps enabled + Underflow_Inexact_Precise = 7 ///< /SUI or /SVI + }; + + protected: + /// Map Alpha rounding mode to C99 constants from <fenv.h>. + static const int alphaToC99RoundingMode[]; + + /// Map enum RoundingMode values to disassembly suffixes. + static const char *roundingModeSuffix[]; + /// Map enum TrappingMode values to FP disassembly suffixes. + static const char *fpTrappingModeSuffix[]; + /// Map enum TrappingMode values to integer disassembly suffixes. + static const char *intTrappingModeSuffix[]; + + /// This instruction's rounding mode. + RoundingMode roundingMode; + /// This instruction's trapping mode. + TrappingMode trappingMode; + + /// Have we warned about this instruction's unsupported + /// rounding mode (if applicable)? + mutable bool warnedOnRounding; + + /// Have we warned about this instruction's unsupported + /// trapping mode (if applicable)? + mutable bool warnedOnTrapping; + + /// Constructor + AlphaFP(const char *mnem, MachInst _machInst, OpClass __opClass) + : AlphaStaticInst(mnem, _machInst, __opClass), + roundingMode((enum RoundingMode)FP_ROUNDMODE), + trappingMode((enum TrappingMode)FP_TRAPMODE), + warnedOnRounding(false), + warnedOnTrapping(false) + { + } + + int getC99RoundingMode(uint64_t fpcr_val) const; + + // This differs from the AlphaStaticInst version only in + // printing suffixes for non-default rounding & trapping modes. + std::string + generateDisassembly(Addr pc, const SymbolTable *symtab) const; + }; + +}}; + + +output decoder {{ + int + AlphaFP::getC99RoundingMode(uint64_t fpcr_val) const + { + if (roundingMode == Dynamic) { + return alphaToC99RoundingMode[bits(fpcr_val, 59, 58)]; + } + else { + return alphaToC99RoundingMode[roundingMode]; + } + } + + std::string + AlphaFP::generateDisassembly(Addr pc, const SymbolTable *symtab) const + { + std::string mnem_str(mnemonic); + +#ifndef SS_COMPATIBLE_DISASSEMBLY + std::string suffix(""); + suffix += ((_destRegIdx[0] >= FP_Base_DepTag) + ? fpTrappingModeSuffix[trappingMode] + : intTrappingModeSuffix[trappingMode]); + suffix += roundingModeSuffix[roundingMode]; + + if (suffix != "") { + mnem_str = csprintf("%s/%s", mnemonic, suffix); + } +#endif + + std::stringstream ss; + ccprintf(ss, "%-10s ", mnem_str.c_str()); + + // just print the first two source regs... if there's + // a third one, it's a read-modify-write dest (Rc), + // e.g. for CMOVxx + if (_numSrcRegs > 0) { + printReg(ss, _srcRegIdx[0]); + } + if (_numSrcRegs > 1) { + ss << ","; + printReg(ss, _srcRegIdx[1]); + } + + // just print the first dest... if there's a second one, + // it's generally implicit + if (_numDestRegs > 0) { + if (_numSrcRegs > 0) + ss << ","; + printReg(ss, _destRegIdx[0]); + } + + return ss.str(); + } + + const int AlphaFP::alphaToC99RoundingMode[] = { + FE_TOWARDZERO, // Chopped + FE_DOWNWARD, // Minus_Infinity + FE_TONEAREST, // Normal + FE_UPWARD // Dynamic in inst, Plus_Infinity in FPCR + }; + + const char *AlphaFP::roundingModeSuffix[] = { "c", "m", "", "d" }; + // mark invalid trapping modes, but don't fail on them, because + // you could decode anything on a misspeculated path + const char *AlphaFP::fpTrappingModeSuffix[] = + { "", "u", "INVTM2", "INVTM3", "INVTM4", "su", "INVTM6", "sui" }; + const char *AlphaFP::intTrappingModeSuffix[] = + { "", "v", "INVTM2", "INVTM3", "INVTM4", "sv", "INVTM6", "svi" }; +}}; + +// FP instruction class execute method template. Handles non-standard +// rounding modes. +def template FloatingPointExecute {{ + Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, + Trace::InstRecord *traceData) const + { + if (trappingMode != Imprecise && !warnedOnTrapping) { + warn("%s: non-standard trapping mode not supported", + generateDisassembly(0, NULL)); + warnedOnTrapping = true; + } + + Fault fault = No_Fault; + + %(fp_enable_check)s; + %(op_decl)s; + %(op_rd)s; +#if USE_FENV + if (roundingMode == Normal) { + %(code)s; + } else { + fesetround(getC99RoundingMode(xc->readFpcr())); + %(code)s; + fesetround(FE_TONEAREST); + } +#else + if (roundingMode != Normal && !warnedOnRounding) { + warn("%s: non-standard rounding mode not supported", + generateDisassembly(0, NULL)); + warnedOnRounding = true; + } + %(code)s; +#endif + + if (fault == No_Fault) { + %(op_wb)s; + } + + return fault; + } +}}; + +// FP instruction class execute method template where no dynamic +// rounding mode control is needed. Like BasicExecute, but includes +// check & warning for non-standard trapping mode. +def template FPFixedRoundingExecute {{ + Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, + Trace::InstRecord *traceData) const + { + if (trappingMode != Imprecise && !warnedOnTrapping) { + warn("%s: non-standard trapping mode not supported", + generateDisassembly(0, NULL)); + warnedOnTrapping = true; + } + + Fault fault = No_Fault; + + %(fp_enable_check)s; + %(op_decl)s; + %(op_rd)s; + %(code)s; + + if (fault == No_Fault) { + %(op_wb)s; + } + + return fault; + } +}}; + +def template FloatingPointDecode {{ + { + AlphaStaticInst *i = new %(class_name)s(machInst); + if (FC == 31) { + i = makeNop(i); + } + return i; + } +}}; + +// General format for floating-point operate instructions: +// - Checks trapping and rounding mode flags. Trapping modes +// currently unimplemented (will fail). +// - Generates NOP if FC == 31. +def format FloatingPointOperate(code, *opt_args) {{ + iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args) + decode_block = FloatingPointDecode.subst(iop) + header_output = BasicDeclare.subst(iop) + decoder_output = BasicConstructor.subst(iop) + exec_output = FloatingPointExecute.subst(iop) +}}; + +// Special format for cvttq where rounding mode is pre-decoded +def format FPFixedRounding(code, class_suffix, *opt_args) {{ + Name += class_suffix + iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args) + decode_block = FloatingPointDecode.subst(iop) + header_output = BasicDeclare.subst(iop) + decoder_output = BasicConstructor.subst(iop) + exec_output = FPFixedRoundingExecute.subst(iop) +}}; + diff --git a/arch/alpha/isa/int.isa b/arch/alpha/isa/int.isa new file mode 100644 index 000000000..049437f8c --- /dev/null +++ b/arch/alpha/isa/int.isa @@ -0,0 +1,128 @@ +// -*- mode:c++ -*- + +// Copyright (c) 2003-2005 The Regents of The University of Michigan +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer; +// redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution; +// neither the name of the copyright holders nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +output header {{ + /** + * Base class for integer immediate instructions. + */ + class IntegerImm : public AlphaStaticInst + { + protected: + /// Immediate operand value (unsigned 8-bit int). + uint8_t imm; + + /// Constructor + IntegerImm(const char *mnem, MachInst _machInst, OpClass __opClass) + : AlphaStaticInst(mnem, _machInst, __opClass), imm(INTIMM) + { + } + + std::string + generateDisassembly(Addr pc, const SymbolTable *symtab) const; + }; +}}; + +output decoder {{ + std::string + IntegerImm::generateDisassembly(Addr pc, const SymbolTable *symtab) const + { + std::stringstream ss; + + ccprintf(ss, "%-10s ", mnemonic); + + // just print the first source reg... if there's + // a second one, it's a read-modify-write dest (Rc), + // e.g. for CMOVxx + if (_numSrcRegs > 0) { + printReg(ss, _srcRegIdx[0]); + ss << ","; + } + + ss << (int)imm; + + if (_numDestRegs > 0) { + ss << ","; + printReg(ss, _destRegIdx[0]); + } + + return ss.str(); + } +}}; + + +def template RegOrImmDecode {{ + { + AlphaStaticInst *i = + (IMM) ? (AlphaStaticInst *)new %(class_name)sImm(machInst) + : (AlphaStaticInst *)new %(class_name)s(machInst); + if (RC == 31) { + i = makeNop(i); + } + return i; + } +}}; + +// Primary format for integer operate instructions: +// - Generates both reg-reg and reg-imm versions if Rb_or_imm is used. +// - Generates NOP if RC == 31. +def format IntegerOperate(code, *opt_flags) {{ + # If the code block contains 'Rb_or_imm', we define two instructions, + # one using 'Rb' and one using 'imm', and have the decoder select + # the right one. + uses_imm = (code.find('Rb_or_imm') != -1) + if uses_imm: + orig_code = code + # base code is reg version: + # rewrite by substituting 'Rb' for 'Rb_or_imm' + code = re.sub(r'Rb_or_imm', 'Rb', orig_code) + # generate immediate version by substituting 'imm' + # note that imm takes no extenstion, so we extend + # the regexp to replace any extension as well + imm_code = re.sub(r'Rb_or_imm(\.\w+)?', 'imm', orig_code) + + # generate declaration for register version + cblk = CodeBlock(code) + iop = InstObjParams(name, Name, 'AlphaStaticInst', cblk, opt_flags) + header_output = BasicDeclare.subst(iop) + decoder_output = BasicConstructor.subst(iop) + exec_output = BasicExecute.subst(iop) + + if uses_imm: + # append declaration for imm version + imm_cblk = CodeBlock(imm_code) + imm_iop = InstObjParams(name, Name + 'Imm', 'IntegerImm', imm_cblk, + opt_flags) + header_output += BasicDeclare.subst(imm_iop) + decoder_output += BasicConstructor.subst(imm_iop) + exec_output += BasicExecute.subst(imm_iop) + # decode checks IMM bit to pick correct version + decode_block = RegOrImmDecode.subst(iop) + else: + # no imm version: just check for nop + decode_block = OperateNopCheckDecode.subst(iop) +}}; diff --git a/arch/alpha/isa/main.isa b/arch/alpha/isa/main.isa index eb4aad033..fa2f71a29 100644 --- a/arch/alpha/isa/main.isa +++ b/arch/alpha/isa/main.isa @@ -405,2319 +405,29 @@ def format BasicOperateWithNopCheck(code, *opt_args) {{ exec_output = BasicExecute.subst(iop) }}; +// Integer instruction templates, formats, etc. +##include "m5/arch/alpha/isa/int.isa" -//////////////////////////////////////////////////////////////////// -// -// Integer operate instructions -// - -output header {{ - /** - * Base class for integer immediate instructions. - */ - class IntegerImm : public AlphaStaticInst - { - protected: - /// Immediate operand value (unsigned 8-bit int). - uint8_t imm; - - /// Constructor - IntegerImm(const char *mnem, MachInst _machInst, OpClass __opClass) - : AlphaStaticInst(mnem, _machInst, __opClass), imm(INTIMM) - { - } - - std::string - generateDisassembly(Addr pc, const SymbolTable *symtab) const; - }; -}}; - -output decoder {{ - std::string - IntegerImm::generateDisassembly(Addr pc, const SymbolTable *symtab) const - { - std::stringstream ss; - - ccprintf(ss, "%-10s ", mnemonic); - - // just print the first source reg... if there's - // a second one, it's a read-modify-write dest (Rc), - // e.g. for CMOVxx - if (_numSrcRegs > 0) { - printReg(ss, _srcRegIdx[0]); - ss << ","; - } - - ss << (int)imm; - - if (_numDestRegs > 0) { - ss << ","; - printReg(ss, _destRegIdx[0]); - } - - return ss.str(); - } -}}; - - -def template RegOrImmDecode {{ - { - AlphaStaticInst *i = - (IMM) ? (AlphaStaticInst *)new %(class_name)sImm(machInst) - : (AlphaStaticInst *)new %(class_name)s(machInst); - if (RC == 31) { - i = makeNop(i); - } - return i; - } -}}; - -// Primary format for integer operate instructions: -// - Generates both reg-reg and reg-imm versions if Rb_or_imm is used. -// - Generates NOP if RC == 31. -def format IntegerOperate(code, *opt_flags) {{ - # If the code block contains 'Rb_or_imm', we define two instructions, - # one using 'Rb' and one using 'imm', and have the decoder select - # the right one. - uses_imm = (code.find('Rb_or_imm') != -1) - if uses_imm: - orig_code = code - # base code is reg version: - # rewrite by substituting 'Rb' for 'Rb_or_imm' - code = re.sub(r'Rb_or_imm', 'Rb', orig_code) - # generate immediate version by substituting 'imm' - # note that imm takes no extenstion, so we extend - # the regexp to replace any extension as well - imm_code = re.sub(r'Rb_or_imm(\.