diff options
Diffstat (limited to 'arch/alpha/isa_desc')
-rw-r--r-- | arch/alpha/isa_desc | 2427 |
1 files changed, 2427 insertions, 0 deletions
diff --git a/arch/alpha/isa_desc b/arch/alpha/isa_desc new file mode 100644 index 000000000..e6ac01f28 --- /dev/null +++ b/arch/alpha/isa_desc @@ -0,0 +1,2427 @@ +// -*- mode:c++ -*- +// +// Alpha ISA description file. +// + +let {{ + global rcs_id + rcs_id = "$Id$" +}}; + + +#include <sstream> +#include <iostream> +#include <iomanip> + +#include <math.h> +#if defined(linux) +#include <fenv.h> +#endif + +#include "static_inst.hh" +#include "cprintf.hh" +#include "misc.hh" +#include "op_class.hh" + +#include "exec_context.hh" +#include "simple_cpu.hh" +#include "spec_state.hh" +#include "cpu.hh" +#include "exetrace.hh" +#include "annotation.hh" + +#ifdef FULL_SYSTEM +#include "ev5.hh" +#endif + +namespace AlphaISA; + +// Universal (format-independent) fields +def bitfield OPCODE <31:26>; +def bitfield RA <25:21>; +def bitfield RB <20:16>; + +// Memory format +def signed bitfield MEMDISP <15: 0>; // displacement +def bitfield MEMFUNC <15: 0>; // function code (same field, unsigned) + +// Memory-format jumps +def bitfield JMPFUNC <15:14>; // function code (disp<15:14>) +def bitfield JMPHINT <13: 0>; // tgt Icache idx hint (disp<13:0>) + +// Branch format +def signed bitfield BRDISP <20: 0>; // displacement + +// Integer operate format(s>; +def bitfield INTIMM <20:13>; // integer immediate (literal) +def bitfield IMM <12:12>; // immediate flag +def bitfield INTFUNC <11: 5>; // function code +def bitfield RC < 4: 0>; // dest reg + +// Floating-point operate format +def bitfield FA <25:21>; +def bitfield FB <20:16>; +def bitfield FP_FULLFUNC <15: 5>; // complete function code + def bitfield FP_TRAPMODE <15:13>; // trapping mode + def bitfield FP_ROUNDMODE <12:11>; // rounding mode + def bitfield FP_TYPEFUNC <10: 5>; // type+func: handiest for decoding + def bitfield FP_SRCTYPE <10: 9>; // source reg type + def bitfield FP_SHORTFUNC < 8: 5>; // short function code + def bitfield FP_SHORTFUNC_TOP2 <8:7>; // top 2 bits of short func code +def bitfield FC < 4: 0>; // dest reg + +// PALcode format +def bitfield PALFUNC <25: 0>; // function code + +// EV5 PAL instructions: +// HW_LD/HW_ST +def bitfield HW_LDST_PHYS <15>; // address is physical +def bitfield HW_LDST_ALT <14>; // use ALT_MODE IPR +def bitfield HW_LDST_WRTCK <13>; // HW_LD only: fault if no write acc +def bitfield HW_LDST_QUAD <12>; // size: 0=32b, 1=64b +def bitfield HW_LDST_VPTE <11>; // HW_LD only: is PTE fetch +def bitfield HW_LDST_LOCK <10>; // HW_LD only: is load locked +def bitfield HW_LDST_COND <10>; // HW_ST only: is store conditional +def signed bitfield HW_LDST_DISP <9:0>; // signed displacement + +// HW_REI +def bitfield HW_REI_TYP <15:14>; // type: stalling vs. non-stallingk +def bitfield HW_REI_MBZ <13: 0>; // must be zero + +// HW_MTPR/MW_MFPR +def bitfield HW_IPR_IDX <15:0>; // IPR index + +// M5 instructions +def bitfield M5FUNC <7:0>; + +let {{ + global operandTypeMap + operandTypeMap = { + 'sb' : ('signed int', 8), + 'ub' : ('unsigned int', 8), + 'sw' : ('signed int', 16), + 'uw' : ('unsigned int', 16), + 'sl' : ('signed int', 32), + 'ul' : ('unsigned int', 32), + 'sq' : ('signed int', 64), + 'uq' : ('unsigned int', 64), + 'sf' : ('float', 32), + 'df' : ('float', 64) + } + + global operandTraitsMap + operandTraitsMap = { + # Int regs default to unsigned, but code should not count on this. + # For clarity, descriptions that depend on unsigned behavior should + # explicitly specify '.uq'. + 'Ra': IntRegOperandTraits('uq', 'RA', 'IsInteger', 1), + 'Rb': IntRegOperandTraits('uq', 'RB', 'IsInteger', 2), + 'Rc': IntRegOperandTraits('uq', 'RC', 'IsInteger', 3), + 'Fa': FloatRegOperandTraits('df', 'FA', 'IsFloating', 1), + 'Fb': FloatRegOperandTraits('df', 'FB', 'IsFloating', 2), + 'Fc': FloatRegOperandTraits('df', 'FC', 'IsFloating', 3), + 'Mem': MemOperandTraits('uq', None, + ('IsMemRef', 'IsLoad', 'IsStore'), 4), + 'NPC': NPCOperandTraits('uq', None, ( None, None, 'IsControl' ), 4), + 'Runiq': ControlRegOperandTraits('uq', 'Uniq', None, 1), + 'FPCR': ControlRegOperandTraits('uq', 'Fpcr', None, 1), + # The next two are hacks for non-full-system call-pal emulation + 'R0': IntRegOperandTraits('uq', '0', None, 1), + 'R16': IntRegOperandTraits('uq', '16', None, 1), + } + + defineDerivedOperandVars() +}}; + +declare {{ +// just temporary, while comparing with old code for debugging +// #define SS_COMPATIBLE_DISASSEMBLY + + /// Check "FP enabled" machine status bit. Called when executing any FP + /// instruction in full-system mode. + /// @retval Full-system mode: No_Fault if FP is enabled, Fen_Fault + /// if not. Non-full-system mode: always returns No_Fault. +#ifdef FULL_SYSTEM + inline Fault checkFpEnableFault(ExecContext *xc) + { + Fault fault = No_Fault; // dummy... this ipr access should not fault + if (!ICSR_FPE(xc->readIpr(AlphaISA::IPR_ICSR, fault))) { + fault = Fen_Fault; + } + return fault; + } +#else + inline Fault checkFpEnableFault(ExecContext *xc) + { + return No_Fault; + } +#endif + + /** + * Base class for all Alpha static instructions. + */ + class AlphaStaticInst : public StaticInst<AlphaISA> + { + protected: + + /// Make AlphaISA register dependence tags directly visible in + /// this class and derived classes. Maybe these should really + /// live here and not in the AlphaISA namespace. + enum DependenceTags { + FP_Base_DepTag = AlphaISA::FP_Base_DepTag, + Fpcr_DepTag = AlphaISA::Fpcr_DepTag, + Uniq_DepTag = AlphaISA::Uniq_DepTag, + IPR_Base_DepTag = AlphaISA::IPR_Base_DepTag + }; + + /// Constructor. + AlphaStaticInst(const char *mnem, MachInst _machInst, + OpClass __opClass) + : StaticInst<AlphaISA>(mnem, _machInst, __opClass) + { + } + + /// Print a register name for disassembly given the unique + /// dependence tag number (FP or int). + void printReg(std::ostream &os, int reg) + { + if (reg < FP_Base_DepTag) { + ccprintf(os, "r%d", reg); + } + else { + ccprintf(os, "f%d", reg - FP_Base_DepTag); + } + } + + std::string generateDisassembly(Addr pc, const SymbolTable *symtab) + { + std::stringstream ss; + + ccprintf(ss, "%-10s ", mnemonic); + + // just print the first two source regs... if there's + // a third one, it's a read-modify-write dest (Rc), + // e.g. for CMOVxx + if (_numSrcRegs > 0) { + printReg(ss, _srcRegIdx[0]); + } + if (_numSrcRegs > 1) { + ss << ","; + printReg(ss, _srcRegIdx[1]); + } + + // just print the first dest... if there's a second one, + // it's generally implicit + if (_numDestRegs > 0) { + if (_numSrcRegs > 0) + ss << ","; + printReg(ss, _destRegIdx[0]); + } + + return ss.str(); + } + }; +}}; + + +def template BasicDeclare {{ + /** + * Static instruction class for "%(mnemonic)s". + */ + class %(class_name)s : public %(base_class)s + { + public: + /// Constructor. + %(class_name)s(MachInst machInst) + : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s) + { + %(constructor)s; + } + + Fault execute(SimpleCPU *cpu, ExecContext *xc, + Trace::InstRecord *traceData) + { + SimpleCPU *memAccessObj __attribute__((unused)) = cpu; + Fault fault = No_Fault; + + %(fp_enable_check)s; + %(exec_decl)s; + %(simple_rd)s; + %(code)s; + + if (fault == No_Fault) { + %(simple_wb)s; + } + + return fault; + } + + Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst, + Trace::InstRecord *traceData) + { + DynInst *memAccessObj __attribute__((unused)) = dynInst; + Fault fault = No_Fault; + + %(fp_enable_check)s; + %(exec_decl)s; + %(dtld_rd)s; + %(code)s; + + if (fault == No_Fault) { + %(dtld_wb)s; + } + + return fault; + } + }; +}}; + +def template BasicDecode {{ + return new %(class_name)s(machInst); +}}; + +def template BasicDecodeWithMnemonic {{ + return new %(class_name)s("%(mnemonic)s", machInst); +}}; + +// The most basic instruction format... used only for a few misc. insts +def format BasicOperate(code, *flags) {{ + iop = InstObjParams(name, Name, 'AlphaStaticInst', CodeBlock(code), flags) + return iop.subst('BasicDeclare', 'BasicDecode') +}}; + + + +//////////////////////////////////////////////////////////////////// + +declare {{ + /** + * Static instruction class for no-ops. This is a leaf class. + */ + class Nop : public AlphaStaticInst + { + /// Disassembly of original instruction. + const std::string originalDisassembly; + + public: + /// Constructor + Nop(const std::string _originalDisassembly, MachInst _machInst) + : AlphaStaticInst("nop", _machInst, No_OpClass), + originalDisassembly(_originalDisassembly) + { + flags[IsNop] = true; + } + + ~Nop() { } + + Fault execute(SimpleCPU *cpu, ExecContext *xc, + Trace::InstRecord *traceData) + { + return No_Fault; + } + + Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst, + Trace::InstRecord *traceData) + { + return No_Fault; + } + + std::string generateDisassembly(Addr pc, const SymbolTable *symtab) + { +#ifdef SS_COMPATIBLE_DISASSEMBLY + return originalDisassembly; +#else + return csprintf("%-10s (%s)", "nop", originalDisassembly); +#endif + } + }; + + /// Helper function for decoding nops. Substitute Nop object + /// for original inst passed in as arg (and delete latter). + inline + AlphaStaticInst * + makeNop(AlphaStaticInst *inst) + { + AlphaStaticInst *nop = new Nop(inst->disassemble(0), inst->machInst); + delete inst; + return nop; + } +}}; + +def format Nop() {{ + return ('', 'return new Nop("%s", machInst);\n' % name) +}}; + + +// integer & FP operate instructions use Rc as dest, so check for +// Rc == 31 to detect nops +def template OperateNopCheckDecode {{ + { + AlphaStaticInst *i = new %(class_name)s(machInst); + if (RC == 31) { + i = makeNop(i); + } + return i; + } +}}; + +// Like BasicOperate format, but generates NOP if RC/FC == 31 +def format BasicOperateWithNopCheck(code, *opt_args) {{ + iop = InstObjParams(name, Name, 'AlphaStaticInst', CodeBlock(code), + opt_args) + return iop.subst('BasicDeclare', 'OperateNopCheckDecode') +}}; + + +//////////////////////////////////////////////////////////////////// +// +// Integer operate instructions +// + +declare {{ + /** + * Base class for integer immediate instructions. + */ + class IntegerImm : public AlphaStaticInst + { + protected: + /// Immediate operand value (unsigned 8-bit int). + uint8_t imm; + + /// Constructor + IntegerImm(const char *mnem, MachInst _machInst, OpClass __opClass) + : AlphaStaticInst(mnem, _machInst, __opClass), imm(INTIMM) + { + } + + std::string generateDisassembly(Addr pc, const SymbolTable *symtab) + { + std::stringstream ss; + + ccprintf(ss, "%-10s ", mnemonic); + + // just print the first source reg... if there's + // a second one, it's a read-modify-write dest (Rc), + // e.g. for CMOVxx + if (_numSrcRegs > 0) { + printReg(ss, _srcRegIdx[0]); + ss << ","; + } + + ss << (int)imm; + + if (_numDestRegs > 0) { + ss << ","; + printReg(ss, _destRegIdx[0]); + } + + return ss.str(); + } + }; +}}; + +def template RegOrImmDecode {{ + { + AlphaStaticInst *i = + (IMM) ? (AlphaStaticInst *)new %(class_name)sImm(machInst) + : (AlphaStaticInst *)new %(class_name)s(machInst); + if (RC == 31) { + i = makeNop(i); + } + return i; + } +}}; + +// Primary format for integer operate instructions: +// - Generates both reg-reg and reg-imm versions if Rb_or_imm is used. +// - Generates NOP if RC == 31. +def format IntegerOperate(code, *opt_flags) {{ + # If the code block contains 'Rb_or_imm', we define two instructions, + # one using 'Rb' and one using 'imm', and have the decoder select + # the right one. + uses_imm = (code.find('Rb_or_imm') != -1) + if uses_imm: + orig_code = code + # base code is reg version: + # rewrite by substituting 'Rb' for 'Rb_or_imm' + code = re.sub(r'Rb_or_imm', 'Rb', orig_code) + # generate immediate version by substituting 'imm' + # note that imm takes no extenstion, so we extend + # the regexp to replace any extension as well + imm_code = re.sub(r'Rb_or_imm(\.\w+)?', 'imm', orig_code) + + # generate declaration for register version + cblk = CodeBlock(code) + iop = InstObjParams(name, Name, 'AlphaStaticInst', cblk, opt_flags) + decls = iop.subst('BasicDeclare') + + if uses_imm: + # append declaration for imm version + imm_cblk = CodeBlock(imm_code) + imm_iop = InstObjParams(name, Name + 'Imm', 'IntegerImm', imm_cblk, + opt_flags) + decls += imm_iop.subst('BasicDeclare') + # decode checks IMM bit to pick correct version + decode = iop.subst('RegOrImmDecode') + else: + # no imm version: just check for nop + decode = iop.subst('OperateNopCheckDecode') + + return (decls, decode) +}}; + + +//////////////////////////////////////////////////////////////////// +// +// Floating-point instructions +// +// Note that many FP-type instructions which do not support all the +// various rounding & trapping modes use the simpler format +// BasicOperateWithNopCheck. +// + +declare {{ + /** + * Base class for general floating-point instructions. Includes + * support for various Alpha rounding and trapping modes. Only FP + * instructions that require this support are derived from this + * class; the rest derive directly from AlphaStaticInst. + */ + class AlphaFP : public AlphaStaticInst + { + public: + /// Alpha FP rounding modes. + enum RoundingMode { + Chopped = 0, ///< round toward zero + Minus_Infinity = 1, ///< round toward minus infinity + Normal = 2, ///< round to nearest (default) + Dynamic = 3, ///< use FPCR setting (in instruction) + Plus_Infinity = 3 ///< round to plus inifinity (in FPCR) + }; + + /// Alpha FP trapping modes. + /// For instructions that produce integer results, the + /// "Underflow Enable" modes really mean "Overflow Enable", and + /// the assembly modifier is V rather than U. + enum TrappingMode { + /// default: nothing enabled + Imprecise = 0, ///< no modifier + /// underflow/overflow traps enabled, inexact disabled + Underflow_Imprecise = 1, ///< /U or /V + Underflow_Precise = 5, ///< /SU or /SV + /// underflow/overflow and inexact traps enabled + Underflow_Inexact_Precise = 7 ///< /SUI or /SVI + }; + + protected: +#if defined(linux) + static const int alphaToC99RoundingMode[]; +#endif + + /// Map enum RoundingMode values to disassembly suffixes. + static const char *roundingModeSuffix[]; + /// Map enum TrappingMode values to FP disassembly suffixes. + static const char *fpTrappingModeSuffix[]; + /// Map enum TrappingMode values to integer disassembly suffixes. + static const char *intTrappingModeSuffix[]; + + /// This instruction's rounding mode. + RoundingMode roundingMode; + /// This instruction's trapping mode. + TrappingMode trappingMode; + + /// Constructor + AlphaFP(const char *mnem, MachInst _machInst, OpClass __opClass) + : AlphaStaticInst(mnem, _machInst, __opClass), + roundingMode((enum RoundingMode)FP_ROUNDMODE), + trappingMode((enum TrappingMode)FP_TRAPMODE) + { + if (trappingMode != Imprecise) { + warn("Warning: precise FP traps unimplemented\n"); + } + } + +#if defined(linux) + int + getC99RoundingMode(ExecContext *xc) + { + if (roundingMode == Dynamic) { + return alphaToC99RoundingMode[bits(xc->readFpcr(), 59, 