summaryrefslogtreecommitdiff
path: root/arch/alpha/isa_desc
diff options
context:
space:
mode:
Diffstat (limited to 'arch/alpha/isa_desc')
-rw-r--r--arch/alpha/isa_desc2427
1 files changed, 2427 insertions, 0 deletions
diff --git a/arch/alpha/isa_desc b/arch/alpha/isa_desc
new file mode 100644
index 000000000..e6ac01f28
--- /dev/null
+++ b/arch/alpha/isa_desc
@@ -0,0 +1,2427 @@
+// -*- mode:c++ -*-
+//
+// Alpha ISA description file.
+//
+
+let {{
+ global rcs_id
+ rcs_id = "$Id$"
+}};
+
+
+#include <sstream>
+#include <iostream>
+#include <iomanip>
+
+#include <math.h>
+#if defined(linux)
+#include <fenv.h>
+#endif
+
+#include "static_inst.hh"
+#include "cprintf.hh"
+#include "misc.hh"
+#include "op_class.hh"
+
+#include "exec_context.hh"
+#include "simple_cpu.hh"
+#include "spec_state.hh"
+#include "cpu.hh"
+#include "exetrace.hh"
+#include "annotation.hh"
+
+#ifdef FULL_SYSTEM
+#include "ev5.hh"
+#endif
+
+namespace AlphaISA;
+
+// Universal (format-independent) fields
+def bitfield OPCODE <31:26>;
+def bitfield RA <25:21>;
+def bitfield RB <20:16>;
+
+// Memory format
+def signed bitfield MEMDISP <15: 0>; // displacement
+def bitfield MEMFUNC <15: 0>; // function code (same field, unsigned)
+
+// Memory-format jumps
+def bitfield JMPFUNC <15:14>; // function code (disp<15:14>)
+def bitfield JMPHINT <13: 0>; // tgt Icache idx hint (disp<13:0>)
+
+// Branch format
+def signed bitfield BRDISP <20: 0>; // displacement
+
+// Integer operate format(s>;
+def bitfield INTIMM <20:13>; // integer immediate (literal)
+def bitfield IMM <12:12>; // immediate flag
+def bitfield INTFUNC <11: 5>; // function code
+def bitfield RC < 4: 0>; // dest reg
+
+// Floating-point operate format
+def bitfield FA <25:21>;
+def bitfield FB <20:16>;
+def bitfield FP_FULLFUNC <15: 5>; // complete function code
+ def bitfield FP_TRAPMODE <15:13>; // trapping mode
+ def bitfield FP_ROUNDMODE <12:11>; // rounding mode
+ def bitfield FP_TYPEFUNC <10: 5>; // type+func: handiest for decoding
+ def bitfield FP_SRCTYPE <10: 9>; // source reg type
+ def bitfield FP_SHORTFUNC < 8: 5>; // short function code
+ def bitfield FP_SHORTFUNC_TOP2 <8:7>; // top 2 bits of short func code
+def bitfield FC < 4: 0>; // dest reg
+
+// PALcode format
+def bitfield PALFUNC <25: 0>; // function code
+
+// EV5 PAL instructions:
+// HW_LD/HW_ST
+def bitfield HW_LDST_PHYS <15>; // address is physical
+def bitfield HW_LDST_ALT <14>; // use ALT_MODE IPR
+def bitfield HW_LDST_WRTCK <13>; // HW_LD only: fault if no write acc
+def bitfield HW_LDST_QUAD <12>; // size: 0=32b, 1=64b
+def bitfield HW_LDST_VPTE <11>; // HW_LD only: is PTE fetch
+def bitfield HW_LDST_LOCK <10>; // HW_LD only: is load locked
+def bitfield HW_LDST_COND <10>; // HW_ST only: is store conditional
+def signed bitfield HW_LDST_DISP <9:0>; // signed displacement
+
+// HW_REI
+def bitfield HW_REI_TYP <15:14>; // type: stalling vs. non-stallingk
+def bitfield HW_REI_MBZ <13: 0>; // must be zero
+
+// HW_MTPR/MW_MFPR
+def bitfield HW_IPR_IDX <15:0>; // IPR index
+
+// M5 instructions
+def bitfield M5FUNC <7:0>;
+
+let {{
+ global operandTypeMap
+ operandTypeMap = {
+ 'sb' : ('signed int', 8),
+ 'ub' : ('unsigned int', 8),
+ 'sw' : ('signed int', 16),
+ 'uw' : ('unsigned int', 16),
+ 'sl' : ('signed int', 32),
+ 'ul' : ('unsigned int', 32),
+ 'sq' : ('signed int', 64),
+ 'uq' : ('unsigned int', 64),
+ 'sf' : ('float', 32),
+ 'df' : ('float', 64)
+ }
+
+ global operandTraitsMap
+ operandTraitsMap = {
+ # Int regs default to unsigned, but code should not count on this.
+ # For clarity, descriptions that depend on unsigned behavior should
+ # explicitly specify '.uq'.
+ 'Ra': IntRegOperandTraits('uq', 'RA', 'IsInteger', 1),
+ 'Rb': IntRegOperandTraits('uq', 'RB', 'IsInteger', 2),
+ 'Rc': IntRegOperandTraits('uq', 'RC', 'IsInteger', 3),
+ 'Fa': FloatRegOperandTraits('df', 'FA', 'IsFloating', 1),
+ 'Fb': FloatRegOperandTraits('df', 'FB', 'IsFloating', 2),
+ 'Fc': FloatRegOperandTraits('df', 'FC', 'IsFloating', 3),
+ 'Mem': MemOperandTraits('uq', None,
+ ('IsMemRef', 'IsLoad', 'IsStore'), 4),
+ 'NPC': NPCOperandTraits('uq', None, ( None, None, 'IsControl' ), 4),
+ 'Runiq': ControlRegOperandTraits('uq', 'Uniq', None, 1),
+ 'FPCR': ControlRegOperandTraits('uq', 'Fpcr', None, 1),
+ # The next two are hacks for non-full-system call-pal emulation
+ 'R0': IntRegOperandTraits('uq', '0', None, 1),
+ 'R16': IntRegOperandTraits('uq', '16', None, 1),
+ }
+
+ defineDerivedOperandVars()
+}};
+
+declare {{
+// just temporary, while comparing with old code for debugging
+// #define SS_COMPATIBLE_DISASSEMBLY
+
+ /// Check "FP enabled" machine status bit. Called when executing any FP
+ /// instruction in full-system mode.
+ /// @retval Full-system mode: No_Fault if FP is enabled, Fen_Fault
+ /// if not. Non-full-system mode: always returns No_Fault.
+#ifdef FULL_SYSTEM
+ inline Fault checkFpEnableFault(ExecContext *xc)
+ {
+ Fault fault = No_Fault; // dummy... this ipr access should not fault
+ if (!ICSR_FPE(xc->readIpr(AlphaISA::IPR_ICSR, fault))) {
+ fault = Fen_Fault;
+ }
+ return fault;
+ }
+#else
+ inline Fault checkFpEnableFault(ExecContext *xc)
+ {
+ return No_Fault;
+ }
+#endif
+
+ /**
+ * Base class for all Alpha static instructions.
+ */
+ class AlphaStaticInst : public StaticInst<AlphaISA>
+ {
+ protected:
+
+ /// Make AlphaISA register dependence tags directly visible in
+ /// this class and derived classes. Maybe these should really
+ /// live here and not in the AlphaISA namespace.
+ enum DependenceTags {
+ FP_Base_DepTag = AlphaISA::FP_Base_DepTag,
+ Fpcr_DepTag = AlphaISA::Fpcr_DepTag,
+ Uniq_DepTag = AlphaISA::Uniq_DepTag,
+ IPR_Base_DepTag = AlphaISA::IPR_Base_DepTag
+ };
+
+ /// Constructor.
+ AlphaStaticInst(const char *mnem, MachInst _machInst,
+ OpClass __opClass)
+ : StaticInst<AlphaISA>(mnem, _machInst, __opClass)
+ {
+ }
+
+ /// Print a register name for disassembly given the unique
+ /// dependence tag number (FP or int).
+ void printReg(std::ostream &os, int reg)
+ {
+ if (reg < FP_Base_DepTag) {
+ ccprintf(os, "r%d", reg);
+ }
+ else {
+ ccprintf(os, "f%d", reg - FP_Base_DepTag);
+ }
+ }
+
+ std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
+ {
+ std::stringstream ss;
+
+ ccprintf(ss, "%-10s ", mnemonic);
+
+ // just print the first two source regs... if there's
+ // a third one, it's a read-modify-write dest (Rc),
+ // e.g. for CMOVxx
+ if (_numSrcRegs > 0) {
+ printReg(ss, _srcRegIdx[0]);
+ }
+ if (_numSrcRegs > 1) {
+ ss << ",";
+ printReg(ss, _srcRegIdx[1]);
+ }
+
+ // just print the first dest... if there's a second one,
+ // it's generally implicit
+ if (_numDestRegs > 0) {
+ if (_numSrcRegs > 0)
+ ss << ",";
+ printReg(ss, _destRegIdx[0]);
+ }
+
+ return ss.str();
+ }
+ };
+}};
+
+
+def template BasicDeclare {{
+ /**
+ * Static instruction class for "%(mnemonic)s".
+ */
+ class %(class_name)s : public %(base_class)s
+ {
+ public:
+ /// Constructor.