\w+)?', 'imm', orig_code) - - # generate declaration for register version - cblk = CodeBlock(code) - iop = InstObjParams(name, Name, 'AlphaStaticInst', cblk, opt_flags) - header_output = BasicDeclare.subst(iop) - decoder_output = BasicConstructor.subst(iop) - exec_output = BasicExecute.subst(iop) - - if uses_imm: - # append declaration for imm version - imm_cblk = CodeBlock(imm_code) - imm_iop = InstObjParams(name, Name + 'Imm', 'IntegerImm', imm_cblk, - opt_flags) - header_output += BasicDeclare.subst(imm_iop) - decoder_output += BasicConstructor.subst(imm_iop) - exec_output += BasicExecute.subst(imm_iop) - # decode checks IMM bit to pick correct version - decode_block = RegOrImmDecode.subst(iop) - else: - # no imm version: just check for nop - decode_block = OperateNopCheckDecode.subst(iop) -}}; - - -//////////////////////////////////////////////////////////////////// -// -// Floating-point instructions -// -// Note that many FP-type instructions which do not support all the -// various rounding & trapping modes use the simpler format -// BasicOperateWithNopCheck. -// - -output exec {{ - /// Check "FP enabled" machine status bit. Called when executing any FP - /// instruction in full-system mode. - /// @retval Full-system mode: No_Fault if FP is enabled, Fen_Fault - /// if not. Non-full-system mode: always returns No_Fault. -#if FULL_SYSTEM - inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc) - { - Fault fault = No_Fault; // dummy... this ipr access should not fault - if (!EV5::ICSR_FPE(xc->readIpr(AlphaISA::IPR_ICSR, fault))) { - fault = Fen_Fault; - } - return fault; - } -#else - inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc) - { - return No_Fault; - } -#endif -}}; - -output header {{ - /** - * Base class for general floating-point instructions. Includes - * support for various Alpha rounding and trapping modes. Only FP - * instructions that require this support are derived from this - * class; the rest derive directly from AlphaStaticInst. - */ - class AlphaFP : public AlphaStaticInst - { - public: - /// Alpha FP rounding modes. - enum RoundingMode { - Chopped = 0, ///< round toward zero - Minus_Infinity = 1, ///< round toward minus infinity - Normal = 2, ///< round to nearest (default) - Dynamic = 3, ///< use FPCR setting (in instruction) - Plus_Infinity = 3 ///< round to plus inifinity (in FPCR) - }; - - /// Alpha FP trapping modes. - /// For instructions that produce integer results, the - /// "Underflow Enable" modes really mean "Overflow Enable", and - /// the assembly modifier is V rather than U. - enum TrappingMode { - /// default: nothing enabled - Imprecise = 0, ///< no modifier - /// underflow/overflow traps enabled, inexact disabled - Underflow_Imprecise = 1, ///< /U or /V - Underflow_Precise = 5, ///< /SU or /SV - /// underflow/overflow and inexact traps enabled - Underflow_Inexact_Precise = 7 ///< /SUI or /SVI - }; - - protected: - /// Map Alpha rounding mode to C99 constants from <fenv.h>. - static const int alphaToC99RoundingMode[]; - - /// Map enum RoundingMode values to disassembly suffixes. - static const char *roundingModeSuffix[]; - /// Map enum TrappingMode values to FP disassembly suffixes. - static const char *fpTrappingModeSuffix[]; - /// Map enum TrappingMode values to integer disassembly suffixes. - static const char *intTrappingModeSuffix[]; - - /// This instruction's rounding mode. - RoundingMode roundingMode; - /// This instruction's trapping mode. - TrappingMode trappingMode; - - /// Have we warned about this instruction's unsupported - /// rounding mode (if applicable)? - mutable bool warnedOnRounding; - - /// Have we warned about this instruction's unsupported - /// trapping mode (if applicable)? - mutable bool warnedOnTrapping; - - /// Constructor - AlphaFP(const char *mnem, MachInst _machInst, OpClass __opClass) - : AlphaStaticInst(mnem, _machInst, __opClass), - roundingMode((enum RoundingMode)FP_ROUNDMODE), - trappingMode((enum TrappingMode)FP_TRAPMODE), - warnedOnRounding(false), - warnedOnTrapping(false) - { - } - - int getC99RoundingMode(uint64_t fpcr_val) const; - - // This differs from the AlphaStaticInst version only in - // printing suffixes for non-default rounding & trapping modes. - std::string - generateDisassembly(Addr pc, const SymbolTable *symtab) const; - }; - -}}; - - -output decoder {{ - int - AlphaFP::getC99RoundingMode(uint64_t fpcr_val) const - { - if (roundingMode == Dynamic) { - return alphaToC99RoundingMode[bits(fpcr_val, 59, 58)]; - } - else { - return alphaToC99RoundingMode[roundingMode]; - } - } - - std::string - AlphaFP::generateDisassembly(Addr pc, const SymbolTable *symtab) const - { - std::string mnem_str(mnemonic); - -#ifndef SS_COMPATIBLE_DISASSEMBLY - std::string suffix(""); - suffix += ((_destRegIdx[0] >= FP_Base_DepTag) - ? fpTrappingModeSuffix[trappingMode] - : intTrappingModeSuffix[trappingMode]); - suffix += roundingModeSuffix[roundingMode]; - - if (suffix != "") { - mnem_str = csprintf("%s/%s", mnemonic, suffix); - } -#endif - - std::stringstream ss; - ccprintf(ss, "%-10s ", mnem_str.c_str()); - - // just print the first two source regs... if there's - // a third one, it's a read-modify-write dest (Rc), - // e.g. for CMOVxx - if (_numSrcRegs > 0) { - printReg(ss, _srcRegIdx[0]); - } - if (_numSrcRegs > 1) { - ss << ","; - printReg(ss, _srcRegIdx[1]); - } - - // just print the first dest... if there's a second one, - // it's generally implicit - if (_numDestRegs > 0) { - if (_numSrcRegs > 0) - ss << ","; - printReg(ss, _destRegIdx[0]); - } - - return ss.str(); - } - - const int AlphaFP::alphaToC99RoundingMode[] = { - FE_TOWARDZERO, // Chopped - FE_DOWNWARD, // Minus_Infinity - FE_TONEAREST, // Normal - FE_UPWARD // Dynamic in inst, Plus_Infinity in FPCR - }; - - const char *AlphaFP::roundingModeSuffix[] = { "c", "m", "", "d" }; - // mark invalid trapping modes, but don't fail on them, because - // you could decode anything on a misspeculated path - const char *AlphaFP::fpTrappingModeSuffix[] = - { "", "u", "INVTM2", "INVTM3", "INVTM4", "su", "INVTM6", "sui" }; - const char *AlphaFP::intTrappingModeSuffix[] = - { "", "v", "INVTM2", "INVTM3", "INVTM4", "sv", "INVTM6", "svi" }; -}}; - -// FP instruction class execute method template. Handles non-standard -// rounding modes. -def template FloatingPointExecute {{ - Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, - Trace::InstRecord *traceData) const - { - if (trappingMode != Imprecise && !warnedOnTrapping) { - warn("%s: non-standard trapping mode not supported", - generateDisassembly(0, NULL)); - warnedOnTrapping = true; - } - - Fault fault = No_Fault; - - %(fp_enable_check)s; - %(op_decl)s; - %(op_rd)s; -#if USE_FENV - if (roundingMode == Normal) { - %(code)s; - } else { - fesetround(getC99RoundingMode(xc->readFpcr())); - %(code)s; - fesetround(FE_TONEAREST); - } -#else - if (roundingMode != Normal && !warnedOnRounding) { - warn("%s: non-standard rounding mode not supported", - generateDisassembly(0, NULL)); - warnedOnRounding = true; - } - %(code)s; -#endif - - if (fault == No_Fault) { - %(op_wb)s; - } - - return fault; - } -}}; - -// FP instruction class execute method template where no dynamic -// rounding mode control is needed. Like BasicExecute, but includes -// check & warning for non-standard trapping mode. -def template FPFixedRoundingExecute {{ - Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, - Trace::InstRecord *traceData) const - { - if (trappingMode != Imprecise && !warnedOnTrapping) { - warn("%s: non-standard trapping mode not supported", - generateDisassembly(0, NULL)); - warnedOnTrapping = true; - } - - Fault fault = No_Fault; - - %(fp_enable_check)s; - %(op_decl)s; - %(op_rd)s; - %(code)s; - - if (fault == No_Fault) { - %(op_wb)s; - } - - return fault; - } -}}; - -def template FloatingPointDecode {{ - { - AlphaStaticInst *i = new %(class_name)s(machInst); - if (FC == 31) { - i = makeNop(i); - } - return i; - } -}}; - -// General format for floating-point operate instructions: -// - Checks trapping and rounding mode flags. Trapping modes -// currently unimplemented (will fail). -// - Generates NOP if FC == 31. -def format FloatingPointOperate(code, *opt_args) {{ - iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args) - decode_block = FloatingPointDecode.subst(iop) - header_output = BasicDeclare.subst(iop) - decoder_output = BasicConstructor.subst(iop) - exec_output = FloatingPointExecute.subst(iop) -}}; - -// Special format for cvttq where rounding mode is pre-decoded -def format FPFixedRounding(code, class_suffix, *opt_args) {{ - Name += class_suffix - iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args) - decode_block = FloatingPointDecode.subst(iop) - header_output = BasicDeclare.subst(iop) - decoder_output = BasicConstructor.subst(iop) - exec_output = FPFixedRoundingExecute.subst(iop) -}}; - -//////////////////////////////////////////////////////////////////// -// -// Memory-format instructions: LoadAddress, Load, Store -// - -output header {{ - /** - * Base class for general Alpha memory-format instructions. - */ - class Memory : public AlphaStaticInst - { - protected: - - /// Memory request flags. See mem_req_base.hh. - unsigned memAccessFlags; - /// Pointer to EAComp object. - const StaticInstPtr<AlphaISA> eaCompPtr; - /// Pointer to MemAcc object. - const StaticInstPtr<AlphaISA> memAccPtr; - - /// Constructor - Memory(const char *mnem, MachInst _machInst, OpClass __opClass, - StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr, - StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr) - : AlphaStaticInst(mnem, _machInst, __opClass), - memAccessFlags(0), eaCompPtr(_eaCompPtr), memAccPtr(_memAccPtr) - { - } - - std::string - generateDisassembly(Addr pc, const SymbolTable *symtab) const; - - public: - - const StaticInstPtr<AlphaISA> &eaCompInst() const { return eaCompPtr; } - const StaticInstPtr<AlphaISA> &memAccInst() const { return memAccPtr; } - }; - - /** - * Base class for memory-format instructions using a 32-bit - * displacement (i.e. most of them). - */ - class MemoryDisp32 : public Memory - { - protected: - /// Displacement for EA calculation (signed). - int32_t disp; - - /// Constructor. - MemoryDisp32(const char *mnem, MachInst _machInst, OpClass __opClass, - StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr, - StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr) - : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr), - disp(MEMDISP) - { - } - }; - - - /** - * Base class for a few miscellaneous memory-format insts - * that don't interpret the disp field: wh64, fetch, fetch_m, ecb. - * None of these instructions has a destination register either. - */ - class MemoryNoDisp : public Memory - { - protected: - /// Constructor - MemoryNoDisp(const char *mnem, MachInst _machInst, OpClass __opClass, - StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr, - StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr) - : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr) - { - } - - std::string - generateDisassembly(Addr pc, const SymbolTable *symtab) const; - }; -}}; - - -output decoder {{ - std::string - Memory::generateDisassembly(Addr pc, const SymbolTable *symtab) const - { - return csprintf("%-10s %c%d,%d(r%d)", mnemonic, - flags[IsFloating] ? 'f' : 'r', RA, MEMDISP, RB); - } - - std::string - MemoryNoDisp::generateDisassembly(Addr pc, const SymbolTable *symtab) const - { - return csprintf("%-10s (r%d)", mnemonic, RB); - } -}}; - -def format LoadAddress(code) {{ - iop = InstObjParams(name, Name, 'MemoryDisp32', CodeBlock(code)) - header_output = BasicDeclare.subst(iop) - decoder_output = BasicConstructor.subst(iop) - decode_block = BasicDecode.subst(iop) - exec_output = BasicExecute.subst(iop) -}}; - - -def template LoadStoreDeclare {{ - /** - * Static instruction class for "%(mnemonic)s". - */ - class %(class_name)s : public %(base_class)s - { - protected: - - /** - * "Fake" effective address computation class for "%(mnemonic)s". - */ - class EAComp : public %(base_class)s - { - public: - /// Constructor - EAComp(MachInst machInst); - - %(BasicExecDeclare)s - }; - - /** - * "Fake" memory access instruction class for "%(mnemonic)s". - */ - class MemAcc : public %(base_class)s - { - public: - /// Constructor - MemAcc(MachInst machInst); - - %(BasicExecDeclare)s - }; - - public: - - /// Constructor. - %(class_name)s(MachInst machInst); - - %(BasicExecDeclare)s - }; -}}; - -def template LoadStoreConstructor {{ - /** TODO: change op_class to AddrGenOp or something (requires - * creating new member of OpClass enum in op_class.hh, updating - * config files, etc.). */ - inline %(class_name)s::EAComp::EAComp(MachInst machInst) - : %(base_class)s("%(mnemonic)s (EAComp)", machInst, IntAluOp) - { - %(ea_constructor)s; - } - - inline %(class_name)s::MemAcc::MemAcc(MachInst machInst) - : %(base_class)s("%(mnemonic)s (MemAcc)", machInst, %(op_class)s) - { - %(memacc_constructor)s; - } - - inline %(class_name)s::%(class_name)s(MachInst machInst) - : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s, - new EAComp(machInst), new MemAcc(machInst)) - { - %(constructor)s; - } -}}; - - -def template EACompExecute {{ - Fault - %(class_name)s::EAComp::execute(%(CPU_exec_context)s *xc, - Trace::InstRecord *traceData) const - { - Addr EA; - Fault fault = No_Fault; - - %(fp_enable_check)s; - %(op_decl)s; - %(op_rd)s; - %(code)s; - - if (fault == No_Fault) { - %(op_wb)s; - xc->setEA(EA); - } - - return fault; - } -}}; - -def template MemAccExecute {{ - Fault - %(class_name)s::MemAcc::execute(%(CPU_exec_context)s *xc, - Trace::InstRecord *traceData) const - { - Addr EA; - Fault fault = No_Fault; - - %(fp_enable_check)s; - %(op_decl)s; - %(op_nonmem_rd)s; - EA = xc->getEA(); - - if (fault == No_Fault) { - %(op_mem_rd)s; - %(code)s; - } - - if (fault == No_Fault) { - %(op_mem_wb)s; - } - - if (fault == No_Fault) { - %(postacc_code)s; - } - - if (fault == No_Fault) { - %(op_nonmem_wb)s; - } - - return fault; - } -}}; - - -def template LoadStoreExecute {{ - Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, - Trace::InstRecord *traceData) const - { - Addr EA; - Fault fault = No_Fault; - - %(fp_enable_check)s; - %(op_decl)s; - %(op_nonmem_rd)s; - %(ea_code)s; - - if (fault == No_Fault) { - %(op_mem_rd)s; - %(memacc_code)s; - } - - if (fault == No_Fault) { - %(op_mem_wb)s; - } - - if (fault == No_Fault) { - %(postacc_code)s; - } - - if (fault == No_Fault) { - %(op_nonmem_wb)s; - } - - return fault; - } -}}; - - -def template PrefetchExecute {{ - Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, - Trace::InstRecord *traceData) const - { - Addr EA; - Fault fault = No_Fault; - - %(fp_enable_check)s; - %(op_decl)s; - %(op_nonmem_rd)s; - %(ea_code)s; - - if (fault == No_Fault) { - xc->prefetch(EA, memAccessFlags); - } - - return No_Fault; - } -}}; - -// load instructions use Ra as dest, so check for -// Ra == 31 to detect nops -def template LoadNopCheckDecode {{ - { - AlphaStaticInst *i = new %(class_name)s(machInst); - if (RA == 31) { - i = makeNop(i); - } - return i; - } -}}; - - -// for some load instructions, Ra == 31 indicates a prefetch (not a nop) -def template LoadPrefetchCheckDecode {{ - { - if (RA != 31) { - return new %(class_name)s(machInst); - } - else { - return new %(class_name)sPrefetch(machInst); - } - } -}}; - - -let {{ -def LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code = '', - base_class = 'MemoryDisp32', flags = [], - decode_template = BasicDecode, - exec_template = LoadStoreExecute): - # Segregate flags into instruction flags (handled by InstObjParams) - # and memory access flags (handled here). - - # Would be nice to autogenerate this list, but oh well. - valid_mem_flags = ['LOCKED', 'NO_FAULT', 'EVICT_NEXT', 'PF_EXCLUSIVE'] - mem_flags = [f for f in flags if f in valid_mem_flags] - inst_flags = [f for f in flags if f not in valid_mem_flags] - - # add hook to get effective addresses into execution trace output. - ea_code += '\nif (traceData) { traceData->setAddr(EA); }\n' - - # generate code block objects - ea_cblk = CodeBlock(ea_code) - memacc_cblk = CodeBlock(memacc_code) - postacc_cblk = CodeBlock(postacc_code) - - # Some CPU models execute the memory operation as an atomic unit, - # while others want to separate them into an effective address - # computation and a memory access operation. As a result, we need - # to generate three StaticInst objects. Note that the latter two - # are nested inside the larger "atomic" one. - - # generate InstObjParams for EAComp object - ea_iop = InstObjParams(name, Name, base_class, ea_cblk, inst_flags) - - # generate InstObjParams for MemAcc object - memacc_iop = InstObjParams(name, Name, base_class, memacc_cblk, inst_flags) - # in the split execution model, the MemAcc portion is responsible - # for the post-access code. - memacc_iop.postacc_code = postacc_cblk.code - - # generate InstObjParams for unified execution - cblk = CodeBlock(ea_code + memacc_code + postacc_code) - iop = InstObjParams(name, Name, base_class, cblk, inst_flags) - - iop.ea_constructor = ea_cblk.constructor - iop.ea_code = ea_cblk.code - iop.memacc_constructor = memacc_cblk.constructor - iop.memacc_code = memacc_cblk.code - iop.postacc_code = postacc_cblk.code - - if mem_flags: - s = '\n\tmemAccessFlags = ' + string.join(mem_flags, '|') + ';' - iop.constructor += s - memacc_iop.constructor += s - - # (header_output, decoder_output, decode_block, exec_output) - return (LoadStoreDeclare.subst(iop), LoadStoreConstructor.subst(iop), - decode_template.subst(iop), - EACompExecute.subst(ea_iop) - + MemAccExecute.subst(memacc_iop) - + exec_template.subst(iop)) -}}; - - -def format LoadOrNop(ea_code, memacc_code, *flags) {{ - (header_output, decoder_output, decode_block, exec_output) = \ - LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags, - decode_template = LoadNopCheckDecode) -}}; - - -// Note that the flags passed in apply only to the prefetch version -def format LoadOrPrefetch(ea_code, memacc_code, *pf_flags) {{ - # declare the load instruction object and generate the decode block - (header_output, decoder_output, decode_block, exec_output) = \ - LoadStoreBase(name, Name, ea_code, memacc_code, - decode_template = LoadPrefetchCheckDecode) - - # Declare the prefetch instruction object. - - # convert flags from tuple to list to make them mutable - pf_flags = list(pf_flags) + ['IsMemRef', 'IsLoad', 'IsDataPrefetch', 'MemReadOp', 'NO_FAULT'] - - (pf_header_output, pf_decoder_output, _, pf_exec_output) = \ - LoadStoreBase(name, Name + 'Prefetch', ea_code, '', - flags = pf_flags, exec_template = PrefetchExecute) - - header_output += pf_header_output - decoder_output += pf_decoder_output - exec_output += pf_exec_output -}}; - - -def format Store(ea_code, memacc_code, *flags) {{ - (header_output, decoder_output, decode_block, exec_output) = \ - LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags) -}}; - - -def format StoreCond(ea_code, memacc_code, postacc_code, *flags) {{ - (header_output, decoder_output, decode_block, exec_output) = \ - LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code, - flags = flags) -}}; - - -// Use 'MemoryNoDisp' as base: for wh64, fetch, ecb -def format MiscPrefetch(ea_code, memacc_code, *flags) {{ - (header_output, decoder_output, decode_block, exec_output) = \ - LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags, - base_class = 'MemoryNoDisp') -}}; - - -//////////////////////////////////////////////////////////////////// -// -// Control transfer instructions -// - -output header {{ - - /** - * Base class for instructions whose disassembly is not purely a - * function of the machine instruction (i.e., it depends on the - * PC). This class overrides the disassemble() method to check - * the PC and symbol table values before re-using a cached - * disassembly string. This is necessary for branches and jumps, - * where the disassembly string includes the target address (which - * may depend on the PC and/or symbol table). - */ - class PCDependentDisassembly : public AlphaStaticInst - { - protected: - /// Cached program counter from last disassembly - mutable Addr cachedPC; - /// Cached symbol table pointer from last disassembly - mutable const SymbolTable *cachedSymtab; - - /// Constructor - PCDependentDisassembly(const char *mnem, MachInst _machInst, - OpClass __opClass) - : AlphaStaticInst(mnem, _machInst, __opClass), - cachedPC(0), cachedSymtab(0) - { - } - - const std::string & - disassemble(Addr pc, const SymbolTable *symtab) const; - }; - - /** - * Base class for branches (PC-relative control transfers), - * conditional or unconditional. - */ - class Branch : public PCDependentDisassembly - { - protected: - /// Displacement to target address (signed). - int32_t disp; - - /// Constructor. - Branch(const char *mnem, MachInst _machInst, OpClass __opClass) - : PCDependentDisassembly(mnem, _machInst, __opClass), - disp(BRDISP << 2) - { - } +// Floating-point instruction templates, formats, etc. +##include "m5/arch/alpha/isa/fp.isa" - Addr branchTarget(Addr branchPC) const; - - std::string - generateDisassembly(Addr pc, const SymbolTable *symtab) const; - }; - - /** - * Base class for jumps (register-indirect control transfers). In - * the Alpha ISA, these are always unconditional. - */ - class Jump : public PCDependentDisassembly - { - protected: - - /// Displacement to target address (signed). - int32_t disp; - - public: - /// Constructor - Jump(const char *mnem, MachInst _machInst, OpClass __opClass) - : PCDependentDisassembly(mnem, _machInst, __opClass), - disp(BRDISP) - { - } - - Addr branchTarget(ExecContext *xc) const; - - std::string - generateDisassembly(Addr pc, const SymbolTable *symtab) const; - }; -}}; - -output decoder {{ - Addr - Branch::branchTarget(Addr branchPC) const - { - return branchPC + 4 + disp; - } - - Addr - Jump::branchTarget(ExecContext *xc) const - { - Addr NPC = xc->readPC() + 4; - uint64_t Rb = xc->readIntReg(_srcRegIdx[0]); - return (Rb & ~3) | (NPC & 1); - } - - const std::string & - PCDependentDisassembly::disassemble(Addr pc, - const SymbolTable *symtab) const - { - if (!cachedDisassembly || - pc != cachedPC || symtab != cachedSymtab) - { - if (cachedDisassembly) - delete cachedDisassembly; - - cachedDisassembly = - new std::string(generateDisassembly(pc, symtab)); - cachedPC = pc; - cachedSymtab = symtab; - } - - return *cachedDisassembly; - } - - std::string - Branch::generateDisassembly(Addr pc, const SymbolTable *symtab) const - { - std::stringstream ss; - - ccprintf(ss, "%-10s ", mnemonic); - - // There's only one register arg (RA), but it could be - // either a source (the condition for conditional - // branches) or a destination (the link reg for - // unconditional branches) - if (_numSrcRegs > 0) { - printReg(ss, _srcRegIdx[0]); - ss << ","; - } - else if (_numDestRegs > 0) { - printReg(ss, _destRegIdx[0]); - ss << ","; - } - -#ifdef SS_COMPATIBLE_DISASSEMBLY - if (_numSrcRegs == 0 && _numDestRegs == 0) { - printReg(ss, 31); - ss << ","; - } -#endif - - Addr target = pc + 4 + disp; - - std::string str; - if (symtab && symtab->findSymbol(target, str)) - ss << str; - else - ccprintf(ss, "0x%x", target); - - return ss.str(); - } - - std::string - Jump::generateDisassembly(Addr pc, const SymbolTable *symtab) const - { - std::stringstream ss; - - ccprintf(ss, "%-10s ", mnemonic); - -#ifdef SS_COMPATIBLE_DISASSEMBLY - if (_numDestRegs == 0) { - printReg(ss, 31); - ss << ","; - } -#endif - - if (_numDestRegs > 0) { - printReg(ss, _destRegIdx[0]); - ss << ","; - } - - ccprintf(ss, "(r%d)", RB); - - return ss.str(); - } -}}; - -def template JumpOrBranchDecode {{ - return (RA == 31) - ? (StaticInst<AlphaISA> *)new %(class_name)s(machInst) - : (StaticInst<AlphaISA> *)new %(class_name)sAndLink(machInst); -}}; - -def format CondBranch(code) {{ - code = 'bool cond;\n' + code + '\nif (cond) NPC = NPC + disp;\n'; - iop = InstObjParams(name, Name, 'Branch', CodeBlock(code), - ('IsDirectControl', 'IsCondControl')) - header_output = BasicDeclare.subst(iop) - decoder_output = BasicConstructor.subst(iop) - decode_block = BasicDecode.subst(iop) - exec_output = BasicExecute.subst(iop) -}}; - -let {{ -def UncondCtrlBase(name, Name, base_class, npc_expr, flags): - # Declare basic control transfer w/o link (i.e. link reg is R31) - nolink_code = 'NPC = %s;\n' % npc_expr - nolink_iop = InstObjParams(name, Name, base_class, - CodeBlock(nolink_code), flags) - header_output = BasicDeclare.subst(nolink_iop) - decoder_output = BasicConstructor.subst(nolink_iop) - exec_output = BasicExecute.subst(nolink_iop) - - # Generate declaration of '*AndLink' version, append to decls - link_code = 'Ra = NPC & ~3;\n' + nolink_code - link_iop = InstObjParams(name, Name + 'AndLink', base_class, - CodeBlock(link_code), flags) - header_output += BasicDeclare.subst(link_iop) - decoder_output += BasicConstructor.subst(link_iop) - exec_output += BasicExecute.subst(link_iop) - - # need to use link_iop for the decode template since it is expecting - # the shorter version of class_name (w/o "AndLink") - - return (header_output, decoder_output, - JumpOrBranchDecode.subst(nolink_iop), exec_output) -}}; - -def format UncondBranch(*flags) {{ - flags += ('IsUncondControl', 'IsDirectControl') - (header_output, decoder_output, decode_block, exec_output) = \ - UncondCtrlBase(name, Name, 'Branch', 'NPC + disp', flags) -}}; - -def format Jump(*flags) {{ - flags += ('IsUncondControl', 'IsIndirectControl') - (header_output, decoder_output, decode_block, exec_output) = \ - UncondCtrlBase(name, Name, 'Jump', '(Rb & ~3) | (NPC & 1)', flags) -}}; - - -//////////////////////////////////////////////////////////////////// -// -// PAL calls -// - -output header {{ - /** - * Base class for emulated call_pal calls (used only in - * non-full-system mode). - */ - class EmulatedCallPal : public AlphaStaticInst - { - protected: - - /// Constructor. - EmulatedCallPal(const char *mnem, MachInst _machInst, - OpClass __opClass) - : AlphaStaticInst(mnem, _machInst, __opClass) - { - } - - std::string - generateDisassembly(Addr pc, const SymbolTable *symtab) const; - }; -}}; - -output decoder {{ - std::string - EmulatedCallPal::generateDisassembly(Addr pc, - const SymbolTable *symtab) const - { -#ifdef SS_COMPATIBLE_DISASSEMBLY - return csprintf("%s %s", "call_pal", mnemonic); -#else - return csprintf("%-10s %s", "call_pal", mnemonic); -#endif - } -}}; - -def format EmulatedCallPal(code, *flags) {{ - iop = InstObjParams(name, Name, 'EmulatedCallPal', CodeBlock(code), flags) - header_output = BasicDeclare.subst(iop) - decoder_output = BasicConstructor.subst(iop) - decode_block = BasicDecode.subst(iop) - exec_output = BasicExecute.subst(iop) -}}; - -output header {{ - /** - * Base class for full-system-mode call_pal instructions. - * Probably could turn this into a leaf class and get rid of the - * parser template. - */ - class CallPalBase : public AlphaStaticInst - { - protected: - int palFunc; ///< Function code part of instruction - int palOffset; ///< Target PC, offset from IPR_PAL_BASE - bool palValid; ///< is the function code valid? - bool palPriv; ///< is this call privileged? - - /// Constructor. - CallPalBase(const char *mnem, MachInst _machInst, - OpClass __opClass); - - std::string - generateDisassembly(Addr pc, const SymbolTable *symtab) const; - }; -}}; - -output decoder {{ - inline - CallPalBase::CallPalBase(const char *mnem, MachInst _machInst, - OpClass __opClass) - : AlphaStaticInst(mnem, _machInst, __opClass), - palFunc(PALFUNC) - { - // From the 21164 HRM (paraphrased): - // Bit 7 of the function code (mask 0x80) indicates - // whether the call is privileged (bit 7 == 0) or - // unprivileged (bit 7 == 1). The privileged call table - // starts at 0x2000, the unprivielged call table starts at - // 0x3000. Bits 5-0 (mask 0x3f) are used to calculate the - // offset. - const int palPrivMask = 0x80; - const int palOffsetMask = 0x3f; - - // Pal call is invalid unless all other bits are 0 - palValid = ((machInst & ~(palPrivMask | palOffsetMask)) == 0); - palPriv = ((machInst & palPrivMask) == 0); - int shortPalFunc = (machInst & palOffsetMask); - // Add 1 to base to set pal-mode bit - palOffset = (palPriv ? 0x2001 : 0x3001) + (shortPalFunc << 6); - } - - std::string - CallPalBase::generateDisassembly(Addr pc, const SymbolTable *symtab) const - { - return csprintf("%-10s %#x", "call_pal", palFunc); - } -}}; - -def format CallPal(code, *flags) {{ - iop = InstObjParams(name, Name, 'CallPalBase', CodeBlock(code), flags) - header_output = BasicDeclare.subst(iop) - decoder_output = BasicConstructor.subst(iop) - decode_block = BasicDecode.subst(iop) - exec_output = BasicExecute.subst(iop) -}}; - -//////////////////////////////////////////////////////////////////// -// -// hw_ld, hw_st -// - -output header {{ - /** - * Base class for hw_ld and hw_st. - */ - class HwLoadStore : public Memory - { - protected: - - /// Displacement for EA calculation (signed). - int16_t disp; - - /// Constructor - HwLoadStore(const char *mnem, MachInst _machInst, OpClass __opClass, - StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr, - StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr); - - std::string - generateDisassembly(Addr pc, const SymbolTable *symtab) const; - }; -}}; - - -output decoder {{ - inline - HwLoadStore::HwLoadStore(const char *mnem, MachInst _machInst, - OpClass __opClass, - StaticInstPtr<AlphaISA> _eaCompPtr, - StaticInstPtr<AlphaISA> _memAccPtr) - : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr), - disp(HW_LDST_DISP) - { - memAccessFlags = 0; - if (HW_LDST_PHYS) memAccessFlags |= PHYSICAL; - if (HW_LDST_ALT) memAccessFlags |= ALTMODE; - if (HW_LDST_VPTE) memAccessFlags |= VPTE; - if (HW_LDST_LOCK) memAccessFlags |= LOCKED; - } - - std::string - HwLoadStore::generateDisassembly(Addr pc, const SymbolTable *symtab) const - { -#ifdef SS_COMPATIBLE_DISASSEMBLY - return csprintf("%-10s r%d,%d(r%d)", mnemonic, RA, disp, RB); -#else - // HW_LDST_LOCK and HW_LDST_COND are the same bit. - const char *lock_str = - (HW_LDST_LOCK) ? (flags[IsLoad] ? ",LOCK" : ",COND") : ""; - - return csprintf("%-10s r%d,%d(r%d)%s%s%s%s%s", - mnemonic, RA, disp, RB, - HW_LDST_PHYS ? ",PHYS" : "", - HW_LDST_ALT ? ",ALT" : "", - HW_LDST_QUAD ? ",QUAD" : "", - HW_LDST_VPTE ? ",VPTE" : "", - lock_str); -#endif - } -}}; - -def format HwLoadStore(ea_code, memacc_code, class_ext, *flags) {{ - (header_output, decoder_output, decode_block, exec_output) = \ - LoadStoreBase(name, Name + class_ext, ea_code, memacc_code, - flags = flags, base_class = 'HwLoadStore') -}}; - - -def format HwStoreCond(ea_code, memacc_code, postacc_code, class_ext, *flags) {{ - (header_output, decoder_output, decode_block, exec_output) = \ - LoadStoreBase(name, Name + class_ext, ea_code, memacc_code, - postacc_code, flags = flags, base_class = 'HwLoadStore') -}}; - - -output header {{ - /** - * Base class for hw_mfpr and hw_mtpr. - */ - class HwMoveIPR : public AlphaStaticInst - { - protected: - /// Index of internal processor register. - int ipr_index; - - /// Constructor - HwMoveIPR(const char *mnem, MachInst _machInst, OpClass __opClass) - : AlphaStaticInst(mnem, _machInst, __opClass), - ipr_index(HW_IPR_IDX) - { - } - - std::string - generateDisassembly(Addr pc, const SymbolTable *symtab) const; - }; -}}; - -output decoder {{ - std::string - HwMoveIPR::generateDisassembly(Addr pc, const SymbolTable *symtab) const - { - if (_numSrcRegs > 0) { - // must be mtpr - return csprintf("%-10s r%d,IPR(%#x)", - mnemonic, RA, ipr_index); - } - else { - // must be mfpr - return csprintf("%-10s IPR(%#x),r%d", - mnemonic, ipr_index, RA); - } - } -}}; - -def format HwMoveIPR(code) {{ - iop = InstObjParams(name, Name, 'HwMoveIPR', CodeBlock(code), - ['IprAccessOp']) - header_output = BasicDeclare.subst(iop) - decoder_output = BasicConstructor.subst(iop) - decode_block = BasicDecode.subst(iop) - exec_output = BasicExecute.subst(iop) -}}; +// Memory instruction templates, formats, etc. +##include "m5/arch/alpha/isa/mem.isa" +// Branch/jump instruction templates, formats, etc. +##include "m5/arch/alpha/isa/branch.isa" -//////////////////////////////////////////////////////////////////// -// -// Unimplemented instructions -// +// PAL instruction templates, formats, etc. +##include "m5/arch/alpha/isa/pal.isa" -output header {{ - /** - * Static instruction class for unimplemented instructions that - * cause simulator termination. Note that these are recognized - * (legal) instructions that the simulator does not support; the - * 'Unknown' class is used for unrecognized/illegal instructions. - * This is a leaf class. - */ - class FailUnimplemented : public AlphaStaticInst - { - public: - /// Constructor - FailUnimplemented(const char *_mnemonic, MachInst _machInst) - : AlphaStaticInst(_mnemonic, _machInst, No_OpClass) - { - // don't call execute() (which panics) if we're on a - // speculative path - flags[IsNonSpeculative] = true; - } +// Unimplemented instruction templates, formats, etc. +##include "m5/arch/alpha/isa/unimp.isa" - %(BasicExecDeclare)s - - std::string - generateDisassembly(Addr pc, const SymbolTable *symtab) const; - }; - - /** - * Base class for unimplemented instructions that cause a warning - * to be printed (but do not terminate simulation). This - * implementation is a little screwy in that it will print a - * warning for each instance of a particular unimplemented machine - * instruction, not just for each unimplemented opcode. Should - * probably make the 'warned' flag a static member of the derived - * class. - */ - class WarnUnimplemented : public AlphaStaticInst - { - private: - /// Have we warned on this instruction yet? - mutable bool warned; - - public: - /// Constructor - WarnUnimplemented(const char *_mnemonic, MachInst _machInst) - : AlphaStaticInst(_mnemonic, _machInst, No_OpClass), warned(false) - { - // don't call execute() (which panics) if we're on a - // speculative path - flags[IsNonSpeculative] = true; - } +// Unknown instruction templates, formats, etc. +##include "m5/arch/alpha/isa/unknown.isa" - %(BasicExecDeclare)s - - std::string - generateDisassembly(Addr pc, const SymbolTable *symtab) const; - }; -}}; - -output decoder {{ - std::string - FailUnimplemented::generateDisassembly(Addr pc, - const SymbolTable *symtab) const - { - return csprintf("%-10s (unimplemented)", mnemonic); - } - - std::string - WarnUnimplemented::generateDisassembly(Addr pc, - const SymbolTable *symtab) const - { -#ifdef SS_COMPATIBLE_DISASSEMBLY - return csprintf("%-10s", mnemonic); -#else - return csprintf("%-10s (unimplemented)", mnemonic); -#endif - } -}}; - -output exec {{ - Fault - FailUnimplemented::execute(%(CPU_exec_context)s *xc, - Trace::InstRecord *traceData) const - { - panic("attempt to execute unimplemented instruction '%s' " - "(inst 0x%08x, opcode 0x%x)", mnemonic, machInst, OPCODE); - return Unimplemented_Opcode_Fault; - } - - Fault - WarnUnimplemented::execute(%(CPU_exec_context)s *xc, - Trace::InstRecord *traceData) const - { - if (!warned) { - warn("instruction '%s' unimplemented\n", mnemonic); - warned = true; - } +// Execution utility functions +##include "m5/arch/alpha/isa/util.isa" - return No_Fault; - } -}}; - - -def format FailUnimpl() {{ - iop = InstObjParams(name, 'FailUnimplemented') - decode_block = BasicDecodeWithMnemonic.subst(iop) -}}; - -def format WarnUnimpl() {{ - iop = InstObjParams(name, 'WarnUnimplemented') - decode_block = BasicDecodeWithMnemonic.subst(iop) -}}; - -output header {{ - /** - * Static instruction class for unknown (illegal) instructions. - * These cause simulator termination if they are executed in a - * non-speculative mode. This is a leaf class. - */ - class Unknown : public AlphaStaticInst - { - public: - /// Constructor - Unknown(MachInst _machInst) - : AlphaStaticInst("unknown", _machInst, No_OpClass) - { - // don't call execute() (which panics) if we're on a - // speculative path - flags[IsNonSpeculative] = true; - } - - %(BasicExecDeclare)s - - std::string - generateDisassembly(Addr pc, const SymbolTable *symtab) const; - }; -}}; - -//////////////////////////////////////////////////////////////////// -// -// Unknown instructions -// - -output decoder {{ - std::string - Unknown::generateDisassembly(Addr pc, const SymbolTable *symtab) const - { - return csprintf("%-10s (inst 0x%x, opcode 0x%x)", - "unknown", machInst, OPCODE); - } -}}; - -output exec {{ - Fault - Unknown::execute(%(CPU_exec_context)s *xc, - Trace::InstRecord *traceData) const - { - panic("attempt to execute unknown instruction " - "(inst 0x%08x, opcode 0x%x)", machInst, OPCODE); - return Unimplemented_Opcode_Fault; - } -}}; - -def format Unknown() {{ - decode_block = 'return new Unknown(machInst);\n' -}}; - -//////////////////////////////////////////////////////////////////// -// -// Utility functions for execute methods -// - -output exec {{ - - /// Return opa + opb, summing carry into third arg. - inline uint64_t - addc(uint64_t opa, uint64_t opb, int &carry) - { - uint64_t res = opa + opb; - if (res < opa || res < opb) - ++carry; - return res; - } - - /// Multiply two 64-bit values (opa * opb), returning the 128-bit - /// product in res_hi and res_lo. - inline void - mul128(uint64_t opa, uint64_t opb, uint64_t &res_hi, uint64_t &res_lo) - { - // do a 64x64 --> 128 multiply using four 32x32 --> 64 multiplies - uint64_t opa_hi = opa<63:32>; - uint64_t opa_lo = opa<31:0>; - uint64_t opb_hi = opb<63:32>; - uint64_t opb_lo = opb<31:0>; - - res_lo = opa_lo * opb_lo; - - // The middle partial products logically belong in bit - // positions 95 to 32. Thus the lower 32 bits of each product - // sum into the upper 32 bits of the low result, while the - // upper 32 sum into the low 32 bits of the upper result. - uint64_t partial1 = opa_hi * opb_lo; - uint64_t partial2 = opa_lo * opb_hi; - - uint64_t partial1_lo = partial1<31:0> << 32; - uint64_t partial1_hi = partial1<63:32>; - uint64_t partial2_lo = partial2<31:0> << 32; - uint64_t partial2_hi = partial2<63:32>; - - // Add partial1_lo and partial2_lo to res_lo, keeping track - // of any carries out - int carry_out = 0; - res_lo = addc(partial1_lo, res_lo, carry_out); - res_lo = addc(partial2_lo, res_lo, carry_out); - - // Now calculate the high 64 bits... - res_hi = (opa_hi * opb_hi) + partial1_hi + partial2_hi + carry_out; - } - - /// Map 8-bit S-floating exponent to 11-bit T-floating exponent. - /// See Table 2-2 of Alpha AHB. - inline int - map_s(int old_exp) - { - int hibit = old_exp<7:>; - int lobits = old_exp<6:0>; - - if (hibit == 1) { - return (lobits == 0x7f) ? 