58)]; + } + else { + return alphaToC99RoundingMode[roundingMode]; + } + } +#endif + + // This differs from the AlphaStaticInst version only in + // printing suffixes for non-default rounding & trapping modes. + std::string generateDisassembly(Addr pc, const SymbolTable *symtab) + { + std::string mnem_str(mnemonic); + + mnem_str += ((_destRegIdx[0] >= FP_Base_DepTag) + ? fpTrappingModeSuffix[trappingMode] + : intTrappingModeSuffix[trappingMode]); + mnem_str += roundingModeSuffix[roundingMode]; + + std::stringstream ss; + + ccprintf(ss, "%-10s ", mnem_str.c_str()); + + // just print the first two source regs... if there's + // a third one, it's a read-modify-write dest (Rc), + // e.g. for CMOVxx + if (_numSrcRegs > 0) { + printReg(ss, _srcRegIdx[0]); + } + if (_numSrcRegs > 1) { + ss << ","; + printReg(ss, _srcRegIdx[1]); + } + + // just print the first dest... if there's a second one, + // it's generally implicit + if (_numDestRegs > 0) { + if (_numSrcRegs > 0) + ss << ","; + printReg(ss, _destRegIdx[0]); + } + + return ss.str(); + } + }; + +#if defined(linux) + const int AlphaFP::alphaToC99RoundingMode[] = { + FE_TOWARDZERO, // Chopped + FE_DOWNWARD, // Minus_Infinity + FE_TONEAREST, // Normal + FE_UPWARD // Dynamic in inst, Plus_Infinity in FPCR + }; +#endif + + const char *AlphaFP::roundingModeSuffix[] = { "c", "m", "", "d" }; + // mark invalid trapping modes, but don't fail on them, because + // you could decode anything on a misspeculated path + const char *AlphaFP::fpTrappingModeSuffix[] = + { "", "u", "INVTM2", "INVTM3", "INVTM4", "su", "INVTM6", "sui" }; + const char *AlphaFP::intTrappingModeSuffix[] = + { "", "v", "INVTM2", "INVTM3", "INVTM4", "sv", "INVTM6", "svi" }; +}}; + + +def template FloatingPointDeclare {{ + /** + * "Fast" static instruction class for "%(mnemonic)s" (imprecise + * trapping mode, normal rounding mode). + */ + class %(class_name)sFast : public %(base_class)s + { + public: + /// Constructor. + %(class_name)sFast(MachInst machInst) + : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s) + { + %(constructor)s; + } + + Fault execute(SimpleCPU *cpu, ExecContext *xc, + Trace::InstRecord *traceData) + { + Fault fault = No_Fault; + + %(fp_enable_check)s; + %(exec_decl)s; + %(simple_rd)s; + %(code)s; + + if (fault == No_Fault) { + %(simple_wb)s; + } + + return fault; + } + + Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst, + Trace::InstRecord *traceData) + { + Fault fault = No_Fault; + + %(fp_enable_check)s; + %(exec_decl)s; + %(dtld_rd)s; + %(code)s; + + if (fault == No_Fault) { + %(dtld_wb)s; + } + + return fault; + } + }; + + /** + * General static instruction class for "%(mnemonic)s". Supports + * all the various rounding and trapping modes. + */ + class %(class_name)sGeneral : public %(base_class)s + { + public: + /// Constructor. + %(class_name)sGeneral(MachInst machInst) + : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s) + { + %(constructor)s; + } + + Fault execute(SimpleCPU *cpu, ExecContext *xc, + Trace::InstRecord *traceData) + { + Fault fault = No_Fault; + + %(fp_enable_check)s; + %(exec_decl)s; + %(simple_rd)s; + +#if defined(linux) + fesetround(getC99RoundingMode(xc)); +#endif + + %(code)s; + +#if defined(linux) + fesetround(FE_TONEAREST); +#endif + + if (fault == No_Fault) { + %(simple_wb)s; + } + + return fault; + } + + Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst, + Trace::InstRecord *traceData) + { + Fault fault = No_Fault; + + %(fp_enable_check)s; + %(exec_decl)s; + %(dtld_rd)s; + +#if defined(linux) + fesetround(getC99RoundingMode(xc)); +#endif + + %(code)s; + +#if defined(linux) + fesetround(FE_TONEAREST); +#endif + + if (fault == No_Fault) { + %(dtld_wb)s; + } + + return fault; + } + }; +}}; + +def template FloatingPointDecode {{ + { + bool fast = (FP_TRAPMODE == AlphaFP::Imprecise + && FP_ROUNDMODE == AlphaFP::Normal); + AlphaStaticInst *i = + fast ? (AlphaStaticInst *)new %(class_name)sFast(machInst) : + (AlphaStaticInst *)new %(class_name)sGeneral(machInst); + + if (FC == 31) { + i = makeNop(i); + } + + return i; + } +}}; + + +// General format for floating-point operate instructions: +// - Checks trapping and rounding mode flags. Trapping modes +// currently unimplemented (will fail). +// - Generates NOP if FC == 31. +def format FloatingPointOperate(code, *opt_args) {{ + iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), + opt_args) + return iop.subst('FloatingPointDeclare', 'FloatingPointDecode') +}}; + + +//////////////////////////////////////////////////////////////////// +// +// Memory-format instructions: LoadAddress, Load, Store +// + +declare {{ + /** + * Base class for general Alpha memory-format instructions. + */ + class Memory : public AlphaStaticInst + { + protected: + + /// Displacement for EA calculation (signed). + int32_t disp; + /// Memory request flags. See mem_req_base.hh. + unsigned memAccessFlags; + + /// Constructor + Memory(const char *mnem, MachInst _machInst, OpClass __opClass) + : AlphaStaticInst(mnem, _machInst, __opClass), + disp(MEMDISP), memAccessFlags(0) + { + } + + std::string generateDisassembly(Addr pc, const SymbolTable *symtab) + { + return csprintf("%-10s %c%d,%d(r%d)", mnemonic, + flags[IsFloating] ? 'f' : 'r', RA, MEMDISP, RB); + } + }; + + /** + * Base class for a few miscellaneous memory-format insts + * that don't interpret the disp field: wh64, fetch, fetch_m, ecb. + * None of these instructions has a destination register either. + */ + class MemoryNoDisp : public AlphaStaticInst + { + protected: + /// Memory request flags. See mem_req_base.hh. + unsigned memAccessFlags; + + /// Constructor + MemoryNoDisp(const char *mnem, MachInst _machInst, OpClass __opClass) + : AlphaStaticInst(mnem, _machInst, __opClass), + memAccessFlags(0) + { + } + + std::string generateDisassembly(Addr pc, const SymbolTable *symtab) + { + return csprintf("%-10s (r%d)", mnemonic, RB); + } + }; + + /** + * Base class for "fake" effective-address computation + * instructions returnded by eaCompInst(). + */ + class EACompBase : public AlphaStaticInst + { + public: + /// Constructor + EACompBase(MachInst machInst) + : AlphaStaticInst("(eacomp)", machInst, IntALU) + { + } + + Fault execute(SimpleCPU *cpu, ExecContext *xc, + Trace::InstRecord *traceData) + { panic("attempt to execute eacomp"); } + + Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst, + Trace::InstRecord *traceData) + { panic("attempt to execute eacomp"); } + }; + + /** + * Base class for "fake" memory-access instructions returnded by + * memAccInst(). + */ + class MemAccBase : public AlphaStaticInst + { + public: + /// Constructor + MemAccBase(MachInst machInst, OpClass __opClass) + : AlphaStaticInst("(memacc)", machInst, __opClass) + { + } + + Fault execute(SimpleCPU *cpu, ExecContext *xc, + Trace::InstRecord *traceData) + { panic("attempt to execute memacc"); } + + Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst, + Trace::InstRecord *traceData) + { panic("attempt to execute memacc"); } + }; + +}}; + + +def format LoadAddress(code) {{ + iop = InstObjParams(name, Name, 'Memory', CodeBlock(code)) + return iop.subst('BasicDeclare', 'BasicDecode') +}}; + + +def template LoadStoreDeclare {{ + /** + * Static instruction class for "%(mnemonic)s". + */ + class %(class_name)s : public %(base_class)s + { + protected: + + /** + * "Fake" effective address computation class for "%(mnemonic)s". + */ + class EAComp : public EACompBase + { + public: + /// Constructor + EAComp(MachInst