+ %(class_name)s(MachInst machInst)
+ : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
+ {
+ %(constructor)s;
+ }
+
+ Fault execute(SimpleCPU *cpu, ExecContext *xc,
+ Trace::InstRecord *traceData)
+ {
+ SimpleCPU *memAccessObj __attribute__((unused)) = cpu;
+ Fault fault = No_Fault;
+
+ %(fp_enable_check)s;
+ %(exec_decl)s;
+ %(simple_rd)s;
+ %(code)s;
+
+ if (fault == No_Fault) {
+ %(simple_wb)s;
+ }
+
+ return fault;
+ }
+
+ Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst,
+ Trace::InstRecord *traceData)
+ {
+ DynInst *memAccessObj __attribute__((unused)) = dynInst;
+ Fault fault = No_Fault;
+
+ %(fp_enable_check)s;
+ %(exec_decl)s;
+ %(dtld_rd)s;
+ %(code)s;
+
+ if (fault == No_Fault) {
+ %(dtld_wb)s;
+ }
+
+ return fault;
+ }
+ };
+}};
+
+def template BasicDecode {{
+ return new %(class_name)s(machInst);
+}};
+
+def template BasicDecodeWithMnemonic {{
+ return new %(class_name)s("%(mnemonic)s", machInst);
+}};
+
+// The most basic instruction format... used only for a few misc. insts
+def format BasicOperate(code, *flags) {{
+ iop = InstObjParams(name, Name, 'AlphaStaticInst', CodeBlock(code), flags)
+ return iop.subst('BasicDeclare', 'BasicDecode')
+}};
+
+
+
+////////////////////////////////////////////////////////////////////
+
+declare {{
+ /**
+ * Static instruction class for no-ops. This is a leaf class.
+ */
+ class Nop : public AlphaStaticInst
+ {
+ /// Disassembly of original instruction.
+ const std::string originalDisassembly;
+
+ public:
+ /// Constructor
+ Nop(const std::string _originalDisassembly, MachInst _machInst)
+ : AlphaStaticInst("nop", _machInst, No_OpClass),
+ originalDisassembly(_originalDisassembly)
+ {
+ flags[IsNop] = true;
+ }
+
+ ~Nop() { }
+
+ Fault execute(SimpleCPU *cpu, ExecContext *xc,
+ Trace::InstRecord *traceData)
+ {
+ return No_Fault;
+ }
+
+ Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst,
+ Trace::InstRecord *traceData)
+ {
+ return No_Fault;
+ }
+
+ std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
+ {
+#ifdef SS_COMPATIBLE_DISASSEMBLY
+ return originalDisassembly;
+#else
+ return csprintf("%-10s (%s)", "nop", originalDisassembly);
+#endif
+ }
+ };
+
+ /// Helper function for decoding nops. Substitute Nop object
+ /// for original inst passed in as arg (and delete latter).
+ inline
+ AlphaStaticInst *
+ makeNop(AlphaStaticInst *inst)
+ {
+ AlphaStaticInst *nop = new Nop(inst->disassemble(0), inst->machInst);
+ delete inst;
+ return nop;
+ }
+}};
+
+def format Nop() {{
+ return ('', 'return new Nop("%s", machInst);\n' % name)
+}};
+
+
+// integer & FP operate instructions use Rc as dest, so check for
+// Rc == 31 to detect nops
+def template OperateNopCheckDecode {{
+ {
+ AlphaStaticInst *i = new %(class_name)s(machInst);
+ if (RC == 31) {
+ i = makeNop(i);
+ }
+ return i;
+ }
+}};
+
+// Like BasicOperate format, but generates NOP if RC/FC == 31
+def format BasicOperateWithNopCheck(code, *opt_args) {{
+ iop = InstObjParams(name, Name, 'AlphaStaticInst', CodeBlock(code),
+ opt_args)
+ return iop.subst('BasicDeclare', 'OperateNopCheckDecode')
+}};
+
+
+////////////////////////////////////////////////////////////////////
+//
+// Integer operate instructions
+//
+
+declare {{
+ /**
+ * Base class for integer immediate instructions.
+ */
+ class IntegerImm : public AlphaStaticInst
+ {
+ protected:
+ /// Immediate operand value (unsigned 8-bit int).
+ uint8_t imm;
+
+ /// Constructor
+ IntegerImm(const char *mnem, MachInst _machInst, OpClass __opClass)
+ : AlphaStaticInst(mnem, _machInst, __opClass), imm(INTIMM)
+ {
+ }
+
+ std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
+ {
+ std::stringstream ss;
+
+ ccprintf(ss, "%-10s ", mnemonic);
+
+ // just print the first source reg... if there's
+ // a second one, it's a read-modify-write dest (Rc),
+ // e.g. for CMOVxx
+ if (_numSrcRegs > 0) {
+ printReg(ss, _srcRegIdx[0]);
+ ss << ",";
+ }
+
+ ss << (int)imm;
+
+ if (_numDestRegs > 0) {
+ ss << ",";
+ printReg(ss, _destRegIdx[0]);
+ }
+
+ return ss.str();
+ }
+ };
+}};
+
+def template RegOrImmDecode {{
+ {
+ AlphaStaticInst *i =
+ (IMM) ? (AlphaStaticInst *)new %(class_name)sImm(machInst)
+ : (AlphaStaticInst *)new %(class_name)s(machInst);
+ if (RC == 31) {
+ i = makeNop(i);
+ }
+ return i;
+ }
+}};
+
+// Primary format for integer operate instructions:
+// - Generates both reg-reg and reg-imm versions if Rb_or_imm is used.
+// - Generates NOP if RC == 31.
+def format IntegerOperate(code, *opt_flags) {{
+ # If the code block contains 'Rb_or_imm', we define two instructions,
+ # one using 'Rb' and one using 'imm', and have the decoder select
+ # the right one.
+ uses_imm = (code.find('Rb_or_imm') != -1)
+ if uses_imm:
+ orig_code = code
+ # base code is reg version:
+ # rewrite by substituting 'Rb' for 'Rb_or_imm'
+ code = re.sub(r'Rb_or_imm', 'Rb', orig_code)
+ # generate immediate version by substituting 'imm'
+ # note that imm takes no extenstion, so we extend
+ # the regexp to replace any extension as well
+ imm_code = re.sub(r'Rb_or_imm(\.\w+)?', 'imm', orig_code)
+
+ # generate declaration for register version
+ cblk = CodeBlock(code)
+ iop = InstObjParams(name, Name, 'AlphaStaticInst', cblk, opt_flags)
+ decls = iop.subst('BasicDeclare')
+
+ if uses_imm:
+ # append declaration for imm version
+ imm_cblk = CodeBlock(imm_code)
+ imm_iop = InstObjParams(name, Name + 'Imm', 'IntegerImm', imm_cblk,
+ opt_flags)
+ decls += imm_iop.subst('BasicDeclare')
+ # decode checks IMM bit to pick correct version
+ decode = iop.subst('RegOrImmDecode')
+ else:
+ # no imm version: just check for nop
+ decode = iop.subst('OperateNopCheckDecode')
+
+ return (decls, decode)
+}};
+
+
+////////////////////////////////////////////////////////////////////
+//
+// Floating-point instructions
+//
+// Note that many FP-type instructions which do not support all the
+// various rounding & trapping modes use the simpler format
+// BasicOperateWithNopCheck.
+//
+
+declare {{
+ /**
+ * Base class for general floating-point instructions. Includes
+ * support for various Alpha rounding and trapping modes. Only FP
+ * instructions that require this support are derived from this
+ * class; the rest derive directly from AlphaStaticInst.
+ */
+ class AlphaFP : public AlphaStaticInst
+ {
+ public:
+ /// Alpha FP rounding modes.
+ enum RoundingMode {
+ Chopped = 0, ///< round toward zero
+ Minus_Infinity = 1, ///< round toward minus infinity
+ Normal = 2, ///< round to nearest (default)
+ Dynamic = 3, ///< use FPCR setting (in instruction)
+ Plus_Infinity = 3 ///< round to plus inifinity (in FPCR)
+ };
+
+ /// Alpha FP trapping modes.
+ /// For instructions that produce integer results, the
+ /// "Underflow Enable" modes really mean "Overflow Enable", and
+ /// the assembly modifier is V rather than U.
+ enum TrappingMode {
+ /// default: nothing enabled
+ Imprecise = 0, ///< no modifier
+ /// underflow/overflow traps enabled, inexact disabled
+ Underflow_Imprecise = 1, ///< /U or /V
+ Underflow_Precise = 5, ///< /SU or /SV
+ /// underflow/overflow and inexact traps enabled
+ Underflow_Inexact_Precise = 7 ///< /SUI or /SVI
+ };
+
+ protected:
+#if defined(linux)
+ static const int alphaToC99RoundingMode[];
+#endif
+
+ /// Map enum RoundingMode values to disassembly suffixes.
+ static const char *roundingModeSuffix[];
+ /// Map enum TrappingMode values to FP disassembly suffixes.
+ static const char *fpTrappingModeSuffix[];
+ /// Map enum TrappingMode values to integer disassembly suffixes.
+ static const char *intTrappingModeSuffix[];
+
+ /// This instruction's rounding mode.
+ RoundingMode roundingMode;
+ /// This instruction's trapping mode.
+ TrappingMode trappingMode;
+
+ /// Constructor
+ AlphaFP(const char *mnem, MachInst _machInst, OpClass __opClass)
+ : AlphaStaticInst(mnem, _machInst, __opClass),
+ roundingMode((enum RoundingMode)FP_ROUNDMODE),
+ trappingMode((enum TrappingMode)FP_TRAPMODE)
+ {
+ if (trappingMode != Imprecise) {
+ warn("Warning: precise FP traps unimplemented\n");
+ }
+ }
+
+#if defined(linux)
+ int
+ getC99RoundingMode(ExecContext *xc)
+ {
+ if (roundingMode == Dynamic) {
+ return alphaToC99RoundingMode[bits(xc->readFpcr(), 59, 58)];
+ }
+ else {
+ return alphaToC99RoundingMode[roundingMode];
+ }
+ }
+#endif
+
+ // This differs from the AlphaStaticInst version only in
+ // printing suffixes for non-default rounding & trapping modes.