0x7ff : (0x400 | lobits); - } - else { - return (lobits == 0) ? 0 : (0x380 | lobits); - } - } - - /// Convert a 32-bit S-floating value to the equivalent 64-bit - /// representation to be stored in an FP reg. - inline uint64_t - s_to_t(uint32_t s_val) - { - uint64_t tmp = s_val; - return (tmp<31:> << 63 // sign bit - | (uint64_t)map_s(tmp<30:23>) << 52 // exponent - | tmp<22:0> << 29); // fraction - } - - /// Convert a 64-bit T-floating value to the equivalent 32-bit - /// S-floating representation to be stored in memory. - inline int32_t - t_to_s(uint64_t t_val) - { - return (t_val<63:62> << 30 // sign bit & hi exp bit - | t_val<58:29>); // rest of exp & fraction - } -}}; - -//////////////////////////////////////////////////////////////////// -// -// The actual decoder specification -// - -decode OPCODE default Unknown::unknown() { - - format LoadAddress { - 0x08: lda({{ Ra = Rb + disp; }}); - 0x09: ldah({{ Ra = Rb + (disp << 16); }}); - } - - format LoadOrNop { - 0x0a: ldbu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.ub; }}); - 0x0c: ldwu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uw; }}); - 0x0b: ldq_u({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}); - 0x23: ldt({{ EA = Rb + disp; }}, {{ Fa = Mem.df; }}); - 0x2a: ldl_l({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}, LOCKED); - 0x2b: ldq_l({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, LOCKED); - 0x20: copy_load({{EA = Ra;}}, - {{fault = xc->copySrcTranslate(EA);}}, - IsMemRef, IsLoad, IsCopy); - } - - format LoadOrPrefetch { - 0x28: ldl({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}); - 0x29: ldq({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, EVICT_NEXT); - // IsFloating flag on lds gets the prefetch to disassemble - // using f31 instead of r31... funcitonally it's unnecessary - 0x22: lds({{ EA = Rb + disp; }}, {{ Fa.uq = s_to_t(Mem.ul); }}, - PF_EXCLUSIVE, IsFloating); - } - - format Store { - 0x0e: stb({{ EA = Rb + disp; }}, {{ Mem.ub = Ra<7:0>; }}); - 0x0d: stw({{ EA = Rb + disp; }}, {{ Mem.uw = Ra<15:0>; }}); - 0x2c: stl({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }}); - 0x2d: stq({{ EA = Rb + disp; }}, {{ Mem.uq = Ra.uq; }}); - 0x0f: stq_u({{ EA = (Rb + disp) & ~7; }}, {{ Mem.uq = Ra.uq; }}); - 0x26: sts({{ EA = Rb + disp; }}, {{ Mem.ul = t_to_s(Fa.uq); }}); - 0x27: stt({{ EA = Rb + disp; }}, {{ Mem.df = Fa; }}); - 0x24: copy_store({{EA = Rb;}}, - {{fault = xc->copy(EA);}}, - IsMemRef, IsStore, IsCopy); - } - - format StoreCond { - 0x2e: stl_c({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }}, - {{ - uint64_t tmp = Mem_write_result; - // see stq_c - Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; - }}, LOCKED); - 0x2f: stq_c({{ EA = Rb + disp; }}, {{ Mem.uq = Ra; }}, - {{ - uint64_t tmp = Mem_write_result; - // If the write operation returns 0 or 1, then - // this was a conventional store conditional, - // and the value indicates the success/failure - // of the operation. If another value is - // returned, then this was a Turbolaser - // mailbox access, and we don't update the - // result register at all. - Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; - }}, LOCKED); - } - - format IntegerOperate { - - 0x10: decode INTFUNC { // integer arithmetic operations - - 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }}); - 0x40: addlv({{ - uint32_t tmp = Ra.sl + Rb_or_imm.sl; - // signed overflow occurs when operands have same sign - // and sign of result does not match. - if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) - fault = Integer_Overflow_Fault; - Rc.sl = tmp; - }}); - 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }}); - 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }}); - - 0x20: addq({{ Rc = Ra + Rb_or_imm; }}); - 0x60: addqv({{ - uint64_t tmp = Ra + Rb_or_imm; - // signed overflow occurs when operands have same sign - // and sign of result does not match. - if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>) - fault = Integer_Overflow_Fault; - Rc = tmp; - }}); - 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }}); - 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }}); - - 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }}); - 0x49: sublv({{ - uint32_t tmp = Ra.sl - Rb_or_imm.sl; - // signed overflow detection is same as for add, - // except we need to look at the *complemented* - // sign bit of the subtrahend (Rb), i.e., if the initial - // signs are the *same* then no overflow can occur - if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) - fault = Integer_Overflow_Fault; - Rc.sl = tmp; - }}); - 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }}); - 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }}); - - 0x29: subq({{ Rc = Ra - Rb_or_imm; }}); - 0x69: subqv({{ - uint64_t tmp = Ra - Rb_or_imm; - // signed overflow detection is same as for add, - // except we need to look at the *complemented* - // sign bit of the subtrahend (Rb), i.e., if the initial - // signs are the *same* then no overflow can occur - if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>) - fault = Integer_Overflow_Fault; - Rc = tmp; - }}); - 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }}); - 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }}); - - 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }}); - 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }}); - 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }}); - 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }}); - 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }}); - - 0x0f: cmpbge({{ - int hi = 7; - int lo = 0; - uint64_t tmp = 0; - for (int i = 0; i < 8; ++i) { - tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i; - hi += 8; - lo += 8; - } - Rc = tmp; - }}); - } - - 0x11: decode INTFUNC { // integer logical operations - - 0x00: and({{ Rc = Ra & Rb_or_imm; }}); - 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }}); - 0x20: bis({{ Rc = Ra | Rb_or_imm; }}); - 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }}); - 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }}); - 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }}); - - // conditional moves - 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }}); - 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }}); - 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }}); - 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }}); - 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }}); - 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }}); - 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }}); - 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }}); - - // For AMASK, RA must be R31. - 0x61: decode RA { - 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }}); - } - - // For IMPLVER, RA must be R31 and the B operand - // must be the immediate value 1. - 0x6c: decode RA { - 31: decode IMM { - 1: decode INTIMM { - // return EV5 for FULL_SYSTEM and EV6 otherwise - 1: implver({{ -#if FULL_SYSTEM - Rc = 1; -#else - Rc = 2; -#endif - }}); - } - } - } - -#if FULL_SYSTEM - // The mysterious 11.25... - 0x25: WarnUnimpl::eleven25(); -#endif - } - - 0x12: decode INTFUNC { - 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }}); - 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }}); - 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }}); - - 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }}); - 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }}); - 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }}); - 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }}); - - 0x52: mskwh({{ - int bv = Rb_or_imm<2:0>; - Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra; - }}); - 0x62: msklh({{ - int bv = Rb_or_imm<2:0>; - Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra; - }}); - 0x72: mskqh({{ - int bv = Rb_or_imm<2:0>; - Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra; - }}); - - 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }}); - 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }}); - 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }}); - 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }}); - - 0x5a: extwh({{ - Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }}); - 0x6a: extlh({{ - Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }}); - 0x7a: extqh({{ - Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }}); - - 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }}); - 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }}); - 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }}); - 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }}); - - 0x57: inswh({{ - int bv = Rb_or_imm<2:0>; - Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0; - }}); - 0x67: inslh({{ - int bv = Rb_or_imm<2:0>; - Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0; - }}); - 0x77: insqh({{ - int bv = Rb_or_imm<2:0>; - Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0; - }}); - - 0x30: zap({{ - uint64_t zapmask = 0; - for (int i = 0; i < 8; ++i) { - if (Rb_or_imm<i:>) - zapmask |= (mask(8) << (i * 8)); - } - Rc = Ra & ~zapmask; - }}); - 0x31: zapnot({{ - uint64_t zapmask = 0; - for (int i = 0; i < 8; ++i) { - if (!Rb_or_imm<i:>) - zapmask |= (mask(8) << (i * 8)); - } - Rc = Ra & ~zapmask; - }}); - } - - 0x13: decode INTFUNC { // integer multiplies - 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp); - 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp); - 0x30: umulh({{ - uint64_t hi, lo; - mul128(Ra, Rb_or_imm, hi, lo); - Rc = hi; - }}, IntMultOp); - 0x40: mullv({{ - // 32-bit multiply with trap on overflow - int64_t Rax = Ra.sl; // sign extended version of Ra.sl - int64_t Rbx = Rb_or_imm.sl; - int64_t tmp = Rax * Rbx; - // To avoid overflow, all the upper 32 bits must match - // the sign bit of the lower 32. We code this as - // checking the upper 33 bits for all 0s or all 1s. - uint64_t sign_bits = tmp<63:31>; - if (sign_bits != 0 && sign_bits != mask(33)) - fault = Integer_Overflow_Fault; - Rc.sl = tmp<31:0>; - }}, IntMultOp); - 0x60: mulqv({{ - // 64-bit multiply with trap on overflow - uint64_t hi, lo; - mul128(Ra, Rb_or_imm, hi, lo); - // all the upper 64 bits must match the sign bit of - // the lower 64 - if (!((hi == 0 && lo<63:> == 0) || - (hi == mask(64) && lo<63:> == 1))) - fault = Integer_Overflow_Fault; - Rc = lo; - }}, IntMultOp); - } - - 0x1c: decode INTFUNC { - 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); } - 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); } - 0x32: ctlz({{ - uint64_t count = 0; - uint64_t temp = Rb; - if (temp<63:32>) temp >>= 32; else count += 32; - if (temp<31:16>) temp >>= 16; else count += 16; - if (temp<15:8>) temp >>= 8; else count += 8; - if (temp<7:4>) temp >>= 4; else count += 4; - if (temp<3:2>) temp >>= 2; else count += 2; - if (temp<1:1>) temp >>= 1; else count += 1; - if ((temp<0:0>) != 0x1) count += 1; - Rc = count; - }}, IntAluOp); - - 0x33: cttz({{ - uint64_t count = 0; - uint64_t temp = Rb; - if (!(temp<31:0>)) { temp >>= 32; count += 32; } - if (!(temp<15:0>)) { temp >>= 16; count += 16; } - if (!(temp<7:0>)) { temp >>= 8; count += 8; } - if (!(temp<3:0>)) { temp >>= 4; count += 4; } - if (!(temp<1:0>)) { temp >>= 2; count += 2; } - if (!