machInst) + : EACompBase(machInst) + { + %(ea_constructor)s; + } + }; + + /** + * "Fake" memory access instruction class for "%(mnemonic)s". + */ + class MemAcc : public MemAccBase + { + public: + /// Constructor + MemAcc(MachInst machInst) + : MemAccBase(machInst, %(op_class)s) + { + %(memacc_constructor)s; + } + }; + + /// Pointer to EAComp object. + StaticInstPtr<AlphaISA> eaCompPtr; + /// Pointer to MemAcc object. + StaticInstPtr<AlphaISA> memAccPtr; + + public: + + StaticInstPtr<AlphaISA> eaCompInst() { return eaCompPtr; } + StaticInstPtr<AlphaISA> memAccInst() { return memAccPtr; } + + /// Constructor. + %(class_name)s(MachInst machInst) + : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s), + eaCompPtr(new EAComp(machInst)), memAccPtr(new MemAcc(machInst)) + { + %(constructor)s; + } + + Fault execute(SimpleCPU *cpu, ExecContext *xc, + Trace::InstRecord *traceData) + { + SimpleCPU *memAccessObj = cpu; + Addr EA; + Fault fault = No_Fault; + + %(fp_enable_check)s; + %(exec_decl)s; + %(simple_nonmem_rd)s; + %(ea_code)s; + + if (fault == No_Fault) { + %(simple_mem_rd)s; + %(memacc_code)s; + } + + if (fault == No_Fault) { + %(simple_mem_wb)s; + } + + if (fault == No_Fault) { + %(postacc_code)s; + } + + if (fault == No_Fault) { + %(simple_nonmem_wb)s; + } + + return fault; + } + + Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst, + Trace::InstRecord *traceData) + { + DynInst *memAccessObj = dynInst; + Addr EA; + Fault fault = No_Fault; + + %(fp_enable_check)s; + %(exec_decl)s; + %(dtld_nonmem_rd)s; + %(ea_code)s; + + if (fault == No_Fault) { + %(dtld_mem_rd)s; + %(memacc_code)s; + } + + if (fault == No_Fault) { + %(dtld_mem_wb)s; + } + + if (fault == No_Fault) { + %(postacc_code)s; + } + + if (fault == No_Fault) { + %(dtld_nonmem_wb)s; + } + + return fault; + } + }; +}}; + + +def template PrefetchDeclare {{ + /** + * Static instruction class for "%(mnemonic)s". + */ + class %(class_name)s : public %(base_class)s + { + public: + /// Constructor + %(class_name)s(MachInst machInst) + : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s) + { + %(constructor)s; + } + + Fault execute(SimpleCPU *cpu, ExecContext *xc, + Trace::InstRecord *traceData) + { + Addr EA; + Fault fault = No_Fault; + + %(fp_enable_check)s; + %(exec_decl)s; + %(simple_nonmem_rd)s; + %(ea_code)s; + + if (fault == No_Fault) { + cpu->prefetch(EA, memAccessFlags); + } + + return No_Fault; + } + + Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst, + Trace::InstRecord *traceData) + { + Addr EA; + Fault fault = No_Fault; + + %(fp_enable_check)s; + %(exec_decl)s; + %(dtld_nonmem_rd)s; + %(ea_code)s; + + if (fault == No_Fault) { + dynInst->prefetch(EA, memAccessFlags); + } + + return No_Fault; + } + }; +}}; + + +// load instructions use Ra as dest, so check for +// Ra == 31 to detect nops +def template LoadNopCheckDecode {{ + { + AlphaStaticInst *i = new %(class_name)s(machInst); + if (RA == 31) { + i = makeNop(i); + } + return i; + } +}}; + + +// for some load instructions, Ra == 31 indicates a prefetch (not a nop) +def template LoadPrefetchCheckDecode {{ + { + if (RA != 31) { + return new %(class_name)s(machInst); + } + else { + return new %(class_name)sPrefetch(machInst); + } + } +}}; + + +let {{ +global LoadStoreBase +def LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code = '', + base_class = 'Memory', flags = [], + declare_template = 'LoadStoreDeclare', + decode_template = 'BasicDecode'): + # Segregate flags into instruction flags (handled by InstObjParams) + # and memory access flags (handled here). + + # Would be nice to autogenerate this list, but oh well. + valid_mem_flags = ['LOCKED', 'EVICT_NEXT', 'PF_EXCLUSIVE'] + inst_flags = [] + mem_flags = [] + for f in flags: + if f in valid_mem_flags: + mem_flags.append(f) + else: + inst_flags.append(f) + + ea_cblk = CodeBlock(ea_code) + memacc_cblk = CodeBlock(memacc_code) + postacc_cblk = CodeBlock(postacc_code) + + cblk = CodeBlock(ea_code + memacc_code + postacc_code) + iop = InstObjParams(name, Name, base_class, cblk, inst_flags) + + iop.ea_constructor = ea_cblk.constructor + iop.ea_code = ea_cblk.code + iop.memacc_constructor = memacc_cblk.constructor + iop.memacc_code = memacc_cblk.code + iop.postacc_code = postacc_cblk.code + + mem_flags = string.join(mem_flags, '|') + if mem_flags != '': + iop.constructor += '\n\tmemAccessFlags = ' + mem_flags + ';' + + return iop.subst(declare_template, decode_template) +}}; + + +def format LoadOrNop(ea_code, memacc_code, *flags) {{ + return LoadStoreBase(name, Name, ea_code, memacc_code, + flags = flags, + decode_template = 'LoadNopCheckDecode') +}}; + + +// Note that the flags passed in apply only to the prefetch version +def format LoadOrPrefetch(ea_code, memacc_code, *pf_flags) {{ + # declare the load instruction object and generate the decode block + (decls, decode) = \ + LoadStoreBase(name, Name, ea_code, memacc_code, + decode_template = 'LoadPrefetchCheckDecode') + + # Declare the prefetch instruction object. + + # convert flags from tuple to list to make them mutable + pf_flags = list(pf_flags) + ['IsMemRef', 'IsLoad', 'IsDataPrefetch', 'RdPort'] + + (pfdecls, pfdecode) = \ + LoadStoreBase(name, Name + 'Prefetch', ea_code, '', + flags = pf_flags, + declare_template = 'PrefetchDeclare') + + return (decls + pfdecls, decode) +}}; + + +def format Store(ea_code, memacc_code, *flags) {{ + return LoadStoreBase(name, Name, ea_code, memacc_code, + flags = flags) +}}; + + +def format StoreCond(ea_code, memacc_code, postacc_code, *flags) {{ + return LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code, + flags = flags) +}}; + + +// Use 'MemoryNoDisp' as base: for wh64, fetch, ecb +def format MiscPrefetch(ea_code, memacc_code, *flags) {{ + return LoadStoreBase(name, Name, ea_code, memacc_code, + flags = flags, base_class = 'MemoryNoDisp') +}}; + + +//////////////////////////////////////////////////////////////////// + + +declare {{ + + /** + * Base class for instructions whose disassembly is not purely a + * function of the machine instruction (i.e., it depends on the + * PC). This class overrides the disassemble() method to check + * the PC and symbol table values before re-using a cached + * disassembly string. This is necessary for branches and jumps, + * where the disassembly string includes the target address (which + * may depend on the PC and/or symbol table). + */ + class PCDependentDisassembly : public AlphaStaticInst + { + protected: + /// Cached program counter from last disassembly + Addr cachedPC; + /// Cached symbol table pointer from last disassembly + const SymbolTable *cachedSymtab; + + /// Constructor + PCDependentDisassembly(const char *mnem, MachInst _machInst, + OpClass __opClass) + : AlphaStaticInst(mnem, _machInst, __opClass), + cachedPC(0), cachedSymtab(0) + { + } + + const std::string &disassemble(Addr pc, const SymbolTable *symtab) + { + if (!cachedDisassembly || + pc != cachedPC || symtab != cachedSymtab) + { + if (cachedDisassembly) + delete cachedDisassembly; + + cachedDisassembly = + new std::string(generateDisassembly(pc, symtab)); + cachedPC = pc; + cachedSymtab = symtab; + } + + return *cachedDisassembly; + } + }; + + /** + * Base class for branches (PC-relative control transfers), + * conditional or unconditional. + */ + class Branch : public PCDependentDisassembly + { + protected: + /// Displacement to target address (signed). + int32_t disp; + + /// Constructor. + Branch(const char *mnem, MachInst _machInst, OpClass __opClass) + : PCDependentDisassembly(mnem, _machInst, __opClass), + disp(BRDISP << 2) + { + } + + Addr branchTarget(Addr branchPC) + { + return branchPC + 4 + disp; + } + + std::string generateDisassembly(Addr pc, const SymbolTable *symtab) + { + std::stringstream ss; + + ccprintf(ss, "%-10s ", mnemonic); + + // There's only one register arg (RA), but it could be + // either a source (the condition for conditional + // branches) or a destination (the link reg for + // unconditional branches) + if (_numSrcRegs > 0) { + printReg(ss, _srcRegIdx[0]); + ss << ","; + } + else if (_numDestRegs > 0) { + printReg(ss, _destRegIdx[0]); + ss << ","; + } + +#ifdef SS_COMPATIBLE_DISASSEMBLY + if (_numSrcRegs == 0 && _numDestRegs == 0) { + printReg(ss, 31); + ss << ","; + } +#endif + + Addr target = pc + 4 + disp; + + std::string str; + if (symtab && symtab->findSymbol(target, str)) + ss << str; + else + ccprintf(ss, "0x%x", target); + + return ss.str(); + } + }; + + /** + * Base class for jumps (register-indirect control transfers). In + * the Alpha ISA, these are always unconditional. + */ + class Jump : public PCDependentDisassembly + { + protected: + + /// Displacement to target address (signed). + int32_t disp; + + public: + /// Constructor + Jump(const char *mnem, MachInst _machInst, OpClass __opClass) + : PCDependentDisassembly(mnem, _machInst, __opClass), + disp(BRDISP) + { + } + + std::string generateDisassembly(Addr pc, const SymbolTable *symtab) + { + std::stringstream ss; + + ccprintf(ss, "%-10s ", mnemonic); + +#ifdef SS_COMPATIBLE_DISASSEMBLY + if (_numDestRegs == 0) { + printReg(ss, 31); + ss << ","; + } +#endif + + if (_numDestRegs > 0) { + printReg(ss, _destRegIdx[0]); + ss << ","; + } + + ccprintf(ss, "(r%d)", RB); + + return ss.str(); + } + }; +}}; + +def template JumpOrBranchDecode {{ + return (RA == 31) + ? (StaticInst<AlphaISA> *)new %(class_name)s(machInst) + : (StaticInst<AlphaISA> *)new %(class_name)sAndLink(machInst); +}}; + +def format CondBranch(code) {{ + code = 'bool cond;\n' + code + '\nif (cond) NPC = NPC + disp;\n'; + iop = InstObjParams(name, Name, 'Branch', CodeBlock(code), + ('IsDirectControl', 'IsCondControl')) + return iop.subst('BasicDeclare', 'BasicDecode') +}}; + +let {{ +global UncondCtrlBase +def UncondCtrlBase(name, Name, base_class, npc_expr, flags): + # Declare basic control transfer w/o link (i.e. link reg is R31) + nolink_code = 'NPC = %s;\n' % npc_expr + nolink_iop = InstObjParams(name, Name, base_class, + CodeBlock(nolink_code), flags) + decls = nolink_iop.subst('BasicDeclare') + + # Generate declaration of '*AndLink' version, append to decls + link_code = 'Ra = NPC & ~3;\n' + nolink_code + link_iop = InstObjParams(name, Name + 'AndLink', base_class, + CodeBlock(link_code), flags) + decls += link_iop.subst('BasicDeclare') + + # need to use link_iop for the decode template since it is expecting + # the shorter version of class_name (w/o "AndLink") + return (decls, nolink_iop.subst('JumpOrBranchDecode')) +}}; + +def format UncondBranch(*flags) {{ + flags += ('IsUncondControl', 'IsDirectControl') + return UncondCtrlBase(name, Name, 'Branch', 'NPC + disp', flags) +}}; + +def format Jump(*flags) {{ + flags += ('IsUncondControl', 'IsIndirectControl') + return UncondCtrlBase(name, Name, 'Jump', '(Rb & ~3) | (NPC & 1)', flags) +}}; + + +declare {{ + /** + * Base class for emulated call_pal calls (used only in + * non-full-system mode). + */ + class EmulatedCallPal : public AlphaStaticInst + { + protected: + + /// Constructor. + EmulatedCallPal(const char *mnem, MachInst _machInst, + OpClass __opClass) + : AlphaStaticInst(mnem, _machInst, __opClass) + { + } + + std::string generateDisassembly(Addr pc, const SymbolTable *symtab) + { +#ifdef SS_COMPATIBLE_DISASSEMBLY + return csprintf("%s %s", "call_pal", mnemonic); +#else + return csprintf("%-10s %s", "call_pal", mnemonic); +#endif + } + }; +}}; + +def format EmulatedCallPal(code) {{ + iop = InstObjParams(name, Name, 'EmulatedCallPal', CodeBlock(code)) + return iop.subst('BasicDeclare', 'BasicDecode') +}}; + +declare {{ + /** + * Base class for full-system-mode call_pal instructions. + * Probably could turn this into a leaf class and get rid of the + * parser template. + */ + class CallPalBase : public AlphaStaticInst + { + protected: + int palFunc; ///< Function code part of instruction + int palOffset; ///< Target PC, offset from IPR_PAL_BASE + + /// Constructor. + CallPalBase(const char *mnem, MachInst _machInst, + OpClass __opClass) + : AlphaStaticInst(mnem, _machInst, __opClass), + palFunc(PALFUNC) + { + int palPriv = ((machInst & 0x80) != 0); + int shortPalFunc = (machInst & 0x3f); + palOffset = 0x2001 + (palPriv << 12) + (shortPalFunc << 6); + } + + std::string generateDisassembly(Addr pc, const SymbolTable *symtab) + { + return csprintf("%-10s %#x", "call_pal", palFunc); + } + }; +}}; + + +def format CallPal(code) {{ + iop = InstObjParams(name, Name, 'CallPalBase', CodeBlock(code)) + return iop.subst('BasicDeclare', 'BasicDecode') +}}; + +// +// hw_ld, hw_st +// +declare {{ + /** + * Base class for hw_ld and hw_st. + */ + class HwLoadStore : public AlphaStaticInst + { + protected: + + /// Displacement for EA calculation (signed). + int16_t disp; + /// Memory request flags. See mem_req_base.hh. + unsigned memAccessFlags; + + /// Constructor + HwLoadStore(const char *mnem, MachInst _machInst, OpClass __opClass) + : AlphaStaticInst(mnem, _machInst, __opClass), disp(HW_LDST_DISP) + { + memAccessFlags = 0; + if (HW_LDST_PHYS) memAccessFlags |= PHYSICAL; + if (HW_LDST_ALT) memAccessFlags |= ALTMODE; + if (HW_LDST_VPTE) memAccessFlags |= VPTE; + if (HW_LDST_LOCK) memAccessFlags |= LOCKED; + } + + std::string generateDisassembly(Addr pc, const SymbolTable *symtab) + { +#ifdef SS_COMPATIBLE_DISASSEMBLY + return csprintf("%-10s r%d,%d(r%d)", mnemonic, RA, disp, RB); +#else + // HW_LDST_LOCK and HW_LDST_COND are the same bit. + const char *lock_str = + (HW_LDST_LOCK) ? (flags[IsLoad] ? ",LOCK" : ",COND") : ""; + + return csprintf("%-10s r%d,%d(r%d)%s%s%s%s%s", + mnemonic, RA, disp, RB, + HW_LDST_PHYS ? ",PHYS" : "", + HW_LDST_ALT ? ",ALT" : "", + HW_LDST_QUAD ? ",QUAD" : "", + HW_LDST_VPTE ? ",VPTE" : "", + lock_str); +#endif + } + }; +}}; + + +def format HwLoadStore(ea_code, memacc_code, class_ext, *flags) {{ + return LoadStoreBase(name, Name + class_ext, ea_code, memacc_code, + flags = flags, + base_class = 'HwLoadStore') +}}; + + +def format HwStoreCond(ea_code, memacc_code, postacc_code, class_ext, *flags) {{ + return LoadStoreBase(name, Name + class_ext, + ea_code, memacc_code, postacc_code, + flags = flags, + base_class = 'HwLoadStore') +}}; + + +declare {{ + /** + * Base class for hw_mfpr and hw_mtpr. + */ + class HwMoveIPR : public AlphaStaticInst + { + protected: + /// Index of internal processor register. + int ipr_index; + + /// Constructor + HwMoveIPR(const char *mnem, MachInst _machInst, OpClass __opClass) + : AlphaStaticInst(mnem, _machInst, __opClass), + ipr_index(HW_IPR_IDX) + { + } + + std::string generateDisassembly(Addr pc, const SymbolTable *symtab) + { + if (_numSrcRegs > 0) { + // must be mtpr + return csprintf("%-10s r%d,IPR(%#x)", + mnemonic, RA, ipr_index); + } + else { + // must be mfpr + return csprintf("%-10s IPR(%#x),r%d", + mnemonic, ipr_index, RA); + } + } + }; +}}; + +def format HwMoveIPR(code) {{ + iop = InstObjParams(name, Name, 'HwMoveIPR', CodeBlock(code)) + return iop.subst('BasicDeclare', 'BasicDecode') +}}; + +declare {{ + /** + * Static instruction class for unimplemented instructions that + * cause simulator