+ std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
+ {
+ std::string mnem_str(mnemonic);
+
+ mnem_str += ((_destRegIdx[0] >= FP_Base_DepTag)
+ ? fpTrappingModeSuffix[trappingMode]
+ : intTrappingModeSuffix[trappingMode]);
+ mnem_str += roundingModeSuffix[roundingMode];
+
+ std::stringstream ss;
+
+ ccprintf(ss, "%-10s ", mnem_str.c_str());
+
+ // just print the first two source regs... if there's
+ // a third one, it's a read-modify-write dest (Rc),
+ // e.g. for CMOVxx
+ if (_numSrcRegs > 0) {
+ printReg(ss, _srcRegIdx[0]);
+ }
+ if (_numSrcRegs > 1) {
+ ss << ",";
+ printReg(ss, _srcRegIdx[1]);
+ }
+
+ // just print the first dest... if there's a second one,
+ // it's generally implicit
+ if (_numDestRegs > 0) {
+ if (_numSrcRegs > 0)
+ ss << ",";
+ printReg(ss, _destRegIdx[0]);
+ }
+
+ return ss.str();
+ }
+ };
+
+#if defined(linux)
+ const int AlphaFP::alphaToC99RoundingMode[] = {
+ FE_TOWARDZERO, // Chopped
+ FE_DOWNWARD, // Minus_Infinity
+ FE_TONEAREST, // Normal
+ FE_UPWARD // Dynamic in inst, Plus_Infinity in FPCR
+ };
+#endif
+
+ const char *AlphaFP::roundingModeSuffix[] = { "c", "m", "", "d" };
+ // mark invalid trapping modes, but don't fail on them, because
+ // you could decode anything on a misspeculated path
+ const char *AlphaFP::fpTrappingModeSuffix[] =
+ { "", "u", "INVTM2", "INVTM3", "INVTM4", "su", "INVTM6", "sui" };
+ const char *AlphaFP::intTrappingModeSuffix[] =
+ { "", "v", "INVTM2", "INVTM3", "INVTM4", "sv", "INVTM6", "svi" };
+}};
+
+
+def template FloatingPointDeclare {{
+ /**
+ * "Fast" static instruction class for "%(mnemonic)s" (imprecise
+ * trapping mode, normal rounding mode).
+ */
+ class %(class_name)sFast : public %(base_class)s
+ {
+ public:
+ /// Constructor.
+ %(class_name)sFast(MachInst machInst)
+ : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
+ {
+ %(constructor)s;
+ }
+
+ Fault execute(SimpleCPU *cpu, ExecContext *xc,
+ Trace::InstRecord *traceData)
+ {
+ Fault fault = No_Fault;
+
+ %(fp_enable_check)s;
+ %(exec_decl)s;
+ %(simple_rd)s;
+ %(code)s;
+
+ if (fault == No_Fault) {
+ %(simple_wb)s;
+ }
+
+ return fault;
+ }
+
+ Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst,
+ Trace::InstRecord *traceData)
+ {
+ Fault fault = No_Fault;
+
+ %(fp_enable_check)s;
+ %(exec_decl)s;
+ %(dtld_rd)s;
+ %(code)s;
+
+ if (fault == No_Fault) {
+ %(dtld_wb)s;
+ }
+
+ return fault;
+ }
+ };
+
+ /**
+ * General static instruction class for "%(mnemonic)s". Supports
+ * all the various rounding and trapping modes.
+ */
+ class %(class_name)sGeneral : public %(base_class)s
+ {
+ public:
+ /// Constructor.
+ %(class_name)sGeneral(MachInst machInst)
+ : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
+ {
+ %(constructor)s;
+ }
+
+ Fault execute(SimpleCPU *cpu, ExecContext *xc,
+ Trace::InstRecord *traceData)
+ {
+ Fault fault = No_Fault;
+
+ %(fp_enable_check)s;
+ %(exec_decl)s;
+ %(simple_rd)s;
+
+#if defined(linux)
+ fesetround(getC99RoundingMode(xc));
+#endif
+
+ %(code)s;
+
+#if defined(linux)
+ fesetround(FE_TONEAREST);
+#endif
+
+ if (fault == No_Fault) {
+ %(simple_wb)s;
+ }
+
+ return fault;
+ }
+
+ Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst,
+ Trace::InstRecord *traceData)
+ {
+ Fault fault = No_Fault;
+
+ %(fp_enable_check)s;
+ %(exec_decl)s;
+ %(dtld_rd)s;
+
+#if defined(linux)
+ fesetround(getC99RoundingMode(xc));
+#endif
+
+ %(code)s;
+
+#if defined(linux)
+ fesetround(FE_TONEAREST);
+#endif
+
+ if (fault == No_Fault) {
+ %(dtld_wb)s;
+ }
+
+ return fault;
+ }
+ };
+}};
+
+def template FloatingPointDecode {{
+ {
+ bool fast = (FP_TRAPMODE == AlphaFP::Imprecise
+ && FP_ROUNDMODE == AlphaFP::Normal);
+ AlphaStaticInst *i =
+ fast ? (AlphaStaticInst *)new %(class_name)sFast(machInst) :
+ (AlphaStaticInst *)new %(class_name)sGeneral(machInst);
+
+ if (FC == 31) {
+ i = makeNop(i);
+ }
+
+ return i;
+ }
+}};
+
+
+// General format for floating-point operate instructions:
+// - Checks trapping and rounding mode flags. Trapping modes
+// currently unimplemented (will fail).
+// - Generates NOP if FC == 31.
+def format FloatingPointOperate(code, *opt_args) {{
+ iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code),
+ opt_args)
+ return iop.subst('FloatingPointDeclare', 'FloatingPointDecode')
+}};
+
+
+////////////////////////////////////////////////////////////////////
+//
+// Memory-format instructions: LoadAddress, Load, Store
+//
+
+declare {{
+ /**
+ * Base class for general Alpha memory-format instructions.
+ */
+ class Memory : public AlphaStaticInst
+ {
+ protected:
+
+ /// Displacement for EA calculation (signed).
+ int32_t disp;
+ /// Memory request flags. See mem_req_base.hh.
+ unsigned memAccessFlags;
+
+ /// Constructor
+ Memory(const char *mnem, MachInst _machInst, OpClass __opClass)
+ : AlphaStaticInst(mnem, _machInst, __opClass),
+ disp(MEMDISP), memAccessFlags(0)
+ {
+ }
+
+ std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
+ {
+ return csprintf("%-10s %c%d,%d(r%d)", mnemonic,
+ flags[IsFloating] ? 'f' : 'r', RA, MEMDISP, RB);
+ }
+ };
+
+ /**
+ * Base class for a few miscellaneous memory-format insts
+ * that don't interpret the disp field: wh64, fetch, fetch_m, ecb.
+ * None of these instructions has a destination register either.
+ */
+ class MemoryNoDisp : public AlphaStaticInst
+ {
+ protected:
+ /// Memory request flags. See mem_req_base.hh.
+ unsigned memAccessFlags;
+
+ /// Constructor
+ MemoryNoDisp(const char *mnem, MachInst _machInst, OpClass __opClass)
+ : AlphaStaticInst(mnem, _machInst, __opClass),
+ memAccessFlags(0)
+ {
+ }
+
+ std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
+ {
+ return csprintf("%-10s (r%d)", mnemonic, RB);
+ }
+ };
+
+ /**
+ * Base class for "fake" effective-address computation
+ * instructions returnded by eaCompInst().
+ */
+ class EACompBase : public AlphaStaticInst
+ {
+ public:
+ /// Constructor
+ EACompBase(MachInst machInst)
+ : AlphaStaticInst("(eacomp)", machInst, IntALU)
+ {
+ }
+
+ Fault execute(SimpleCPU *cpu, ExecContext *xc,
+ Trace::InstRecord *traceData)
+ { panic("attempt to execute eacomp"); }
+
+ Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst,
+ Trace::InstRecord *traceData)
+ { panic("attempt to execute eacomp"); }
+ };
+
+ /**
+ * Base class for "fake" memory-access instructions returnded by
+ * memAccInst().
+ */
+ class MemAccBase : public AlphaStaticInst
+ {
+ public:
+ /// Constructor
+ MemAccBase(MachInst machInst, OpClass __opClass)
+ : AlphaStaticInst("(memacc)", machInst, __opClass)
+ {
+ }
+
+ Fault execute(SimpleCPU *cpu, ExecContext *xc,
+ Trace::InstRecord *traceData)
+ { panic("attempt to execute memacc"); }
+
+ Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst,
+ Trace::InstRecord *traceData)
+ { panic("attempt to execute memacc"); }
+ };
+
+}};
+
+
+def format LoadAddress(code) {{
+ iop = InstObjParams(name, Name, 'Memory', CodeBlock(code))
+ return iop.subst('BasicDeclare', 'BasicDecode')
+}};
+
+
+def template LoadStoreDeclare {{
+ /**
+ * Static instruction class for "%(mnemonic)s".
+ */
+ class %(class_name)s : public %(base_class)s
+ {
+ protected:
+
+ /**
+ * "Fake" effective address computation class for "%(mnemonic)s".
+ */
+ class EAComp : public EACompBase
+ {
+ public:
+ /// Constructor
+ EAComp(MachInst machInst)
+ : EACompBase(machInst)
+ {
+ %(ea_constructor)s;
+ }
+ };
+
+ /**
+ * "Fake" memory access instruction class for "%(mnemonic)s".
+ */
+ class MemAcc : public MemAccBase
+ {
+ public:
+ /// Constructor
+ MemAcc(MachInst machInst)
+ : MemAccBase(machInst, %(op_class)s)
+ {
+ %(memacc_constructor)s;
+ }
+ };
+
+ /// Pointer to EAComp object.
+ StaticInstPtr<AlphaISA> eaCompPtr;
+ /// Pointer to MemAcc object.