(temp<0:0> & ULL(0x1))) count += 1; - Rc = count; - }}, IntAluOp); - - format FailUnimpl { - 0x30: ctpop(); - 0x31: perr(); - 0x34: unpkbw(); - 0x35: unpkbl(); - 0x36: pkwb(); - 0x37: pklb(); - 0x38: minsb8(); - 0x39: minsw4(); - 0x3a: minub8(); - 0x3b: minuw4(); - 0x3c: maxub8(); - 0x3d: maxuw4(); - 0x3e: maxsb8(); - 0x3f: maxsw4(); - } - - format BasicOperateWithNopCheck { - 0x70: decode RB { - 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp); - } - 0x78: decode RB { - 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }}, - FloatCvtOp); - } - } - } - } - - // Conditional branches. - format CondBranch { - 0x39: beq({{ cond = (Ra == 0); }}); - 0x3d: bne({{ cond = (Ra != 0); }}); - 0x3e: bge({{ cond = (Ra.sq >= 0); }}); - 0x3f: bgt({{ cond = (Ra.sq > 0); }}); - 0x3b: ble({{ cond = (Ra.sq <= 0); }}); - 0x3a: blt({{ cond = (Ra.sq < 0); }}); - 0x38: blbc({{ cond = ((Ra & 1) == 0); }}); - 0x3c: blbs({{ cond = ((Ra & 1) == 1); }}); - - 0x31: fbeq({{ cond = (Fa == 0); }}); - 0x35: fbne({{ cond = (Fa != 0); }}); - 0x36: fbge({{ cond = (Fa >= 0); }}); - 0x37: fbgt({{ cond = (Fa > 0); }}); - 0x33: fble({{ cond = (Fa <= 0); }}); - 0x32: fblt({{ cond = (Fa < 0); }}); - } - - // unconditional branches - format UncondBranch { - 0x30: br(); - 0x34: bsr(IsCall); - } - - // indirect branches - 0x1a: decode JMPFUNC { - format Jump { - 0: jmp(); - 1: jsr(IsCall); - 2: ret(IsReturn); - 3: jsr_coroutine(IsCall, IsReturn); - } - } - - // Square root and integer-to-FP moves - 0x14: decode FP_SHORTFUNC { - // Integer to FP register moves must have RB == 31 - 0x4: decode RB { - 31: decode FP_FULLFUNC { - format BasicOperateWithNopCheck { - 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp); - 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp); - 0x014: FailUnimpl::itoff(); // VAX-format conversion - } - } - } - - // Square root instructions must have FA == 31 - 0xb: decode FA { - 31: decode FP_TYPEFUNC { - format FloatingPointOperate { -#if SS_COMPATIBLE_FP - 0x0b: sqrts({{ - if (Fb < 0.0) - fault = Arithmetic_Fault; - Fc = sqrt(Fb); - }}, FloatSqrtOp); -#else - 0x0b: sqrts({{ - if (Fb.sf < 0.0) - fault = Arithmetic_Fault; - Fc.sf = sqrt(Fb.sf); - }}, FloatSqrtOp); -#endif - 0x2b: sqrtt({{ - if (Fb < 0.0) - fault = Arithmetic_Fault; - Fc = sqrt(Fb); - }}, FloatSqrtOp); - } - } - } - - // VAX-format sqrtf and sqrtg are not implemented - 0xa: FailUnimpl::sqrtfg(); - } - - // IEEE floating point - 0x16: decode FP_SHORTFUNC_TOP2 { - // The top two bits of the short function code break this - // space into four groups: binary ops, compares, reserved, and - // conversions. See Table 4-12 of AHB. There are different - // special cases in these different groups, so we decode on - // these top two bits first just to select a decode strategy. - // Most of these instructions may have various trapping and - // rounding mode flags set; these are decoded in the - // FloatingPointDecode template used by the - // FloatingPointOperate format. - - // add/sub/mul/div: just decode on the short function code - // and source type. All valid trapping and rounding modes apply. - 0: decode FP_TRAPMODE { - // check for valid trapping modes here - 0,1,5,7: decode FP_TYPEFUNC { - format FloatingPointOperate { -#if SS_COMPATIBLE_FP - 0x00: adds({{ Fc = Fa + Fb; }}); - 0x01: subs({{ Fc = Fa - Fb; }}); - 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp); - 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp); -#else - 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }}); - 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }}); - 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp); - 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp); -#endif - - 0x20: addt({{ Fc = Fa + Fb; }}); - 0x21: subt({{ Fc = Fa - Fb; }}); - 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp); - 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp); - } - } - } - - // Floating-point compare instructions must have the default - // rounding mode, and may use the default trapping mode or - // /SU. Both trapping modes are treated the same by M5; the - // only difference on the real hardware (as far a I can tell) - // is that without /SU you'd get an imprecise trap if you - // tried to compare a NaN with something else (instead of an - // "unordered" result). - 1: decode FP_FULLFUNC { - format BasicOperateWithNopCheck { - 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }}, - FloatCmpOp); - 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }}, - FloatCmpOp); - 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }}, - FloatCmpOp); - 0x0a4, 0x5a4: cmptun({{ // unordered - Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0; - }}, FloatCmpOp); - } - } - - // The FP-to-integer and integer-to-FP conversion insts - // require that FA be 31. - 3: decode FA { - 31: decode FP_TYPEFUNC { - format FloatingPointOperate { - 0x2f: decode FP_ROUNDMODE { - format FPFixedRounding { - // "chopped" i.e. round toward zero - 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }}, - Chopped); - // round to minus infinity - 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }}, - MinusInfinity); - } - default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }}); - } - - // The cvtts opcode is overloaded to be cvtst if the trap - // mode is 2 or 6 (which are not valid otherwise) - 0x2c: decode FP_FULLFUNC { - format BasicOperateWithNopCheck { - // trap on denorm version "cvtst/s" is - // simulated same as cvtst - 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }}); - } - default: cvtts({{ Fc.sf = Fb; }}); - } - - // The trapping mode for integer-to-FP conversions - // must be /SUI or nothing; /U and /SU are not - // allowed. The full set of rounding modes are - // supported though. - 0x3c: decode FP_TRAPMODE { - 0,7: cvtqs({{ Fc.sf = Fb.sq; }}); - } - 0x3e: decode FP_TRAPMODE { - 0,7: cvtqt({{ Fc = Fb.sq; }}); - } - } - } - } - } - - // misc FP operate - 0x17: decode FP_FULLFUNC { - format BasicOperateWithNopCheck { - 0x010: cvtlq({{ - Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>; - }}); - 0x030: cvtql({{ - Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); - }}); - - // We treat the precise & imprecise trapping versions of - // cvtql identically. - 0x130, 0x530: cvtqlv({{ - // To avoid overflow, all the upper 32 bits must match - // the sign bit of the lower 32. We code this as - // checking the upper 33 bits for all 0s or all 1s. - uint64_t sign_bits = Fb.uq<63:31>; - if (sign_bits != 0 && sign_bits != mask(33)) - fault = Integer_Overflow_Fault; - Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); - }}); - - 0x020: cpys({{ // copy sign - Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>; - }}); - 0x021: cpysn({{ // copy sign negated - Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>; - }}); - 0x022: cpyse({{ // copy sign and exponent - Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>; - }}); - - 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }}); - 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }}); - 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }}); - 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }}); - 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }}); - 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }}); - - 0x024: mt_fpcr({{ FPCR = Fa.uq; }}); - 0x025: mf_fpcr({{ Fa.uq = FPCR; }}); - } - } - - // miscellaneous mem-format ops - 0x18: decode MEMFUNC { - format WarnUnimpl { - 0x8000: fetch(); - 0xa000: fetch_m(); - 0xe800: ecb(); - } - - format MiscPrefetch { - 0xf800: wh64({{ EA = Rb & ~ULL(63); }}, - {{ xc->writeHint(EA, 64, memAccessFlags); }}, - IsMemRef, IsDataPrefetch, IsStore, MemWriteOp, - NO_FAULT); - } - - format BasicOperate { - 0xc000: rpcc({{ -#if FULL_SYSTEM - /* Rb is a fake dependency so here is a fun way to get - * the parser to understand that. - */ - Ra = xc->readIpr(AlphaISA::IPR_CC, fault) + (Rb & 0); - -#else - Ra = curTick; -#endif - }}); - - // All of the barrier instructions below do nothing in - // their execute() methods (hence the empty code blocks). - // All of their functionality is hard-coded in the - // pipeline based on the flags IsSerializing, - // IsMemBarrier, and IsWriteBarrier. In the current - // detailed CPU model, the execute() function only gets - // called at fetch, so there's no way to generate pipeline - // behavior at any other stage. Once we go to an - // exec-in-exec CPU model we should be able to get rid of - // these flags and implement this behavior via the - // execute() methods. - - // trapb is just a barrier on integer traps, where excb is - // a barrier on integer and FP traps. "EXCB is thus a - // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat - // them the same though. - 0x0000: trapb({{ }}, IsSerializing, No_OpClass); - 0x0400: excb({{ }}, IsSerializing, No_OpClass); - 0x4000: mb({{ }}, IsMemBarrier, MemReadOp); - 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp); - } - -#if FULL_SYSTEM - format BasicOperate { - 0xe000: rc({{ - Ra = xc->readIntrFlag(); - xc->setIntrFlag(0); - }}, IsNonSpeculative); - 0xf000: rs({{ - Ra = xc->readIntrFlag(); - xc->setIntrFlag(1); - }}, IsNonSpeculative); - } -#else - format FailUnimpl { - 0xe000: rc(); - 0xf000: rs(); - } -#endif - } - -#if FULL_SYSTEM - 0x00: CallPal::call_pal({{ - if (!palValid || - (palPriv - && xc->readIpr(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) { - // invalid pal function code, or attempt to do privileged - // PAL call in non-kernel mode - fault = Unimplemented_Opcode_Fault; - } - else { - // check to see if simulator wants to do something special - // on this PAL call (including maybe suppress it) - bool dopal = xc->simPalCheck(palFunc); - - if (dopal) { - AlphaISA::swap_palshadow(&xc->xcBase()->regs, true); - xc->setIpr(AlphaISA::IPR_EXC_ADDR, NPC); - NPC = xc->readIpr(AlphaISA::IPR_PAL_BASE, fault) + palOffset; - } - } - }}, IsNonSpeculative); -#else - 0x00: decode PALFUNC { - format EmulatedCallPal { - 0x00: halt ({{ - SimExit(curTick, "halt instruction encountered"); - }}, IsNonSpeculative); - 0x83: callsys({{ - xc->syscall(); - }}, IsNonSpeculative); - // Read uniq reg into ABI return value register (r0) - 0x9e: rduniq({{ R0 = Runiq; }}); - // Write uniq reg with value from ABI arg register (r16) - 0x9f: wruniq({{ Runiq = R16; }}); - } - } -#endif - -#if FULL_SYSTEM - format HwLoadStore { - 0x1b: decode HW_LDST_QUAD { - 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L); - 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q); - } - - 0x1f: decode HW_LDST_COND { - 0: decode HW_LDST_QUAD { - 0: hw_st({{ EA = (Rb + disp) & ~3; }}, - {{ Mem.ul = Ra<31:0>; }}, L); - 1: hw_st({{ EA = (Rb + disp) & ~7; }}, - {{ Mem.uq = Ra.uq; }}, Q); - } - - 1: FailUnimpl::hw_st_cond(); - } - } - - format HwMoveIPR { - 0x19: hw_mfpr({{ - // this instruction is only valid in PAL mode - if (!xc->inPalMode()) { - fault = Unimplemented_Opcode_Fault; - } - else { - Ra = xc->readIpr(ipr_index, fault); - } - }}); - 0x1d: hw_mtpr({{ - // this instruction is only valid in PAL mode - if (!xc->inPalMode()) { - fault = Unimplemented_Opcode_Fault; - } - else { - xc->setIpr(ipr_index, Ra); - if (traceData) { traceData->setData(Ra); } - } - }}); - } - - format BasicOperate { - 0x1e: hw_rei({{ xc->hwrei(); }}, IsSerializing); - - // M5 special opcodes use the reserved 0x01 opcode space - 0x01: decode M5FUNC { - 0x00: arm({{ - AlphaPseudo::arm(xc->xcBase()); - }}, IsNonSpeculative); - 0x01: quiesce({{ - AlphaPseudo::quiesce(xc->xcBase()); - }}, IsNonSpeculative); - 0x10: ivlb({{ - AlphaPseudo::ivlb(xc->xcBase()); - }}, No_OpClass, IsNonSpeculative); - 0x11: ivle({{ - AlphaPseudo::ivle(xc->xcBase()); - }}, No_OpClass, IsNonSpeculative); - 0x20: m5exit_old({{ - AlphaPseudo::m5exit_old(xc->xcBase()); - }}, No_OpClass, IsNonSpeculative); - 0x21: m5exit({{ - AlphaPseudo::m5exit(xc->xcBase()); - }}, No_OpClass, IsNonSpeculative); - 0x30: initparam({{ Ra = xc->xcBase()->cpu->system->init_param; }}); - 0x40: resetstats({{ - AlphaPseudo::resetstats(xc->xcBase()); - }}, IsNonSpeculative); - 0x41: dumpstats({{ - AlphaPseudo::dumpstats(xc->xcBase()); - }}, IsNonSpeculative); - 0x42: dumpresetstats({{ - AlphaPseudo::dumpresetstats(xc->xcBase()); - }}, IsNonSpeculative); - 0x43: m5checkpoint({{ - AlphaPseudo::m5checkpoint(xc->xcBase()); - }}, IsNonSpeculative); - 0x50: m5readfile({{ - AlphaPseudo::readfile(xc->xcBase()); - }}, IsNonSpeculative); - 0x51: m5break({{ - AlphaPseudo::debugbreak(xc->xcBase()); - }}, IsNonSpeculative); - 0x52: m5switchcpu({{ - AlphaPseudo::switchcpu(xc->xcBase()); - }}, IsNonSpeculative); - 0x53: m5addsymbol({{ - AlphaPseudo::addsymbol(xc->xcBase()); - }}, IsNonSpeculative); - - } - } -#endif -} +// The actual decoder +##include "m5/arch/alpha/isa/decoder.isa" diff --git a/arch/alpha/isa/mem.isa b/arch/alpha/isa/mem.isa new file mode 100644 index 000000000..89296626c --- /dev/null +++ b/arch/alpha/isa/mem.isa @@ -0,0 +1,441 @@ +// -*- mode:c++ -*- + +// Copyright (c) 2003-2005 The Regents of The University of Michigan +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer; +// redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution; +// neither the name of the copyright holders nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +output header {{ + /** + * Base class for general Alpha memory-format instructions. + */ + class Memory : public AlphaStaticInst + { + protected: + + /// Memory request flags. See mem_req_base.hh. + unsigned memAccessFlags; + /// Pointer to EAComp object. + const StaticInstPtr<AlphaISA> eaCompPtr; + /// Pointer to MemAcc object. + const StaticInstPtr<AlphaISA> memAccPtr; + + /// Constructor + Memory(const char *mnem, MachInst _machInst, OpClass __opClass, + StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr, + StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr) + : AlphaStaticInst(mnem, _machInst, __opClass), + memAccessFlags(0), eaCompPtr(_eaCompPtr), memAccPtr(_memAccPtr) + { + } + + std::string + generateDisassembly(Addr pc, const SymbolTable *symtab) const; + + public: + + const StaticInstPtr<AlphaISA> &eaCompInst() const { return eaCompPtr; } + const StaticInstPtr<AlphaISA> &memAccInst() const { return memAccPtr; } + }; + + /** + * Base class for memory-format instructions using a 32-bit + * displacement (i.e. most of them). + */ + class MemoryDisp32 : public Memory + { + protected: + /// Displacement for EA calculation (signed). + int32_t disp; + + /// Constructor. + MemoryDisp32(const char *mnem, MachInst _machInst, OpClass __opClass, + StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr, + StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr) + : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr), + disp(MEMDISP) + { + } + }; + + + /** + * Base class for a few miscellaneous memory-format insts + * that don't interpret the disp field: wh64, fetch, fetch_m, ecb. + * None of these instructions has a destination register either. + */ + class MemoryNoDisp : public Memory + { + protected: + /// Constructor + MemoryNoDisp(const char *mnem, MachInst _machInst, OpClass __opClass, + StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr, + StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr) + : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr) + { + } + + std::string + generateDisassembly(Addr pc, const SymbolTable *symtab) const; + }; +}}; + + +output decoder {{ + std::string + Memory::generateDisassembly(Addr pc, const SymbolTable *symtab) const + { + return csprintf("%-10s %c%d,%d(r%d)", mnemonic, + flags[IsFloating] ? 'f' : 'r', RA, MEMDISP, RB); + } + + std::string + MemoryNoDisp::generateDisassembly(Addr pc, const SymbolTable *symtab) const + { + return csprintf("%-10s (r%d)", mnemonic, RB); + } +}}; + +def format LoadAddress(code) {{ + iop = InstObjParams(name, Name, 'MemoryDisp32', CodeBlock(code)) + header_output = BasicDeclare.subst(iop) + decoder_output = BasicConstructor.subst(iop) + decode_block = BasicDecode.subst(iop) + exec_output = BasicExecute.subst(iop) +}}; + + +def template LoadStoreDeclare {{ + /** + * Static instruction class for "%(mnemonic)s". + */ + class %(class_name)s : public %(base_class)s + { + protected: + + /** + * "Fake" effective address computation class for "%(mnemonic)s". + */ + class EAComp : public %(base_class)s + { + public: + /// Constructor + EAComp(MachInst machInst); + + %(BasicExecDeclare)s + }; + + /** + * "Fake" memory access instruction class for "%(mnemonic)s". + */ + class MemAcc : public %(base_class)s + { + public: + /// Constructor + MemAcc(MachInst machInst); + + %(BasicExecDeclare)s + }; + + public: + + /// Constructor. + %(class_name)s(MachInst machInst); + + %(BasicExecDeclare)s + }; +}}; + +def template LoadStoreConstructor {{ + /** TODO: change op_class to AddrGenOp or something (requires + * creating new member of OpClass enum in op_class.hh, updating + * config files, etc.). */ + inline %(class_name)s::EAComp::EAComp(MachInst machInst) + : %(base_class)s("%(mnemonic)s (EAComp)", machInst, IntAluOp) + { + %(ea_constructor)s; + } + + inline %(class_name)s::MemAcc::MemAcc(MachInst machInst) + : %(base_class)s("%(mnemonic)s (MemAcc)", machInst, %(op_class)s) + { + %(memacc_constructor)s; + } + + inline %(class_name)s::%(class_name)s(MachInst machInst) + : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s, + new EAComp(machInst), new MemAcc(machInst)) + { + %(constructor)s; + } +}}; + + +def template EACompExecute {{ + Fault + %(class_name)s::EAComp::execute(%(CPU_exec_context)s *xc, + Trace::InstRecord *traceData) const + { + Addr EA; + Fault fault = No_Fault; + + %(fp_enable_check)s; + %(op_decl)s; + %(op_rd)s; + %(code)s; + + if (fault == No_Fault) { + %(op_wb)s; + xc->setEA(EA); + } + + return fault; + } +}}; + +def template MemAccExecute {{ + Fault + %(class_name)s::MemAcc::execute(%(CPU_exec_context)s *xc, + Trace::InstRecord *traceData) const + { + Addr EA; + Fault fault = No_Fault; + + %(fp_enable_check)s; + %(op_decl)s; + %(op_nonmem_rd)s; + EA = xc->getEA(); + + if (fault == No_Fault) { + %(op_mem_rd)s; + %(code)s; + } + + if (fault == No_Fault) { + %(op_mem_wb)s; + } + + if (fault == No_Fault) { + %(postacc_code)s; + } + + if (fault == No_Fault) { + %(op_nonmem_wb)s; + } + + return fault; + } +}}; + + +def template LoadStoreExecute {{ + Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, + Trace::InstRecord *traceData) const + { + Addr EA; + Fault fault = No_Fault; + + %(fp_enable_check)s; + %(op_decl)s; + %(op_nonmem_rd)s; + %(ea_code)s; + + if (fault == No_Fault) { + %(op_mem_rd)s; + %(memacc_code)s; + } + + if (fault == No_Fault) { + %(op_mem_wb)s; + } + + if (fault == No_Fault) { + %(postacc_code)s; + } + + if (fault == No_Fault) { + %(op_nonmem_wb)s; + } + + return fault; + } +}}; + + +def template PrefetchExecute {{ + Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, + Trace::InstRecord *traceData) const + { + Addr EA; + Fault fault = No_Fault; + + %(fp_enable_check)s; + %(op_decl)s; + %(op_nonmem_rd)s; + %(ea_code)s; + + if (fault == No_Fault) { + xc->prefetch(EA, memAccessFlags); + } + + return No_Fault; + } +}}; + +// load instructions use Ra as dest, so check for +// Ra == 31 to detect nops +def template LoadNopCheckDecode {{ + { + AlphaStaticInst *i = new %(class_name)s(machInst); + if (RA == 31) { + i = makeNop(i); + } + return i; + } +}}; + + +// for some load instructions, Ra == 31 indicates a prefetch (not a nop) +def template LoadPrefetchCheckDecode {{ + { + if (RA != 31) { + return new %(class_name)s(machInst); + } + else { + return new %(class_name)sPrefetch(machInst); + } + } +}}; + + +let {{ +def LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code = '', + base_class = 'MemoryDisp32', flags = [], + decode_template = BasicDecode, + exec_template = LoadStoreExecute): + # Segregate flags into instruction flags (handled by InstObjParams) + # and memory access flags (handled here). + + # Would be nice to autogenerate this list, but oh well. + valid_mem_flags = ['LOCKED', 'NO_FAULT', 'EVICT_NEXT', 'PF_EXCLUSIVE'] + mem_flags = [f for f in flags if f in valid_mem_flags] + inst_flags = [f for f in flags if f not in valid_mem_flags] + + # add hook to get effective addresses into execution trace output. + ea_code += '\nif (traceData) { traceData->setAddr(EA); }\n' + + # generate code block objects + ea_cblk = CodeBlock(ea_code) + memacc_cblk = CodeBlock(memacc_code) + postacc_cblk = CodeBlock(postacc_code) + + # Some CPU models execute the memory operation as an atomic unit, + # while others want to separate them into an effective address + # computation and a memory access operation. As a result, we need + # to generate three StaticInst objects. Note that the latter two + # are nested inside the larger "atomic" one. + + # generate InstObjParams for EAComp object + ea_iop = InstObjParams(name, Name, base_class, ea_cblk, inst_flags) + + # generate InstObjParams for MemAcc object + memacc_iop = InstObjParams(name, Name, base_class, memacc_cblk, inst_flags) + # in the split execution model, the MemAcc portion is responsible + # for the post-access code. + memacc_iop.postacc_code = postacc_cblk.code + + # generate InstObjParams for unified execution + cblk = CodeBlock(ea_code + memacc_code + postacc_code) + iop = InstObjParams(name, Name, base_class, cblk, inst_flags) + + iop.ea_constructor = ea_cblk.constructor + iop.ea_code = ea_cblk.code + iop.memacc_constructor = memacc_cblk.constructor + iop.memacc_code = memacc_cblk.code + iop.postacc_code = postacc_cblk.code + + if mem_flags: + s = '\n\tmemAccessFlags = ' + string.join(mem_flags, '|') + ';' + iop.constructor += s + memacc_iop.constructor += s + + # (header_output, decoder_output, decode_block, exec_output) + return (LoadStoreDeclare.subst(iop), LoadStoreConstructor.subst(iop), + decode_template.subst(iop), + EACompExecute.subst(ea_iop) + + MemAccExecute.subst(memacc_iop) + + exec_template.subst(iop)) +}}; + + +def format LoadOrNop(ea_code, memacc_code, *flags) {{ + (header_output, decoder_output, decode_block, exec_output) = \ + LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags, + decode_template = LoadNopCheckDecode) +}}; + + +// Note that the flags passed in apply only to the prefetch version +def format LoadOrPrefetch(ea_code, memacc_code, *pf_flags) {{ + # declare the load instruction object and generate the decode block + (header_output, decoder_output, decode_block, exec_output) = \ + LoadStoreBase(name, Name, ea_code, memacc_code, + decode_template = LoadPrefetchCheckDecode) + + # Declare the prefetch instruction object. + + # convert flags from tuple to list to make them mutable + pf_flags = list(pf_flags) + ['IsMemRef', 'IsLoad', 'IsDataPrefetch', 'MemReadOp', 'NO_FAULT'] + + (pf_header_output, pf_decoder_output, _, pf_exec_output) = \ + LoadStoreBase(name, Name + 'Prefetch', ea_code, '', + flags = pf_flags, exec_template = PrefetchExecute) + + header_output += pf_header_output + decoder_output += pf_decoder_output + exec_output += pf_exec_output +}}; + + +def format Store(ea_code, memacc_code, *flags) {{ + (header_output, decoder_output, decode_block, exec_output) = \ + LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags) +}}; + + +def format StoreCond(ea_code, memacc_code, postacc_code, *flags) {{ + (header_output, decoder_output, decode_block, exec_output) = \ + LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code, + flags = flags) +}}; + + +// Use 'MemoryNoDisp' as base: for wh64, fetch, ecb +def format MiscPrefetch(ea_code, memacc_code, *flags) {{ + (header_output, decoder_output, decode_block, exec_output) = \ + LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags, + base_class = 'MemoryNoDisp') +}}; + + diff --git a/arch/alpha/isa/pal.isa b/arch/alpha/isa/pal.isa new file mode 100644 index 000000000..9debffa38 --- /dev/null +++ b/arch/alpha/isa/pal.isa @@ -0,0 +1,260 @@ +// -*- mode:c++ -*- + +// Copyright (c) 2003-2005 The Regents of The University of Michigan +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer; +// redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution; +// neither the name of the copyright holders nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +output header {{ + /** + * Base class for emulated call_pal calls (used only in + * non-full-system mode). + */ + class EmulatedCallPal : public AlphaStaticInst + { + protected: + + /// Constructor. + EmulatedCallPal(const char *mnem, MachInst _machInst, + OpClass __opClass) + : AlphaStaticInst(mnem, _machInst, __opClass) + { + } + + std::string + generateDisassembly(Addr pc, const SymbolTable *symtab) const; + }; +}}; + +output decoder {{ + std::string + EmulatedCallPal::generateDisassembly(Addr pc, + const SymbolTable *symtab) const + { +#ifdef SS_COMPATIBLE_DISASSEMBLY + return csprintf("%s %s", "call_pal", mnemonic); +#else + return csprintf("%-10s %s", "call_pal", mnemonic); +#endif + } +}}; + +def format EmulatedCallPal(code, *flags) {{ + iop = InstObjParams(name, Name, 'EmulatedCallPal', CodeBlock(code), flags) + header_output = BasicDeclare.subst(iop) + decoder_output = BasicConstructor.subst(iop) + decode_block = BasicDecode.subst(iop) + exec_output = BasicExecute.subst(iop) +}}; + +output header {{ + /** + * Base class for full-system-mode call_pal instructions. + * Probably could turn this into a leaf class and get rid of the + * parser template. + */ + class CallPalBase : public AlphaStaticInst + { + protected: + int palFunc; ///< Function code part of instruction + int palOffset; ///< Target PC, offset from IPR_PAL_BASE + bool palValid; ///< is the function code valid? + bool palPriv; ///< is this call privileged? + + /// Constructor. + CallPalBase(const char *mnem, MachInst _machInst, + OpClass __opClass); + + std::string + generateDisassembly(Addr pc, const SymbolTable *symtab) const; + }; +}}; + +output decoder {{ + inline + CallPalBase::CallPalBase(const char *mnem, MachInst _machInst, + OpClass __opClass) + : AlphaStaticInst(mnem, _machInst, __opClass), + palFunc(PALFUNC) + { + // From the 21164 HRM (paraphrased): + // Bit 7 of the function code (mask 0x80) indicates + // whether the call is privileged (bit 7 == 0) or + // unprivileged (bit 7 == 1). The privileged call table + // starts at 0x2000, the unprivielged call table starts at + // 0x3000. Bits 5-0 (mask 0x3f) are used to calculate the + // offset. + const int palPrivMask = 0x80; + const int palOffsetMask = 0x3f; + + // Pal call is invalid unless all other bits are 0 + palValid = ((machInst & ~(palPrivMask | palOffsetMask)) == 0); + palPriv = ((machInst & palPrivMask) == 0); + int shortPalFunc = (machInst & palOffsetMask); + // Add 1 to base to set pal-mode bit + palOffset = (palPriv ? 