termination. Note that these are recognized + * (legal) instructions that the simulator does not support; the + * 'Unknown' class is used for unrecognized/illegal instructions. + * This is a leaf class. + */ + class FailUnimplemented : public AlphaStaticInst + { + public: + /// Constructor + FailUnimplemented(const char *_mnemonic, MachInst _machInst) + : AlphaStaticInst(_mnemonic, _machInst, No_OpClass) + { + } + + Fault execute(SimpleCPU *cpu, ExecContext *xc, + Trace::InstRecord *traceData) + { + panic("attempt to execute unimplemented instruction '%s' " + "(inst 0x%08x, opcode 0x%x)", mnemonic, machInst, OPCODE); + return Unimplemented_Opcode_Fault; + } + + Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst, + Trace::InstRecord *traceData) + { + // don't panic if this is a misspeculated instruction + if (!xc->spec_mode) + panic("attempt to execute unimplemented instruction '%s' " + "(inst 0x%08x, opcode 0x%x)", + mnemonic, machInst, OPCODE); + return Unimplemented_Opcode_Fault; + } + + std::string generateDisassembly(Addr pc, const SymbolTable *symtab) + { + return csprintf("%-10s (unimplemented)", mnemonic); + } + }; + + /** + * Base class for unimplemented instructions that cause a warning + * to be printed (but do not terminate simulation). This + * implementation is a little screwy in that it will print a + * warning for each instance of a particular unimplemented machine + * instruction, not just for each unimplemented opcode. Should + * probably make the 'warned' flag a static member of the derived + * class. + */ + class WarnUnimplemented : public AlphaStaticInst + { + private: + /// Have we warned on this instruction yet? + bool warned; + + public: + /// Constructor + WarnUnimplemented(const char *_mnemonic, MachInst _machInst) + : AlphaStaticInst(_mnemonic, _machInst, No_OpClass), warned(false) + { + } + + Fault execute(SimpleCPU *cpu, ExecContext *xc, + Trace::InstRecord *traceData) + { + if (!warned) { + warn("Warning: instruction '%s' unimplemented\n", mnemonic); + warned = true; + } + + return No_Fault; + } + + Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst, + Trace::InstRecord *traceData) + { + if (!xc->spec_mode && !warned) { + warn("Warning: instruction '%s' unimplemented\n", mnemonic); + warned = true; + } + + return No_Fault; + } + + std::string generateDisassembly(Addr pc, const SymbolTable *symtab) + { +#ifdef SS_COMPATIBLE_DISASSEMBLY + return csprintf("%-10s", mnemonic); +#else + return csprintf("%-10s (unimplemented)", mnemonic); +#endif + } + }; +}}; + +def template WarnUnimplDeclare {{ + /** + * Static instruction class for "%(mnemonic)s". + */ + class %(class_name)s : public %(base_class)s + { + public: + /// Constructor + %(class_name)s(MachInst machInst) + : %(base_class)s("%(mnemonic)s", machInst) + { + } + }; +}}; + + +def format FailUnimpl() {{ + iop = InstObjParams(name, 'FailUnimplemented') + return ('', iop.subst('BasicDecodeWithMnemonic')) +}}; + +def format WarnUnimpl() {{ + iop = InstObjParams(name, Name, 'WarnUnimplemented') + return iop.subst('WarnUnimplDeclare', 'BasicDecode') +}}; + +declare {{ + /** + * Static instruction class for unknown (illegal) instructions. + * These cause simulator termination if they are executed in a + * non-speculative mode. This is a leaf class. + */ + class Unknown : public AlphaStaticInst + { + public: + /// Constructor + Unknown(MachInst _machInst) + : AlphaStaticInst("unknown", _machInst, No_OpClass) + { + } + + Fault execute(SimpleCPU *cpu, ExecContext *xc, + Trace::InstRecord *traceData) + { + panic("attempt to execute unknown instruction " + "(inst 0x%08x, opcode 0x%x)", machInst, OPCODE); + return Unimplemented_Opcode_Fault; + } + + Fault execute(CPU *cpu, SpecExecContext *xc, DynInst *dynInst, + Trace::InstRecord *traceData) + { + // don't panic if this is a misspeculated instruction + if (!xc->spec_mode) + panic("attempt to execute unknown instruction " + "(inst 0x%08x, opcode 0x%x)", machInst, OPCODE); + return Unimplemented_Opcode_Fault; + } + + std::string generateDisassembly(Addr pc, const SymbolTable *symtab) + { + return csprintf("%-10s (inst 0x%x, opcode 0x%x)", + "unknown", machInst, OPCODE); + } + }; +}}; + +def format Unknown() {{ + return ('', 'return new Unknown(machInst);\n') +}}; + +declare {{ + + /// Return opa + opb, summing carry into third arg. + inline uint64_t + addc(uint64_t opa, uint64_t opb, int &carry) + { + uint64_t res = opa + opb; + if (res < opa || res < opb) + ++carry; + return res; + } + + /// Multiply two 64-bit values (opa * opb), returning the 128-bit + /// product in res_hi and res_lo. + void + mul128(uint64_t opa, uint64_t opb, uint64_t &res_hi, uint64_t &res_lo) + { + // do a 64x64 --> 128 multiply using four 32x32 --> 64 multiplies + uint64_t opa_hi = opa<63:32>; + uint64_t opa_lo = opa<31:0>; + uint64_t opb_hi = opb<63:32>; + uint64_t opb_lo = opb<31:0>; + + res_lo = opa_lo * opb_lo; + + // The middle partial products logically belong in bit + // positions 95 to 32. Thus the lower 32 bits of each product + // sum into the upper 32 bits of the low result, while the + // upper 32 sum into the low 32 bits of the upper result. + uint64_t partial1 = opa_hi * opb_lo; + uint64_t partial2 = opa_lo * opb_hi; + + uint64_t partial1_lo = partial1<31:0> << 32; + uint64_t partial1_hi = partial1<63:32>; + uint64_t partial2_lo = partial2<31:0> << 32; + uint64_t partial2_hi = partial2<63:32>; + + // Add partial1_lo and partial2_lo to res_lo, keeping track + // of any carries out + int carry_out = 0; + res_lo = addc(partial1_lo, res_lo, carry_out); + res_lo = addc(partial2_lo, res_lo, carry_out); + + // Now calculate the high 64 bits... + res_hi = (opa_hi * opb_hi) + partial1_hi + partial2_hi + carry_out; + } + + /// Map 8-bit S-floating exponent to 11-bit T-floating exponent. + /// See Table 2-2 of Alpha AHB. + inline int + map_s(int old_exp) + { + int hibit = old_exp<7:>; + int lobits = old_exp<6:0>; + + if (hibit == 1) { + return (lobits == 0x7f) ? 0x7ff : (0x400 | lobits); + } + else { + return (lobits == 0) ? 0 : (0x380 | lobits); + } + } + + /// Convert a 32-bit S-floating value to the equivalent 64-bit + /// representation to be stored in an FP reg. + inline uint64_t + s_to_t(uint32_t s_val) + { + uint64_t tmp = s_val; + return (tmp<31:> << 63 // sign bit + | (uint64_t)map_s(tmp<30:23>) << 52 // exponent + | tmp<22:0> << 29); // fraction + } + + /// Convert a 64-bit T-floating value to the equivalent 32-bit + /// S-floating representation to be stored in memory. + inline int32_t + t_to_s(uint64_t t_val) + { + return (t_val<63:62> << 30 // sign bit & hi exp bit + | t_val<58:29>); // rest of exp & fraction + } +}}; + +decode OPCODE default Unknown::unknown() { + + format LoadAddress { + 0x08: lda({{ Ra = Rb + disp; }}); + 0x09: ldah({{ Ra = Rb + (disp << 16); }}); + } + + format LoadOrNop { + 0x0a: ldbu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.ub; }}); + 0x0c: ldwu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uw; }}); + 0x0b: ldq_u({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}); + 0x23: ldt({{ EA = Rb + disp; }}, {{ Fa = Mem.df; }}); + 0x2a: ldl_l({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}, LOCKED); + 0x2b: ldq_l({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, LOCKED); + } + + format LoadOrPrefetch { + 0x28: ldl({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}); + 0x29: ldq({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, EVICT_NEXT); + 0x22: lds({{ EA = Rb + disp; }}, {{ Fa.uq = s_to_t(Mem.ul); }}, + PF_EXCLUSIVE); + } + + format Store { + 0x0e: stb({{ EA = Rb + disp; }}, {{ Mem.ub = Ra<7:0>; }}); + 0x0d: stw({{ EA = Rb + disp; }}, {{ Mem.uw = Ra<15:0>; }}); + 0x2c: stl({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }}); + 0x2d: stq({{ EA = Rb + disp; }}, {{ Mem.uq = Ra.uq; }}); + 0x0f: stq_u({{ EA = (Rb + disp) & ~7; }}, {{ Mem.uq = Ra.uq; }}); + 0x26: sts({{ EA = Rb + disp; }}, {{ Mem.ul = t_to_s(Fa.uq); }}); + 0x27: stt({{ EA = Rb + disp; }}, {{ Mem.df = Fa; }}); + } + + format StoreCond { + 0x2e: stl_c({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }}, + {{ + uint64_t tmp = Mem_write_result; + Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; + }}, LOCKED); + 0x2f: stq_c({{ EA = Rb + disp; }}, {{ Mem.uq = Ra; }}, + {{ + uint64_t tmp = Mem_write_result; + Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; + }}, LOCKED); + } + + format IntegerOperate { + + 0x10: decode INTFUNC { // integer arithmetic operations + + 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }}); + 0x40: addlv({{ + uint32_t tmp = Ra.sl + Rb_or_imm.sl; + // signed overflow occurs when operands have same sign + // and sign of result does not match. + if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) + fault = Integer_Overflow_Fault; + Rc.sl = tmp; + }}); + 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }}); + 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }}); + + 0x20: addq({{ Rc = Ra + Rb_or_imm; }}); + 0x60: addqv({{ + uint64_t tmp = Ra + Rb_or_imm; + // signed overflow occurs when operands have same sign + // and sign of result does not match. + if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>) + fault = Integer_Overflow_Fault; + Rc = tmp; + }}); + 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }}); + 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }}); + + 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }}); + 0x49: sublv({{ + uint32_t tmp = Ra.sl - Rb_or_imm.sl; + // signed overflow detection is same as for add, + // except we need to look at the *complemented* + // sign bit of the subtrahend (Rb), i.e., if the initial + // signs are the *same* then no overflow can occur + if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) + fault = Integer_Overflow_Fault; + Rc.sl = tmp; + }}); + 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }}); + 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }}); + + 0x29: subq({{ Rc = Ra - Rb_or_imm; }}); + 0x69: subqv({{ + uint64_t tmp = Ra - Rb_or_imm; + // signed overflow detection is same as for add, + // except we need to look at the *complemented* + // sign bit of the subtrahend (Rb), i.e., if the initial + // signs are the *same* then no overflow can occur + if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>) + fault = Integer_Overflow_Fault; + Rc = tmp; + }}); + 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }}); + 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }}); + + 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }}); + 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }}); + 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }}); + 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }}); + 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }}); + + 0x0f: cmpbge({{ + int hi = 7; + int lo = 0; + uint64_t tmp = 0; + for (int i = 0; i < 8; ++i) { + tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i; + hi += 8; + lo += 8; + } + Rc = tmp; + }}); + } + + 0x11: decode INTFUNC { // integer logical operations + + 0x00: and({{ Rc = Ra & Rb_or_imm; }}); + 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }}); + 0x20: bis({{ Rc = Ra | Rb_or_imm; }}); + 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }}); + 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }}); + 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }}); + + // conditional moves + 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }}); + 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }}); + 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }}); + 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }}); + 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }}); + 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }}); + 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }}); + 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }}); + + // For AMASK, RA must be R31. + 0x61: decode RA { + 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }}); + } + + // For IMPLVER, RA must be R31 and the B operand + // must be the immediate value 1. + 0x6c: decode RA { + 31: decode IMM { + 1: decode INTIMM { + // return EV5 for FULL_SYSTEM and EV6 otherwise + 1: implver({{ +#ifdef FULL_SYSTEM + Rc = 1; +#else + Rc = 2; +#endif + }}); + } + } + } + +#ifdef FULL_SYSTEM + // The mysterious 11.25... + 0x25: WarnUnimpl::eleven25(); +#endif + } + + 0x12: decode INTFUNC { + 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }}); + 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }}); + 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }}); + + 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }}); + 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }}); + 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }}); + 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }}); + + 0x52: mskwh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra; + }}); + 0x62: msklh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra; + }}); + 0x72: mskqh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra; + }}); + + 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }}); + 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }}); + 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }}); + 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }}); + + 0x5a: extwh({{ + Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }}); + 0x6a: extlh({{ + Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }}); + 0x7a: extqh({{ + Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }}); + + 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }}); + 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }}); + 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }}); + 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }}); + + 0x57: inswh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0; + }}); + 0x67: inslh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0; + }}); + 0x77: insqh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0; + }}); + + 0x30: zap({{ + uint64_t zapmask = 0; + for (int i = 0; i < 8; ++i) { + if (Rb_or_imm<i:>) + zapmask |= (mask(8) << (i * 8)); + } + Rc = Ra & ~zapmask; + }}); + 0x31: zapnot({{ + uint64_t zapmask = 0; + for (int i = 0; i < 8; ++i) { + if (!Rb_or_imm<i:>) + zapmask |= (mask(8) << (i * 8)); + } + Rc = Ra & ~zapmask; + }}); + } + + 0x13: decode INTFUNC { // integer multiplies + 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMULT); + 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMULT); + 0x30: umulh({{ + uint64_t hi, lo; + mul128(Ra, Rb_or_imm, hi, lo); + Rc = hi; + }}, IntMULT); + 0x40: mullv({{ + // 32-bit multiply with trap on overflow + int64_t Rax = Ra.sl; // sign extended version of Ra.sl + int64_t Rbx = Rb_or_imm.sl; + int64_t tmp = Rax * Rbx; + // To avoid overflow, all the upper 32 bits must match + // the sign bit of the lower 32. We code this as + // checking the upper 33 bits for all 0s or all 1s. + uint64_t sign_bits = tmp<63:31>; + if (sign_bits != 0 && sign_bits != mask(33)) + fault = Integer_Overflow_Fault; + Rc.sl = tmp<31:0>; + }}, IntMULT); + 0x60: mulqv({{ + // 64-bit multiply with trap on overflow + uint64_t hi, lo; + mul128(Ra, Rb_or_imm, hi, lo); + // all the upper 64 bits must match the sign bit of + // the lower 64 + if (!