+ StaticInstPtr<AlphaISA> memAccPtr;
+
+ public:
+
+ StaticInstPtr<AlphaISA> eaCompInst() { return eaCompPtr; }
+ StaticInstPtr<AlphaISA> memAccInst() { return memAccPtr; }
+
+ /// Constructor.
+ %(class_name)s(MachInst machInst)
+ : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s),
+ eaCompPtr(new EAComp(machInst)), memAccPtr(new MemAcc(machInst))
+ {
+ %(constructor)s;
+ }
+
+ Fault execute(SimpleCPU *cpu, ExecContext *xc,
+ Trace::InstRecord *traceData)
+ {
+ SimpleCPU *memAccessObj = cpu;
+ Addr EA;
+ Fault fault = No_Fault;
+
+ %(fp_enable_check)s;
+ %(exec_decl)s;
+ %(simple_nonmem_rd)s;
+ %(ea_code)s;
+
+ if (fault == No_Fault) {
+ %(simple_mem_rd)s;
+ %(memacc_code)s;
+ }
+
+ if (fault == No_Fault) {
+ %(simple_mem_wb)s;
+ }
+
+ if (fault == No_Fault) {
+ %(postacc_code)s;
+ }
+
+ if (fault == No_Fault) {
+ %(simple_nonmem_wb)s;
+ }
+
+ return fault;
+ }
+
+ Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst,
+ Trace::InstRecord *traceData)
+ {
+ DynInst *memAccessObj = dynInst;
+ Addr EA;
+ Fault fault = No_Fault;
+
+ %(fp_enable_check)s;
+ %(exec_decl)s;
+ %(dtld_nonmem_rd)s;
+ %(ea_code)s;
+
+ if (fault == No_Fault) {
+ %(dtld_mem_rd)s;
+ %(memacc_code)s;
+ }
+
+ if (fault == No_Fault) {
+ %(dtld_mem_wb)s;
+ }
+
+ if (fault == No_Fault) {
+ %(postacc_code)s;
+ }
+
+ if (fault == No_Fault) {
+ %(dtld_nonmem_wb)s;
+ }
+
+ return fault;
+ }
+ };
+}};
+
+
+def template PrefetchDeclare {{
+ /**
+ * Static instruction class for "%(mnemonic)s".
+ */
+ class %(class_name)s : public %(base_class)s
+ {
+ public:
+ /// Constructor
+ %(class_name)s(MachInst machInst)
+ : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
+ {
+ %(constructor)s;
+ }
+
+ Fault execute(SimpleCPU *cpu, ExecContext *xc,
+ Trace::InstRecord *traceData)
+ {
+ Addr EA;
+ Fault fault = No_Fault;
+
+ %(fp_enable_check)s;
+ %(exec_decl)s;
+ %(simple_nonmem_rd)s;
+ %(ea_code)s;
+
+ if (fault == No_Fault) {
+ cpu->prefetch(EA, memAccessFlags);
+ }
+
+ return No_Fault;
+ }
+
+ Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst,
+ Trace::InstRecord *traceData)
+ {
+ Addr EA;
+ Fault fault = No_Fault;
+
+ %(fp_enable_check)s;
+ %(exec_decl)s;
+ %(dtld_nonmem_rd)s;
+ %(ea_code)s;
+
+ if (fault == No_Fault) {
+ dynInst->prefetch(EA, memAccessFlags);
+ }
+
+ return No_Fault;
+ }
+ };
+}};
+
+
+// load instructions use Ra as dest, so check for
+// Ra == 31 to detect nops
+def template LoadNopCheckDecode {{
+ {
+ AlphaStaticInst *i = new %(class_name)s(machInst);
+ if (RA == 31) {
+ i = makeNop(i);
+ }
+ return i;
+ }
+}};
+
+
+// for some load instructions, Ra == 31 indicates a prefetch (not a nop)
+def template LoadPrefetchCheckDecode {{
+ {
+ if (RA != 31) {
+ return new %(class_name)s(machInst);
+ }
+ else {
+ return new %(class_name)sPrefetch(machInst);
+ }
+ }
+}};
+
+
+let {{
+global LoadStoreBase
+def LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code = '',
+ base_class = 'Memory', flags = [],
+ declare_template = 'LoadStoreDeclare',
+ decode_template = 'BasicDecode'):
+ # Segregate flags into instruction flags (handled by InstObjParams)
+ # and memory access flags (handled here).
+
+ # Would be nice to autogenerate this list, but oh well.
+ valid_mem_flags = ['LOCKED', 'EVICT_NEXT', 'PF_EXCLUSIVE']
+ inst_flags = []
+ mem_flags = []
+ for f in flags:
+ if f in valid_mem_flags:
+ mem_flags.append(f)
+ else:
+ inst_flags.append(f)
+
+ ea_cblk = CodeBlock(ea_code)
+ memacc_cblk = CodeBlock(memacc_code)
+ postacc_cblk = CodeBlock(postacc_code)
+
+ cblk = CodeBlock(ea_code + memacc_code + postacc_code)
+ iop = InstObjParams(name, Name, base_class, cblk, inst_flags)
+
+ iop.ea_constructor = ea_cblk.constructor
+ iop.ea_code = ea_cblk.code
+ iop.memacc_constructor = memacc_cblk.constructor
+ iop.memacc_code = memacc_cblk.code
+ iop.postacc_code = postacc_cblk.code
+
+ mem_flags = string.join(mem_flags, '|')
+ if mem_flags != '':
+ iop.constructor += '\n\tmemAccessFlags = ' + mem_flags + ';'
+
+ return iop.subst(declare_template, decode_template)
+}};
+
+
+def format LoadOrNop(ea_code, memacc_code, *flags) {{
+ return LoadStoreBase(name, Name, ea_code, memacc_code,
+ flags = flags,
+ decode_template = 'LoadNopCheckDecode')
+}};
+
+
+// Note that the flags passed in apply only to the prefetch version
+def format LoadOrPrefetch(ea_code, memacc_code, *pf_flags) {{
+ # declare the load instruction object and generate the decode block
+ (decls, decode) = \
+ LoadStoreBase(name, Name, ea_code, memacc_code,
+ decode_template = 'LoadPrefetchCheckDecode')
+
+ # Declare the prefetch instruction object.
+
+ # convert flags from tuple to list to make them mutable
+ pf_flags = list(pf_flags) + ['IsMemRef', 'IsLoad', 'IsDataPrefetch', 'RdPort']
+
+ (pfdecls, pfdecode) = \
+ LoadStoreBase(name, Name + 'Prefetch', ea_code, '',
+ flags = pf_flags,
+ declare_template = 'PrefetchDeclare')
+
+ return (decls + pfdecls, decode)
+}};
+
+
+def format Store(ea_code, memacc_code, *flags) {{
+ return LoadStoreBase(name, Name, ea_code, memacc_code,
+ flags = flags)
+}};
+
+
+def format StoreCond(ea_code, memacc_code, postacc_code, *flags) {{
+ return LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code,
+ flags = flags)
+}};
+
+
+// Use 'MemoryNoDisp' as base: for wh64, fetch, ecb
+def format MiscPrefetch(ea_code, memacc_code, *flags) {{
+ return LoadStoreBase(name, Name, ea_code, memacc_code,
+ flags = flags, base_class = 'MemoryNoDisp')
+}};
+
+
+////////////////////////////////////////////////////////////////////
+
+
+declare {{
+
+ /**
+ * Base class for instructions whose disassembly is not purely a
+ * function of the machine instruction (i.e., it depends on the
+ * PC). This class overrides the disassemble() method to check
+ * the PC and symbol table values before re-using a cached
+ * disassembly string. This is necessary for branches and jumps,
+ * where the disassembly string includes the target address (which
+ * may depend on the PC and/or symbol table).
+ */
+ class PCDependentDisassembly : public AlphaStaticInst
+ {
+ protected:
+ /// Cached program counter from last disassembly
+ Addr cachedPC;
+ /// Cached symbol table pointer from last disassembly
+ const SymbolTable *cachedSymtab;
+
+ /// Constructor
+ PCDependentDisassembly(const char *mnem, MachInst _machInst,
+ OpClass __opClass)
+ : AlphaStaticInst(mnem, _machInst, __opClass),
+ cachedPC(0), cachedSymtab(0)
+ {
+ }
+
+ const std::string &disassemble(Addr pc, const SymbolTable *symtab)
+ {
+ if (!cachedDisassembly ||
+ pc != cachedPC || symtab != cachedSymtab)
+ {
+ if (cachedDisassembly)
+ delete cachedDisassembly;
+
+ cachedDisassembly =
+ new std::string(generateDisassembly(pc, symtab));
+ cachedPC = pc;
+ cachedSymtab = symtab;
+ }
+
+ return *cachedDisassembly;
+ }
+ };
+
+ /**
+ * Base class for branches (PC-relative control transfers),
+ * conditional or unconditional.
+ */
+ class Branch : public PCDependentDisassembly
+ {
+ protected:
+ /// Displacement to target address (signed).
+ int32_t disp;
+
+ /// Constructor.
+ Branch(const char *mnem, MachInst _machInst, OpClass __opClass)
+ : PCDependentDisassembly(mnem, _machInst, __opClass),
+ disp(BRDISP << 2)
+ {
+ }
+
+ Addr branchTarget(Addr branchPC)
+ {
+ return branchPC + 4 + disp;
+ }
+
+ std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
+ {
+ std::stringstream ss;
+
+ ccprintf(ss, "%-10s ", mnemonic);
+
+ // There's only one register arg (RA), but it could be
+ // either a source (the condition for conditional
+ // branches) or a destination (the link reg for
+ // unconditional branches)
+ if (_numSrcRegs > 0) {
+ printReg(ss, _srcRegIdx[0]);
+ ss << ",";
+ }
+ else if (_numDestRegs > 0) {
+ printReg(ss, _destRegIdx[0]);
+ ss << ",";
+ }
+
+#ifdef SS_COMPATIBLE_DISASSEMBLY
+ if (_numSrcRegs == 0 && _numDestRegs == 0) {
+ printReg(ss, 31);
+ ss << ",";
+ }
+#endif
+
+ Addr target = pc + 4 + disp;
+
+ std::string str;
+ if (symtab && symtab->findSymbol(target, str))
+ ss << str;
+ else
+ ccprintf(ss, "0x%x", target);
+
+ return ss.str();
+ }
+ };
+
+ /**
+ * Base class for jumps (register-indirect control transfers). In
+ * the Alpha ISA, these are always unconditional.