0x2001 : 0x3001) + (shortPalFunc << 6); + } + + std::string + CallPalBase::generateDisassembly(Addr pc, const SymbolTable *symtab) const + { + return csprintf("%-10s %#x", "call_pal", palFunc); + } +}}; + +def format CallPal(code, *flags) {{ + iop = InstObjParams(name, Name, 'CallPalBase', CodeBlock(code), flags) + header_output = BasicDeclare.subst(iop) + decoder_output = BasicConstructor.subst(iop) + decode_block = BasicDecode.subst(iop) + exec_output = BasicExecute.subst(iop) +}}; + +//////////////////////////////////////////////////////////////////// +// +// hw_ld, hw_st +// + +output header {{ + /** + * Base class for hw_ld and hw_st. + */ + class HwLoadStore : public Memory + { + protected: + + /// Displacement for EA calculation (signed). + int16_t disp; + + /// Constructor + HwLoadStore(const char *mnem, MachInst _machInst, OpClass __opClass, + StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr, + StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr); + + std::string + generateDisassembly(Addr pc, const SymbolTable *symtab) const; + }; +}}; + + +output decoder {{ + inline + HwLoadStore::HwLoadStore(const char *mnem, MachInst _machInst, + OpClass __opClass, + StaticInstPtr<AlphaISA> _eaCompPtr, + StaticInstPtr<AlphaISA> _memAccPtr) + : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr), + disp(HW_LDST_DISP) + { + memAccessFlags = 0; + if (HW_LDST_PHYS) memAccessFlags |= PHYSICAL; + if (HW_LDST_ALT) memAccessFlags |= ALTMODE; + if (HW_LDST_VPTE) memAccessFlags |= VPTE; + if (HW_LDST_LOCK) memAccessFlags |= LOCKED; + } + + std::string + HwLoadStore::generateDisassembly(Addr pc, const SymbolTable *symtab) const + { +#ifdef SS_COMPATIBLE_DISASSEMBLY + return csprintf("%-10s r%d,%d(r%d)", mnemonic, RA, disp, RB); +#else + // HW_LDST_LOCK and HW_LDST_COND are the same bit. + const char *lock_str = + (HW_LDST_LOCK) ? (flags[IsLoad] ? ",LOCK" : ",COND") : ""; + + return csprintf("%-10s r%d,%d(r%d)%s%s%s%s%s", + mnemonic, RA, disp, RB, + HW_LDST_PHYS ? ",PHYS" : "", + HW_LDST_ALT ? ",ALT" : "", + HW_LDST_QUAD ? ",QUAD" : "", + HW_LDST_VPTE ? ",VPTE" : "", + lock_str); +#endif + } +}}; + +def format HwLoadStore(ea_code, memacc_code, class_ext, *flags) {{ + (header_output, decoder_output, decode_block, exec_output) = \ + LoadStoreBase(name, Name + class_ext, ea_code, memacc_code, + flags = flags, base_class = 'HwLoadStore') +}}; + + +def format HwStoreCond(ea_code, memacc_code, postacc_code, class_ext, *flags) {{ + (header_output, decoder_output, decode_block, exec_output) = \ + LoadStoreBase(name, Name + class_ext, ea_code, memacc_code, + postacc_code, flags = flags, base_class = 'HwLoadStore') +}}; + + +output header {{ + /** + * Base class for hw_mfpr and hw_mtpr. + */ + class HwMoveIPR : public AlphaStaticInst + { + protected: + /// Index of internal processor register. + int ipr_index; + + /// Constructor + HwMoveIPR(const char *mnem, MachInst _machInst, OpClass __opClass) + : AlphaStaticInst(mnem, _machInst, __opClass), + ipr_index(HW_IPR_IDX) + { + } + + std::string + generateDisassembly(Addr pc, const SymbolTable *symtab) const; + }; +}}; + +output decoder {{ + std::string + HwMoveIPR::generateDisassembly(Addr pc, const SymbolTable *symtab) const + { + if (_numSrcRegs > 0) { + // must be mtpr + return csprintf("%-10s r%d,IPR(%#x)", + mnemonic, RA, ipr_index); + } + else { + // must be mfpr + return csprintf("%-10s IPR(%#x),r%d", + mnemonic, ipr_index, RA); + } + } +}}; + +def format HwMoveIPR(code) {{ + iop = InstObjParams(name, Name, 'HwMoveIPR', CodeBlock(code), + ['IprAccessOp']) + header_output = BasicDeclare.subst(iop) + decoder_output = BasicConstructor.subst(iop) + decode_block = BasicDecode.subst(iop) + exec_output = BasicExecute.subst(iop) +}}; + + diff --git a/arch/alpha/isa/unimp.isa b/arch/alpha/isa/unimp.isa new file mode 100644 index 000000000..767888157 --- /dev/null +++ b/arch/alpha/isa/unimp.isa @@ -0,0 +1,165 @@ +// -*- mode:c++ -*- + +// Copyright (c) 2003-2005 The Regents of The University of Michigan +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer; +// redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution; +// neither the name of the copyright holders nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +output header {{ + /** + * Static instruction class for unimplemented instructions that + * cause simulator termination. Note that these are recognized + * (legal) instructions that the simulator does not support; the + * 'Unknown' class is used for unrecognized/illegal instructions. + * This is a leaf class. + */ + class FailUnimplemented : public AlphaStaticInst + { + public: + /// Constructor + FailUnimplemented(const char *_mnemonic, MachInst _machInst) + : AlphaStaticInst(_mnemonic, _machInst, No_OpClass) + { + // don't call execute() (which panics) if we're on a + // speculative path + flags[IsNonSpeculative] = true; + } + + %(BasicExecDeclare)s + + std::string + generateDisassembly(Addr pc, const SymbolTable *symtab) const; + }; + + /** + * Base class for unimplemented instructions that cause a warning + * to be printed (but do not terminate simulation). This + * implementation is a little screwy in that it will print a + * warning for each instance of a particular unimplemented machine + * instruction, not just for each unimplemented opcode. Should + * probably make the 'warned' flag a static member of the derived + * class. + */ + class WarnUnimplemented : public AlphaStaticInst + { + private: + /// Have we warned on this instruction yet? + mutable bool warned; + + public: + /// Constructor + WarnUnimplemented(const char *_mnemonic, MachInst _machInst) + : AlphaStaticInst(_mnemonic, _machInst, No_OpClass), warned(false) + { + // don't call execute() (which panics) if we're on a + // speculative path + flags[IsNonSpeculative] = true; + } + + %(BasicExecDeclare)s + + std::string + generateDisassembly(Addr pc, const SymbolTable *symtab) const; + }; +}}; + +output decoder {{ + std::string + FailUnimplemented::generateDisassembly(Addr pc, + const SymbolTable *symtab) const + { + return csprintf("%-10s (unimplemented)", mnemonic); + } + + std::string + WarnUnimplemented::generateDisassembly(Addr pc, + const SymbolTable *symtab) const + { +#ifdef SS_COMPATIBLE_DISASSEMBLY + return csprintf("%-10s", mnemonic); +#else + return csprintf("%-10s (unimplemented)", mnemonic); +#endif + } +}}; + +output exec {{ + Fault + FailUnimplemented::execute(%(CPU_exec_context)s *xc, + Trace::InstRecord *traceData) const + { + panic("attempt to execute unimplemented instruction '%s' " + "(inst 0x%08x, opcode 0x%x)", mnemonic, machInst, OPCODE); + return Unimplemented_Opcode_Fault; + } + + Fault + WarnUnimplemented::execute(%(CPU_exec_context)s *xc, + Trace::InstRecord *traceData) const + { + if (!warned) { + warn("instruction '%s' unimplemented\n", mnemonic); + warned = true; + } + + return No_Fault; + } +}}; + + +def format FailUnimpl() {{ + iop = InstObjParams(name, 'FailUnimplemented') + decode_block = BasicDecodeWithMnemonic.subst(iop) +}}; + +def format WarnUnimpl() {{ + iop = InstObjParams(name, 'WarnUnimplemented') + decode_block = BasicDecodeWithMnemonic.subst(iop) +}}; + +output header {{ + /** + * Static instruction class for unknown (illegal) instructions. + * These cause simulator termination if they are executed in a + * non-speculative mode. This is a leaf class. + */ + class Unknown : public AlphaStaticInst + { + public: + /// Constructor + Unknown(MachInst _machInst) + : AlphaStaticInst("unknown", _machInst, No_OpClass) + { + // don't call execute() (which panics) if we're on a + // speculative path + flags[IsNonSpeculative] = true; + } + + %(BasicExecDeclare)s + + std::string + generateDisassembly(Addr pc, const SymbolTable *symtab) const; + }; +}}; + diff --git a/arch/alpha/isa/unknown.isa b/arch/alpha/isa/unknown.isa new file mode 100644 index 000000000..6eba5b4f9 --- /dev/null +++ b/arch/alpha/isa/unknown.isa @@ -0,0 +1,52 @@ +// -*- mode:c++ -*- + +// Copyright (c) 2003-2005 The Regents of The University of Michigan +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer; +// redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution; +// neither the name of the copyright holders nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +output decoder {{ + std::string + Unknown::generateDisassembly(Addr pc, const SymbolTable *symtab) const + { + return csprintf("%-10s (inst 0x%x, opcode 0x%x)", + "unknown", machInst, OPCODE); + } +}}; + +output exec {{ + Fault + Unknown::execute(%(CPU_exec_context)s *xc, + Trace::InstRecord *traceData) const + { + panic("attempt to execute unknown instruction " + "(inst 0x%08x, opcode 0x%x)", machInst, OPCODE); + return Unimplemented_Opcode_Fault; + } +}}; + +def format Unknown() {{ + decode_block = 'return new Unknown(machInst);\n' +}}; + diff --git a/arch/alpha/isa/util.isa b/arch/alpha/isa/util.isa new file mode 100644 index 000000000..9fbbf6636 --- /dev/null +++ b/arch/alpha/isa/util.isa @@ -0,0 +1,112 @@ +// -*- mode:c++ -*- + +// Copyright (c) 2003-2005 The Regents of The University of Michigan +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer; +// redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution; +// neither the name of the copyright holders nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +output exec {{ + + /// Return opa + opb, summing carry into third arg. + inline uint64_t + addc(uint64_t opa, uint64_t opb, int &carry) + { + uint64_t res = opa + opb; + if (res < opa || res < opb) + ++carry; + return res; + } + + /// Multiply two 64-bit values (opa * opb), returning the 128-bit + /// product in res_hi and res_lo. + inline void + mul128(uint64_t opa, uint64_t opb, uint64_t &res_hi, uint64_t &res_lo) + { + // do a 64x64 --> 128 multiply using four 32x32 --> 64 multiplies + uint64_t opa_hi = opa<63:32>; + uint64_t opa_lo = opa<31:0>; + uint64_t opb_hi = opb<63:32>; + uint64_t opb_lo = opb<31:0>; + + res_lo = opa_lo * opb_lo; + + // The middle partial products logically belong in bit + // positions 95 to 32. Thus the lower 32 bits of each product + // sum into the upper 32 bits of the low result, while the + // upper 32 sum into the low 32 bits of the upper result. + uint64_t partial1 = opa_hi * opb_lo; + uint64_t partial2 = opa_lo * opb_hi; + + uint64_t partial1_lo = partial1<31:0> << 32; + uint64_t partial1_hi = partial1<63:32>; + uint64_t partial2_lo = partial2<31:0> << 32; + uint64_t partial2_hi = partial2<63:32>; + + // Add partial1_lo and partial2_lo to res_lo, keeping track + // of any carries out + int carry_out = 0; + res_lo = addc(partial1_lo, res_lo, carry_out); + res_lo = addc(partial2_lo, res_lo, carry_out); + + // Now calculate the high 64 bits... + res_hi = (opa_hi * opb_hi) + partial1_hi + partial2_hi + carry_out; + } + + /// Map 8-bit S-floating exponent to 11-bit T-floating exponent. + /// See Table 2-2 of Alpha AHB. + inline int + map_s(int old_exp) + { + int hibit = old_exp<7:>; + int lobits = old_exp<6:0>; + + if (hibit == 1) { + return (lobits == 0x7f) ? 0x7ff : (0x400 | lobits); + } + else { + return (lobits == 0) ? 0 : (0x380 | lobits); + } + } + + /// Convert a 32-bit S-floating value to the equivalent 64-bit + /// representation to be stored in an FP reg. + inline uint64_t + s_to_t(uint32_t s_val) + { + uint64_t tmp = s_val; + return (tmp<31:> << 63 // sign bit + | (uint64_t)map_s(tmp<30:23>) << 52 // exponent + | tmp<22:0> << 29); // fraction + } + + /// Convert a 64-bit T-floating value to the equivalent 32-bit + /// S-floating representation to be stored in memory. + inline int32_t + t_to_s(uint64_t t_val) + { + return (t_val<63:62> << 30 // sign bit & hi exp bit + | t_val<58:29>); // rest of exp & fraction + } +}}; + |