+ */
+ class Jump : public PCDependentDisassembly
+ {
+ protected:
+
+ /// Displacement to target address (signed).
+ int32_t disp;
+
+ public:
+ /// Constructor
+ Jump(const char *mnem, MachInst _machInst, OpClass __opClass)
+ : PCDependentDisassembly(mnem, _machInst, __opClass),
+ disp(BRDISP)
+ {
+ }
+
+ std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
+ {
+ std::stringstream ss;
+
+ ccprintf(ss, "%-10s ", mnemonic);
+
+#ifdef SS_COMPATIBLE_DISASSEMBLY
+ if (_numDestRegs == 0) {
+ printReg(ss, 31);
+ ss << ",";
+ }
+#endif
+
+ if (_numDestRegs > 0) {
+ printReg(ss, _destRegIdx[0]);
+ ss << ",";
+ }
+
+ ccprintf(ss, "(r%d)", RB);
+
+ return ss.str();
+ }
+ };
+}};
+
+def template JumpOrBranchDecode {{
+ return (RA == 31)
+ ? (StaticInst<AlphaISA> *)new %(class_name)s(machInst)
+ : (StaticInst<AlphaISA> *)new %(class_name)sAndLink(machInst);
+}};
+
+def format CondBranch(code) {{
+ code = 'bool cond;\n' + code + '\nif (cond) NPC = NPC + disp;\n';
+ iop = InstObjParams(name, Name, 'Branch', CodeBlock(code),
+ ('IsDirectControl', 'IsCondControl'))
+ return iop.subst('BasicDeclare', 'BasicDecode')
+}};
+
+let {{
+global UncondCtrlBase
+def UncondCtrlBase(name, Name, base_class, npc_expr, flags):
+ # Declare basic control transfer w/o link (i.e. link reg is R31)
+ nolink_code = 'NPC = %s;\n' % npc_expr
+ nolink_iop = InstObjParams(name, Name, base_class,
+ CodeBlock(nolink_code), flags)
+ decls = nolink_iop.subst('BasicDeclare')
+
+ # Generate declaration of '*AndLink' version, append to decls
+ link_code = 'Ra = NPC & ~3;\n' + nolink_code
+ link_iop = InstObjParams(name, Name + 'AndLink', base_class,
+ CodeBlock(link_code), flags)
+ decls += link_iop.subst('BasicDeclare')
+
+ # need to use link_iop for the decode template since it is expecting
+ # the shorter version of class_name (w/o "AndLink")
+ return (decls, nolink_iop.subst('JumpOrBranchDecode'))
+}};
+
+def format UncondBranch(*flags) {{
+ flags += ('IsUncondControl', 'IsDirectControl')
+ return UncondCtrlBase(name, Name, 'Branch', 'NPC + disp', flags)
+}};
+
+def format Jump(*flags) {{
+ flags += ('IsUncondControl', 'IsIndirectControl')
+ return UncondCtrlBase(name, Name, 'Jump', '(Rb & ~3) | (NPC & 1)', flags)
+}};
+
+
+declare {{
+ /**
+ * Base class for emulated call_pal calls (used only in
+ * non-full-system mode).
+ */
+ class EmulatedCallPal : public AlphaStaticInst
+ {
+ protected:
+
+ /// Constructor.
+ EmulatedCallPal(const char *mnem, MachInst _machInst,
+ OpClass __opClass)
+ : AlphaStaticInst(mnem, _machInst, __opClass)
+ {
+ }
+
+ std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
+ {
+#ifdef SS_COMPATIBLE_DISASSEMBLY
+ return csprintf("%s %s", "call_pal", mnemonic);
+#else
+ return csprintf("%-10s %s", "call_pal", mnemonic);
+#endif
+ }
+ };
+}};
+
+def format EmulatedCallPal(code) {{
+ iop = InstObjParams(name, Name, 'EmulatedCallPal', CodeBlock(code))
+ return iop.subst('BasicDeclare', 'BasicDecode')
+}};
+
+declare {{
+ /**
+ * Base class for full-system-mode call_pal instructions.
+ * Probably could turn this into a leaf class and get rid of the
+ * parser template.
+ */
+ class CallPalBase : public AlphaStaticInst
+ {
+ protected:
+ int palFunc; ///< Function code part of instruction
+ int palOffset; ///< Target PC, offset from IPR_PAL_BASE
+
+ /// Constructor.
+ CallPalBase(const char *mnem, MachInst _machInst,
+ OpClass __opClass)
+ : AlphaStaticInst(mnem, _machInst, __opClass),
+ palFunc(PALFUNC)
+ {
+ int palPriv = ((machInst & 0x80) != 0);
+ int shortPalFunc = (machInst & 0x3f);
+ palOffset = 0x2001 + (palPriv << 12) + (shortPalFunc << 6);
+ }
+
+ std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
+ {
+ return csprintf("%-10s %#x", "call_pal", palFunc);
+ }
+ };
+}};
+
+
+def format CallPal(code) {{
+ iop = InstObjParams(name, Name, 'CallPalBase', CodeBlock(code))
+ return iop.subst('BasicDeclare', 'BasicDecode')
+}};
+
+//
+// hw_ld, hw_st
+//
+declare {{
+ /**
+ * Base class for hw_ld and hw_st.
+ */
+ class HwLoadStore : public AlphaStaticInst
+ {
+ protected:
+
+ /// Displacement for EA calculation (signed).
+ int16_t disp;
+ /// Memory request flags. See mem_req_base.hh.
+ unsigned memAccessFlags;
+
+ /// Constructor
+ HwLoadStore(const char *mnem, MachInst _machInst, OpClass __opClass)
+ : AlphaStaticInst(mnem, _machInst, __opClass), disp(HW_LDST_DISP)
+ {
+ memAccessFlags = 0;
+ if (HW_LDST_PHYS) memAccessFlags |= PHYSICAL;
+ if (HW_LDST_ALT) memAccessFlags |= ALTMODE;
+ if (HW_LDST_VPTE) memAccessFlags |= VPTE;
+ if (HW_LDST_LOCK) memAccessFlags |= LOCKED;
+ }
+
+ std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
+ {
+#ifdef SS_COMPATIBLE_DISASSEMBLY
+ return csprintf("%-10s r%d,%d(r%d)", mnemonic, RA, disp, RB);
+#else
+ // HW_LDST_LOCK and HW_LDST_COND are the same bit.
+ const char *lock_str =
+ (HW_LDST_LOCK) ? (flags[IsLoad] ? ",LOCK" : ",COND") : "";
+
+ return csprintf("%-10s r%d,%d(r%d)%s%s%s%s%s",
+ mnemonic, RA, disp, RB,
+ HW_LDST_PHYS ? ",PHYS" : "",
+ HW_LDST_ALT ? ",ALT" : "",
+ HW_LDST_QUAD ? ",QUAD" : "",
+ HW_LDST_VPTE ? ",VPTE" : "",
+ lock_str);
+#endif
+ }
+ };
+}};
+
+
+def format HwLoadStore(ea_code, memacc_code, class_ext, *flags) {{
+ return LoadStoreBase(name, Name + class_ext, ea_code, memacc_code,
+ flags = flags,
+ base_class = 'HwLoadStore')
+}};
+
+
+def format HwStoreCond(ea_code, memacc_code, postacc_code, class_ext, *flags) {{
+ return LoadStoreBase(name, Name + class_ext,
+ ea_code, memacc_code, postacc_code,
+ flags = flags,
+ base_class = 'HwLoadStore')
+}};
+
+
+declare {{
+ /**
+ * Base class for hw_mfpr and hw_mtpr.
+ */
+ class HwMoveIPR : public AlphaStaticInst
+ {
+ protected:
+ /// Index of internal processor register.
+ int ipr_index;
+
+ /// Constructor
+ HwMoveIPR(const char *mnem, MachInst _machInst, OpClass __opClass)
+ : AlphaStaticInst(mnem, _machInst, __opClass),
+ ipr_index(HW_IPR_IDX)
+ {
+ }
+
+ std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
+ {
+ if (_numSrcRegs > 0) {
+ // must be mtpr
+ return csprintf("%-10s r%d,IPR(%#x)",
+ mnemonic, RA, ipr_index);
+ }
+ else {
+ // must be mfpr
+ return csprintf("%-10s IPR(%#x),r%d",
+ mnemonic, ipr_index, RA);
+ }
+ }
+ };
+}};
+
+def format HwMoveIPR(code) {{
+ iop = InstObjParams(name, Name, 'HwMoveIPR', CodeBlock(code))
+ return iop.subst('BasicDeclare', 'BasicDecode')
+}};
+
+declare {{
+ /**
+ * Static instruction class for unimplemented instructions that
+ * cause simulator termination. Note that these are recognized
+ * (legal) instructions that the simulator does not support; the
+ * 'Unknown' class is used for unrecognized/illegal instructions.
+ * This is a leaf class.
+ */
+ class FailUnimplemented : public AlphaStaticInst
+ {
+ public:
+ /// Constructor
+ FailUnimplemented(const char *_mnemonic, MachInst _machInst)
+ : AlphaStaticInst(_mnemonic, _machInst, No_OpClass)
+ {
+ }
+
+ Fault execute(SimpleCPU *cpu, ExecContext *xc,
+ Trace::InstRecord *traceData)
+ {
+ panic("attempt to execute unimplemented instruction '%s' "
+ "(inst 0x%08x, opcode 0x%x)", mnemonic, machInst, OPCODE);
+ return Unimplemented_Opcode_Fault;
+ }
+
+ Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst,
+ Trace::InstRecord *traceData)
+ {
+ // don't panic if this is a misspeculated instruction
+ if (!xc->spec_mode)
+ panic("attempt to execute unimplemented instruction '%s' "
+ "(inst 0x%08x, opcode 0x%x)",
+ mnemonic, machInst, OPCODE);
+ return Unimplemented_Opcode_Fault;
+ }
+
+ std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
+ {
+ return csprintf("%-10s (unimplemented)", mnemonic);
+ }
+ };
+
+ /**
+ * Base class for unimplemented instructions that cause a warning
+ * to be printed (but do not terminate simulation). This
+ * implementation is a little screwy in that it will print a
+ * warning for each instance of a particular unimplemented machine
+ * instruction, not just for each unimplemented opcode. Should
+ * probably make the 'warned' flag a static member of the derived
+ * class.
+ */
+ class WarnUnimplemented : public AlphaStaticInst
+ {
+ private:
+ /// Have we warned on this instruction yet?
+ bool warned;
+
+ public:
+ /// Constructor
+ WarnUnimplemented(const char *_mnemonic, MachInst _machInst)
+ : AlphaStaticInst(_mnemonic, _machInst, No_OpClass), warned(false)
+ {
+ }
+
+ Fault execute(SimpleCPU *cpu, ExecContext *xc,
+ Trace::InstRecord *traceData)
+ {
+ if (!warned) {
+ warn("Warning: instruction '%s' unimplemented\n", mnemonic);
+ warned = true;
+ }
+
+ return No_Fault;
+ }
+
+ Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst,
+ Trace::InstRecord *traceData)
+ {
+ if (!xc->spec_mode && !warned) {
+ warn("Warning: instruction '%s' unimplemented\n", mnemonic);
+ warned = true;
+ }
+
+ return No_Fault;
+ }
+
+ std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
+ {
+#ifdef SS_COMPATIBLE_DISASSEMBLY
+ return csprintf("%-10s", mnemonic);
+#else
+ return csprintf("%-10s (unimplemented)", mnemonic);
+#endif
+ }
+ };
+}};
+
+def template WarnUnimplDeclare {{
+ /**
+ * Static instruction class for "%(mnemonic)s".
+ */
+ class %(class_name)s : public %(base_class)s
+ {
+ public:
+ /// Constructor
+ %(class_name)s(MachInst machInst)
+ : %(base_class)s("%(mnemonic)s", machInst)
+ {
+ }
+ };
+}};
+
+
+def format FailUnimpl() {{
+ iop = InstObjParams(name, 'FailUnimplemented')
+ return ('', iop.subst('BasicDecodeWithMnemonic'))
+}};
+
+def format WarnUnimpl() {{
+ iop = InstObjParams(name, Name, 'WarnUnimplemented')
+ return iop.subst('WarnUnimplDeclare', 'BasicDecode')
+}};
+
+declare {{
+ /**
+ * Static instruction class for unknown (illegal) instructions.
+ * These cause simulator termination if they are executed in a
+ * non-speculative mode. This is a leaf class.
+ */
+ class Unknown : public AlphaStaticInst
+ {
+ public:
+ /// Constructor
+ Unknown(MachInst _machInst)
+ : AlphaStaticInst("unknown", _machInst, No_OpClass)
+ {
+ }
+
+ Fault execute(SimpleCPU *cpu, ExecContext *xc,
+ Trace::InstRecord *traceData)
+ {
+ panic("attempt to execute unknown instruction "
+ "(inst 0x%08x, opcode 0x%x)", machInst, OPCODE);
+ return Unimplemented_Opcode_Fault;
+ }
+
+ Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst,
+ Trace::InstRecord *traceData)
+ {
+ // don't panic if this is a misspeculated instruction
+ if (!xc->spec_mode)
+ panic("attempt to execute unknown instruction "
+ "(inst 0x%08x, opcode 0x%x)", machInst, OPCODE);
+ return Unimplemented_Opcode_Fault;
+ }
+
+ std::string generateDisassembly(Addr pc, const SymbolTable *symtab)
+ {
+ return csprintf("%-10s (inst 0x%x, opcode 0x%x)",
+ "unknown", machInst, OPCODE);
+ }
+ };
+}};
+
+def format Unknown() {{
+ return ('', 'return new Unknown(machInst);\n')
+}};
+
+declare {{
+
+ /// Return opa + opb, summing carry into third arg.
+ inline uint64_t
+ addc(uint64_t opa, uint64_t opb, int &carry)
+ {
+ uint64_t res = opa + opb;
+ if (res < opa || res < opb)
+ ++carry;
+ return res;
+ }
+
+ /// Multiply two 64-bit values (opa * opb), returning the 128-bit
+ /// product in res_hi and res_lo.
+ void
+ mul128(uint64_t opa, uint64_t opb, uint64_t &res_hi, uint64_t &res_lo)
+ {
+ // do a 64x64 --> 128 multiply using four 32x32 --> 64 multiplies
+ uint64_t opa_hi = opa<63:32>;
+ uint64_t opa_lo = opa<31:0>;
+ uint64_t opb_hi = opb<63:32>;
+ uint64_t opb_lo = opb<31:0>;
+
+ res_lo = opa_lo * opb_lo;
+
+ // The middle partial products logically belong in bit
+ // positions 95 to 32. Thus the lower 32 bits of each product
+ // sum into the upper 32 bits of the low result, while the
+ // upper 32 sum into the low 32 bits of the upper result.
+ uint64_t partial1 = opa_hi * opb_lo;
+ uint64_t partial2 = opa_lo * opb_hi;
+
+ uint64_t partial1_lo = partial1<31:0> << 32;
+ uint64_t partial1_hi = partial1<63:32>;
+ uint64_t partial2_lo = partial2<31:0> << 32;
+ uint64_t partial2_hi = partial2<63:32>;
+
+ // Add partial1_lo and partial2_lo to res_lo, keeping track
+ // of any carries out
+ int carry_out = 0;
+ res_lo = addc(partial1_lo, res_lo, carry_out);
+ res_lo = addc(partial2_lo, res_lo, carry_out);
+
+ // Now calculate the high 64 bits...
+ res_hi = (opa_hi * opb_hi) + partial1_hi + partial2_hi + carry_out;
+ }
+
+ /// Map 8-bit S-floating exponent to 11-bit T-floating exponent.
+ /// See Table 2-2 of Alpha AHB.
+ inline int
+ map_s(int old_exp)
+ {
+ int hibit = old_exp<7:>;
+ int lobits = old_exp<6:0>;
+
+ if (hibit == 1) {
+ return (lobits == 0x7f) ? 0x7ff : (0x400 | lobits);
+ }
+ else {
+ return (lobits == 0) ? 0 : (0x380 | lobits);
+ }
+ }
+
+ /// Convert a 32-bit S-floating value to the equivalent 64-bit
+ /// representation to be stored in an FP reg.
+ inline uint64_t
+ s_to_t(uint32_t s_val)
+ {
+ uint64_t tmp = s_val;
+ return (tmp<31:> << 63 // sign bit
+ | (uint64_t)map_s(tmp<30:23>) << 52 // exponent
+ | tmp<22:0> << 29); // fraction
+ }
+
+ /// Convert a 64-bit T-floating value to the equivalent 32-bit
+ /// S-floating representation to be stored in memory.
+ inline int32_t
+ t_to_s(uint64_t t_val)
+ {
+ return (t_val<63:62> << 30 // sign bit & hi exp bit
+ | t_val<58:29>); // rest of exp & fraction
+ }
+}};
+
+decode OPCODE default Unknown::unknown() {
+
+ format LoadAddress {
+ 0x08: lda({{ Ra = Rb + disp; }});
+ 0x09: ldah({{ Ra = Rb + (disp << 16); }});
+ }
+
+ format LoadOrNop {
+ 0x0a: ldbu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.ub; }});
+ 0x0c: ldwu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uw; }});
+ 0x0b: ldq_u({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }});
+ 0x23: ldt({{ EA = Rb + disp; }}, {{ Fa = Mem.df; }});
+ 0x2a: ldl_l({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}, LOCKED);
+ 0x2b: ldq_l({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, LOCKED);
+ }
+
+ format LoadOrPrefetch {
+ 0x28: ldl({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }});
+ 0x29: ldq({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, EVICT_NEXT);
+ 0x22: lds({{ EA = Rb + disp; }}, {{ Fa.uq = s_to_t(Mem.ul); }},
+ PF_EXCLUSIVE);
+ }
+
+ format Store {
+ 0x0e: stb({{ EA = Rb + disp; }}, {{ Mem.ub = Ra<7:0>; }});
+ 0x0d: stw({{ EA = Rb + disp; }}, {{ Mem.uw = Ra<15:0>; }});
+ 0x2c: stl({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }});
+ 0x2d: stq({{ EA = Rb + disp; }}, {{ Mem.uq = Ra.uq; }});
+ 0x0f: stq_u({{ EA = (Rb + disp) & ~7; }}, {{ Mem.uq = Ra.uq; }});
+ 0x26: sts({{ EA = Rb + disp; }}, {{ Mem.ul = t_to_s(Fa.uq); }});
+ 0x27: stt({{ EA = Rb + disp; }}, {{ Mem.df = Fa; }});
+ }
+
+ format StoreCond {
+ 0x2e: stl_c({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }},
+ {{
+ uint64_t tmp = Mem_write_result;
+ Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
+ }}, LOCKED);
+ 0x2f: stq_c({{ EA = Rb + disp; }}, {{ Mem.uq = Ra; }},
+ {{
+ uint64_t tmp = Mem_write_result;
+ Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
+ }}, LOCKED);
+ }
+
+ format IntegerOperate {
+
+ 0x10: decode INTFUNC { // integer arithmetic operations
+
+ 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }});
+ 0x40: addlv({{
+ uint32_t tmp = Ra.sl + Rb_or_imm.sl;
+ // signed overflow occurs when operands have same sign
+ // and sign of result does not match.
+ if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
+ fault = Integer_Overflow_Fault;
+ Rc.sl = tmp;
+ }});
+ 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }});
+ 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }});
+
+ 0x20: addq({{ Rc = Ra + Rb_or_imm; }});
+ 0x60: addqv({{
+ uint64_t tmp = Ra + Rb_or_imm;
+ // signed overflow occurs when operands have same sign
+ // and sign of result does not match.
+ if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
+ fault = Integer_Overflow_Fault;
+ Rc = tmp;
+ }});
+ 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }});
+ 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }});
+
+ 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }});
+ 0x49: sublv({{
+ uint32_t tmp = Ra.sl - Rb_or_imm.sl;
+ // signed overflow detection is same as for add,
+ // except we need to look at the *complemented*
+ // sign bit of the subtrahend (Rb), i.e., if the initial
+ // signs are the *same* then no overflow can occur
+ if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
+ fault = Integer_Overflow_Fault;
+ Rc.sl = tmp;
+ }});
+ 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }});
+ 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }});
+
+ 0x29: subq({{ Rc = Ra - Rb_or_imm; }});
+ 0x69: subqv({{
+ uint64_t tmp = Ra - Rb_or_imm;
+ // signed overflow detection is same as for add,
+ // except we need to look at the *complemented*
+ // sign bit of the subtrahend (Rb), i.e., if the initial
+ // signs are the *same* then no overflow can occur
+ if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
+ fault = Integer_Overflow_Fault;
+ Rc = tmp;
+ }});
+ 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }});
+ 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }});
+
+ 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }});
+ 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }});
+ 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }});
+ 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }});
+ 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }});
+
+ 0x0f: cmpbge({{
+ int hi = 7;
+ int lo = 0;
+ uint64_t tmp = 0;
+ for (int i = 0; i < 8; ++i) {
+ tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i;
+ hi += 8;
+ lo += 8;
+ }
+ Rc = tmp;
+ }});
+ }
+
+ 0x11: decode INTFUNC { // integer logical operations
+
+ 0x00: and({{ Rc = Ra & Rb_or_imm; }});
+ 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }});
+ 0x20: bis({{ Rc = Ra | Rb_or_imm; }});
+ 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }});
+ 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }});
+ 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }});
+
+ // conditional moves
+ 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }});
+ 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }});
+ 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }});
+ 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }});
+ 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }});
+ 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }});
+ 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }});
+ 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }});
+
+ // For AMASK, RA must be R31.
+ 0x61: decode RA {
+ 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }});
+ }
+
+ // For IMPLVER, RA must be R31 and the B operand
+ // must be the immediate value 1.
+ 0x6c: decode RA {
+ 31: decode IMM {
+ 1: decode INTIMM {
+ // return EV5 for FULL_SYSTEM and EV6 otherwise
+ 1: implver({{
+#ifdef FULL_SYSTEM
+ Rc = 1;
+#else
+ Rc = 2;
+#endif
+ }});
+ }
+ }
+ }
+
+#ifdef FULL_SYSTEM
+ // The mysterious 11.25...
+ 0x25: WarnUnimpl::eleven25();
+#endif
+ }
+
+ 0x12: decode INTFUNC {
+ 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }});
+ 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }});
+ 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }});
+
+ 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }});
+ 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }});
+ 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }});
+ 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }});
+
+ 0x52: mskwh({{
+ int bv = Rb_or_imm<2:0>;
+ Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra;
+ }});
+ 0x62: msklh({{
+ int bv = Rb_or_imm<2:0>;
+ Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra;
+ }});
+ 0x72: mskqh({{
+ int bv = Rb_or_imm<2:0>;
+ Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra;
+ }});
+
+ 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }});
+ 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }});
+ 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }});
+ 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }});
+
+ 0x5a: extwh({{
+ Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }});
+ 0x6a: extlh({{
+ Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }});
+ 0x7a: extqh({{
+ Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }});
+
+ 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }});
+ 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }});
+ 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }});
+ 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }});
+
+ 0x57: inswh({{
+ int bv = Rb_or_imm<2:0>;
+ Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0;
+ }});
+ 0x67: inslh({{
+ int bv = Rb_or_imm<2:0>;
+ Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0;
+ }});
+ 0x77: insqh({{
+ int bv = Rb_or_imm<2:0>;
+ Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0;
+ }});
+
+ 0x30: zap({{
+ uint64_t zapmask = 0;
+ for (int i = 0; i < 8; ++i) {
+ if (Rb_or_imm<i:>)
+ zapmask |= (mask(8) << (i * 8));
+ }
+ Rc = Ra & ~zapmask;
+ }});
+ 0x31: zapnot({{
+ uint64_t zapmask = 0;
+ for (int i = 0; i < 8; ++i) {
+ if (!Rb_or_imm<i:>)
+ zapmask |= (mask(8) << (i * 8));
+ }
+ Rc = Ra & ~zapmask;
+ }});
+ }
+
+ 0x13: decode INTFUNC { // integer multiplies
+ 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMULT);
+ 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMULT);
+ 0x30: umulh({{
+ uint64_t hi, lo;
+ mul128(Ra, Rb_or_imm, hi, lo);
+ Rc = hi;
+ }}, IntMULT);
+ 0x40: mullv({{
+ // 32-bit multiply with trap on overflow
+ int64_t Rax = Ra.sl; // sign extended version of Ra.sl
+ int64_t Rbx = Rb_or_imm.sl;
+ int64_t tmp = Rax * Rbx;
+ // To avoid overflow, all the upper 32 bits must match
+ // the sign bit of the lower 32. We code this as
+ // checking the upper 33 bits for all 0s or all 1s.
+ uint64_t sign_bits = tmp<63:31>;
+ if (sign_bits != 0 && sign_bits != mask(33))
+ fault = Integer_Overflow_Fault;
+ Rc.sl = tmp<31:0>;
+ }}, IntMULT);
+ 0x60: mulqv({{
+ // 64-bit multiply with trap on overflow
+ uint64_t hi, lo;
+ mul128(Ra, Rb_or_imm, hi, lo);
+ // all the upper 64 bits must match the sign bit of
+ // the lower 64
+ if (!((hi == 0 && lo<63:> == 0) ||
+ (hi == mask(64) && lo<63:> == 1)))
+ fault = Integer_Overflow_Fault;
+ Rc = lo;
+ }}, IntMULT);
+ }
+
+ 0x1c: decode INTFUNC {
+ 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); }
+ 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); }
+
+ format FailUnimpl {
+ 0x30: ctpop();
+ 0x31: perr();
+ 0x32: ctlz();
+ 0x33: cttz();
+ 0x34: unpkbw();
+ 0x35: unpkbl();
+ 0x36: pkwb();
+ 0x37: pklb();
+ 0x38: minsb8();
+ 0x39: minsw4();
+ 0x3a: minub8();
+ 0x3b: minuw4();
+ 0x3c: maxub8();
+ 0x3d: maxuw4();
+ 0x3e: maxsb8();
+ 0x3f: maxsw4();
+ }
+
+ format BasicOperateWithNopCheck {
+ 0x70: decode RB {
+ 31: ftoit({{ Rc = Fa.uq; }}, FloatCVT);
+ }
+ 0x78: decode RB {
+ 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }},
+ FloatCVT);
+ }
+ }
+ }
+ }
+
+ // Conditional branches.
+ format CondBranch {
+ 0x39: beq({{ cond = (Ra == 0); }});
+ 0x3d: bne({{ cond = (Ra != 0); }});
+ 0x3e: bge({{ cond = (Ra.sq >= 0); }});
+ 0x3f: bgt({{ cond = (Ra.sq > 0); }});
+ 0x3b: ble({{ cond = (Ra.sq <= 0); }});
+ 0x3a: blt({{ cond = (Ra.sq < 0); }});
+ 0x38: blbc({{ cond = ((Ra & 1) == 0); }});
+ 0x3c: blbs({{ cond = ((Ra & 1) == 1); }});
+
+ 0x31: fbeq({{ cond = (Fa == 0); }});
+ 0x35: fbne({{ cond = (Fa != 0); }});
+ 0x36: fbge({{ cond = (Fa >= 0); }});
+ 0x37: fbgt({{ cond = (Fa > 0); }});
+ 0x33: fble({{ cond = (Fa <= 0); }});
+ 0x32: fblt({{ cond = (Fa < 0); }});
+ }
+
+ // unconditional branches
+ format UncondBranch {
+ 0x30: br();
+ 0x34: bsr(IsCall);
+ }
+
+ // indirect branches
+ 0x1a: decode JMPFUNC {
+ format Jump {
+ 0: jmp();
+ 1: jsr(IsCall);
+ 2: ret(IsReturn);
+ 3: jsr_coroutine(IsCall, IsReturn);
+ }
+ }
+
+ // IEEE floating point
+ 0x14: decode FP_SHORTFUNC {
+ // Integer to FP register moves must have RB == 31
+ 0x4: decode RB {
+ 31: decode FP_FULLFUNC {
+ format BasicOperateWithNopCheck {
+ 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCVT);
+ 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCVT);
+ 0x014: FailUnimpl::itoff(); // VAX-format conversion
+ }
+ }
+ }
+
+ // Square root instructions must have FA == 31
+ 0xb: decode FA {
+ 31: decode FP_TYPEFUNC {
+ format FloatingPointOperate {
+#ifdef SS_COMPATIBLE_FP
+ 0x0b: sqrts({{
+ if (Fb < 0.0)
+ fault = Arithmetic_Fault;
+ Fc = sqrt(Fb);
+ }}, FloatSQRT);
+#else
+ 0x0b: sqrts({{
+ if (Fb.sf < 0.0)
+ fault = Arithmetic_Fault;
+ Fc.sf = sqrt(Fb.sf);
+ }}, FloatSQRT);
+#endif
+ 0x2b: sqrtt({{
+ if (Fb < 0.0)
+ fault = Arithmetic_Fault;
+ Fc = sqrt(Fb);
+ }}, FloatSQRT);
+ }
+ }
+ }
+
+ // VAX-format sqrtf and sqrtg are not implemented
+ 0xa: FailUnimpl::sqrtfg();
+ }
+
+ // IEEE floating point
+ 0x16: decode FP_SHORTFUNC_TOP2 {
+ // The top two bits of the short function code break this space
+ // into four groups: binary ops, compares, reserved, and conversions.
+ // See Table 4-12 of AHB.
+ // Most of these instructions may have various trapping and
+ // rounding mode flags set; these are decoded in the
+ // FloatingPointDecode template used by the
+ // FloatingPointOperate format.
+
+ // add/sub/mul/div: just decode on the short function code
+ // and source type.
+ 0: decode FP_TYPEFUNC {
+ format FloatingPointOperate {
+#ifdef SS_COMPATIBLE_FP
+ 0x00: adds({{ Fc = Fa + Fb; }});
+ 0x01: subs({{ Fc = Fa - Fb; }});
+ 0x02: muls({{ Fc = Fa * Fb; }}, FloatMULT);
+ 0x03: divs({{ Fc = Fa / Fb; }}, FloatDIV);
+#else
+ 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }});
+ 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }});
+ 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMULT);
+ 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDIV);
+#endif
+
+ 0x20: addt({{ Fc = Fa + Fb; }});
+ 0x21: subt({{ Fc = Fa - Fb; }});
+ 0x22: mult({{ Fc = Fa * Fb; }}, FloatMULT);
+ 0x23: divt({{ Fc = Fa / Fb; }}, FloatDIV);
+ }
+ }
+
+ // Floating-point compare instructions must have the default
+ // rounding mode, and may use the default trapping mode or
+ // /SU. Both trapping modes are treated the same by M5; the
+ // only difference on the real hardware (as far a I can tell)
+ // is that without /SU you'd get an imprecise trap if you
+ // tried to compare a NaN with something else (instead of an
+ // "unordered" result).
+ 1: decode FP_FULLFUNC {
+ format BasicOperateWithNopCheck {
+ 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }},
+ FloatCMP);
+ 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }},
+ FloatCMP);
+ 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }},
+ FloatCMP);
+ 0x0a4, 0x5a4: cmptun({{ // unordered
+ Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0;
+ }}, FloatCMP);
+ }
+ }
+
+ // The FP-to-integer and integer-to-FP conversion insts
+ // require that FA be 31.
+ 3: decode FA {
+ 31: decode FP_TYPEFUNC {
+ format FloatingPointOperate {
+ 0x2f: cvttq({{ Fc.sq = (int64_t)rint(Fb); }});
+
+ // The cvtts opcode is overloaded to be cvtst if the trap
+ // mode is 2 or 6 (which are not valid otherwise)
+ 0x2c: decode FP_FULLFUNC {
+ format BasicOperateWithNopCheck {
+ // trap on denorm version "cvtst/s" is
+ // simulated same as cvtst
+ 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }});
+ }
+ default: cvtts({{ Fc.sf = Fb; }});
+ }
+
+ // The trapping mode for integer-to-FP conversions
+ // must be /SUI or nothing; /U and /SU are not
+ // allowed. The full set of rounding modes are
+ // supported though.
+ 0x3c: decode FP_TRAPMODE {
+ 0,7: cvtqs({{ Fc.sf = Fb.sq; }});
+ }
+ 0x3e: decode FP_TRAPMODE {
+ 0,7: cvtqt({{ Fc = Fb.sq; }});
+ }
+ }
+ }
+ }
+ }
+
+ // misc FP operate
+ 0x17: decode FP_FULLFUNC {
+ format BasicOperateWithNopCheck {
+ 0x010: cvtlq({{
+ Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>;
+ }});
+ 0x030: cvtql({{
+ Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
+ }});
+
+ // We treat the precise & imprecise trapping versions of
+ // cvtql identically.
+ 0x130, 0x530: cvtqlv({{
+ // To avoid overflow, all the upper 32 bits must match
+ // the sign bit of the lower 32. We code this as
+ // checking the upper 33 bits for all 0s or all 1s.
+ uint64_t sign_bits = Fb.uq<63:31>;
+ if (sign_bits != 0 && sign_bits != mask(33))
+ fault = Integer_Overflow_Fault;
+ Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
+ }});
+
+ 0x020: cpys({{ // copy sign
+ Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>;
+ }});
+ 0x021: cpysn({{ // copy sign negated
+ Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>;
+ }});
+ 0x022: cpyse({{ // copy sign and exponent
+ Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>;
+ }});
+
+ 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }});
+ 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }});
+ 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }});
+ 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }});
+ 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }});
+ 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }});
+
+ 0x024: mt_fpcr({{ FPCR = Fa.uq; }});
+ 0x025: mf_fpcr({{ Fa.uq = FPCR; }});
+ }
+ }
+
+ // miscellaneous mem-format ops
+ 0x18: decode MEMFUNC {
+ format WarnUnimpl {
+ 0x0000: trapb();
+ 0x0400: excb();
+ 0x4000: mb();
+ 0x4400: wmb();
+ 0x8000: fetch();
+ 0xa000: fetch_m();
+ 0xe800: ecb();
+ }
+
+ format MiscPrefetch {
+ 0xf800: wh64({{ EA = Rb; }},
+ {{ memAccessObj->writeHint(EA, 64); }},
+ IsMemRef, IsStore, WrPort);
+ }
+
+ format BasicOperate {
+ 0xc000: rpcc({{ Ra = curTick; }});
+ }
+
+#ifdef FULL_SYSTEM
+ format BasicOperate {
+ 0xe000: rc({{
+ Ra = xc->regs.intrflag;
+ xc->regs.intrflag = 0;
+ }}, No_OpClass);
+ 0xf000: rs({{
+ Ra = xc->regs.intrflag;
+ xc->regs.intrflag = 1;
+ }}, No_OpClass);
+ }
+#else
+ format FailUnimpl {
+ 0xe000: rc();
+ 0xf000: rs();
+ }
+#endif
+ }
+
+#ifdef FULL_SYSTEM
+ 0x00: CallPal::call_pal({{
+ // check to see if simulator wants to do something special
+ // on this PAL call (including maybe suppress it)
+ bool dopal = xc->simPalCheck(palFunc);
+
+ Annotate::Callpal(xc, palFunc);
+
+ if (dopal) {
+ if (!xc->misspeculating()) {
+ AlphaISA::swap_palshadow(&xc->regs, true);
+ }
+ xc->setIpr(AlphaISA::IPR_EXC_ADDR, NPC);
+ NPC = xc->readIpr(AlphaISA::IPR_PAL_BASE, fault) + palOffset;
+ }
+ }});
+#else
+ 0x00: decode PALFUNC {
+ format EmulatedCallPal {
+ 0x83: callsys({{ xc->syscall(); }});
+ // Read uniq reg into ABI return value register (r0)
+ 0x9e: rduniq({{ R0 = Runiq; }});
+ // Write uniq reg with value from ABI arg register (r16)
+ 0x9f: wruniq({{ Runiq = R16; }});
+ }
+ }
+#endif
+
+#ifdef FULL_SYSTEM
+ format HwLoadStore {
+ 0x1b: decode HW_LDST_QUAD {
+ 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L);
+ 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q);
+ }
+
+ 0x1f: decode HW_LDST_COND {
+ 0: decode HW_LDST_QUAD {
+ 0: hw_st({{ EA = (Rb + disp) & ~3; }},
+ {{ Mem.ul = Ra<31:0>; }}, L);
+ 1: hw_st({{ EA = (Rb + disp) & ~7; }},
+ {{ Mem.uq = Ra.uq; }}, Q);
+ }
+
+ 1: FailUnimpl::hw_st_cond();
+ }
+ }
+
+ format BasicOperate {
+ 0x1e: hw_rei({{ xc->hwrei(); }});
+
+ // M5 special opcodes use the reserved 0x01 opcode space
+ 0x01: decode M5FUNC {
+ 0x00: arm({{
+ Annotate::ARM(xc);
+ xc->kernelStats.arm();
+ }});
+ 0x01: quiesce({{
+ Annotate::QUIESCE(xc);
+ xc->setStatus(ExecContext::Suspended);
+ xc->kernelStats.quiesce();
+ }});
+ 0x10: ivlb({{
+ Annotate::BeginInterval(xc);
+ xc->kernelStats.ivlb();
+ }}, No_OpClass);
+ 0x11: ivle({{ Annotate::EndInterval(xc); }}, No_OpClass);
+ 0x20: m5exit({{
+ if (!xc->misspeculating())
+ m5_exit();
+ }}, No_OpClass);
+ }
+ }
+
+ format HwMoveIPR {
+ 0x19: hw_mfpr({{
+ // this instruction is only valid in PAL mode
+ if (!PC_PAL(xc->regs.pc)) {
+ fault = Unimplemented_Opcode_Fault;
+ }
+ else {
+ Ra = xc->readIpr(ipr_index, fault);
+ }
+ }});
+ 0x1d: hw_mtpr({{
+ // this instruction is only valid in PAL mode
+ if (!PC_PAL(xc->regs.pc)) {
+ fault = Unimplemented_Opcode_Fault;
+ }
+ else {
+ xc->setIpr(ipr_index, Ra);
+ if (traceData) { traceData->setData(Ra); }
+ }
+ }});
+ }
+#endif
+}