((hi == 0 && lo<63:> == 0) || + (hi == mask(64) && lo<63:> == 1))) + fault = Integer_Overflow_Fault; + Rc = lo; + }}, IntMULT); + } + + 0x1c: decode INTFUNC { + 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); } + 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); } + + format FailUnimpl { + 0x30: ctpop(); + 0x31: perr(); + 0x32: ctlz(); + 0x33: cttz(); + 0x34: unpkbw(); + 0x35: unpkbl(); + 0x36: pkwb(); + 0x37: pklb(); + 0x38: minsb8(); + 0x39: minsw4(); + 0x3a: minub8(); + 0x3b: minuw4(); + 0x3c: maxub8(); + 0x3d: maxuw4(); + 0x3e: maxsb8(); + 0x3f: maxsw4(); + } + + format BasicOperateWithNopCheck { + 0x70: decode RB { + 31: ftoit({{ Rc = Fa.uq; }}, FloatCVT); + } + 0x78: decode RB { + 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }}, + FloatCVT); + } + } + } + } + + // Conditional branches. + format CondBranch { + 0x39: beq({{ cond = (Ra == 0); }}); + 0x3d: bne({{ cond = (Ra != 0); }}); + 0x3e: bge({{ cond = (Ra.sq >= 0); }}); + 0x3f: bgt({{ cond = (Ra.sq > 0); }}); + 0x3b: ble({{ cond = (Ra.sq <= 0); }}); + 0x3a: blt({{ cond = (Ra.sq < 0); }}); + 0x38: blbc({{ cond = ((Ra & 1) == 0); }}); + 0x3c: blbs({{ cond = ((Ra & 1) == 1); }}); + + 0x31: fbeq({{ cond = (Fa == 0); }}); + 0x35: fbne({{ cond = (Fa != 0); }}); + 0x36: fbge({{ cond = (Fa >= 0); }}); + 0x37: fbgt({{ cond = (Fa > 0); }}); + 0x33: fble({{ cond = (Fa <= 0); }}); + 0x32: fblt({{ cond = (Fa < 0); }}); + } + + // unconditional branches + format UncondBranch { + 0x30: br(); + 0x34: bsr(IsCall); + } + + // indirect branches + 0x1a: decode JMPFUNC { + format Jump { + 0: jmp(); + 1: jsr(IsCall); + 2: ret(IsReturn); + 3: jsr_coroutine(IsCall, IsReturn); + } + } + + // IEEE floating point + 0x14: decode FP_SHORTFUNC { + // Integer to FP register moves must have RB == 31 + 0x4: decode RB { + 31: decode FP_FULLFUNC { + format BasicOperateWithNopCheck { + 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCVT); + 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCVT); + 0x014: FailUnimpl::itoff(); // VAX-format conversion + } + } + } + + // Square root instructions must have FA == 31 + 0xb: decode FA { + 31: decode FP_TYPEFUNC { + format FloatingPointOperate { +#ifdef SS_COMPATIBLE_FP + 0x0b: sqrts({{ + if (Fb < 0.0) + fault = Arithmetic_Fault; + Fc = sqrt(Fb); + }}, FloatSQRT); +#else + 0x0b: sqrts({{ + if (Fb.sf < 0.0) + fault = Arithmetic_Fault; + Fc.sf = sqrt(Fb.sf); + }}, FloatSQRT); +#endif + 0x2b: sqrtt({{ + if (Fb < 0.0) + fault = Arithmetic_Fault; + Fc = sqrt(Fb); + }}, FloatSQRT); + } + } + } + + // VAX-format sqrtf and sqrtg are not implemented + 0xa: FailUnimpl::sqrtfg(); + } + + // IEEE floating point + 0x16: decode FP_SHORTFUNC_TOP2 { + // The top two bits of the short function code break this space + // into four groups: binary ops, compares, reserved, and conversions. + // See Table 4-12 of AHB. + // Most of these instructions may have various trapping and + // rounding mode flags set; these are decoded in the + // FloatingPointDecode template used by the + // FloatingPointOperate format. + + // add/sub/mul/div: just decode on the short function code + // and source type. + 0: decode FP_TYPEFUNC { + format FloatingPointOperate { +#ifdef SS_COMPATIBLE_FP + 0x00: adds({{ Fc = Fa + Fb; }}); + 0x01: subs({{ Fc = Fa - Fb; }}); + 0x02: muls({{ Fc = Fa * Fb; }}, FloatMULT); + 0x03: divs({{ Fc = Fa / Fb; }}, FloatDIV); +#else + 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }}); + 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }}); + 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMULT); + 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDIV); +#endif + + 0x20: addt({{ Fc = Fa + Fb; }}); + 0x21: subt({{ Fc = Fa - Fb; }}); + 0x22: mult({{ Fc = Fa * Fb; }}, FloatMULT); + 0x23: divt({{ Fc = Fa / Fb; }}, FloatDIV); + } + } + + // Floating-point compare instructions must have the default + // rounding mode, and may use the default trapping mode or + // /SU. Both trapping modes are treated the same by M5; the + // only difference on the real hardware (as far a I can tell) + // is that without /SU you'd get an imprecise trap if you + // tried to compare a NaN with something else (instead of an + // "unordered" result). + 1: decode FP_FULLFUNC { + format BasicOperateWithNopCheck { + 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }}, + FloatCMP); + 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }}, + FloatCMP); + 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }}, + FloatCMP); + 0x0a4, 0x5a4: cmptun({{ // unordered + Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0; + }}, FloatCMP); + } + } + + // The FP-to-integer and integer-to-FP conversion insts + // require that FA be 31. + 3: decode FA { + 31: decode FP_TYPEFUNC { + format FloatingPointOperate { + 0x2f: cvttq({{ Fc.sq = (int64_t)rint(Fb); }}); + + // The cvtts opcode is overloaded to be cvtst if the trap + // mode is 2 or 6 (which are not valid otherwise) + 0x2c: decode FP_FULLFUNC { + format BasicOperateWithNopCheck { + // trap on denorm version "cvtst/s" is + // simulated same as cvtst + 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }}); + } + default: cvtts({{ Fc.sf = Fb; }}); + } + + // The trapping mode for integer-to-FP conversions + // must be /SUI or nothing; /U and /SU are not + // allowed. The full set of rounding modes are + // supported though. + 0x3c: decode FP_TRAPMODE { + 0,7: cvtqs({{ Fc.sf = Fb.sq; }}); + } + 0x3e: decode FP_TRAPMODE { + 0,7: cvtqt({{ Fc = Fb.sq; }}); + } + } + } + } + } + + // misc FP operate + 0x17: decode FP_FULLFUNC { + format BasicOperateWithNopCheck { + 0x010: cvtlq({{ + Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>; + }}); + 0x030: cvtql({{ + Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); + }}); + + // We treat the precise & imprecise trapping versions of + // cvtql identically. + 0x130, 0x530: cvtqlv({{ + // To avoid overflow, all the upper 32 bits must match + // the sign bit of the lower 32. We code this as + // checking the upper 33 bits for all 0s or all 1s. + uint64_t sign_bits = Fb.uq<63:31>; + if (sign_bits != 0 && sign_bits != mask(33)) + fault = Integer_Overflow_Fault; + Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); + }}); + + 0x020: cpys({{ // copy sign + Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>; + }}); + 0x021: cpysn({{ // copy sign negated + Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>; + }}); + 0x022: cpyse({{ // copy sign and exponent + Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>; + }}); + + 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }}); + 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }}); + 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }}); + 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }}); + 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }}); + 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }}); + + 0x024: mt_fpcr({{ FPCR = Fa.uq; }}); + 0x025: mf_fpcr({{ Fa.uq = FPCR; }}); + } + } + + // miscellaneous mem-format ops + 0x18: decode MEMFUNC { + format WarnUnimpl { + 0x0000: trapb(); + 0x0400: excb(); + 0x4000: mb(); + 0x4400: wmb(); + 0x8000: fetch(); + 0xa000: fetch_m(); + 0xe800: ecb(); + } + + format MiscPrefetch { + 0xf800: wh64({{ EA = Rb; }}, + {{ memAccessObj->writeHint(EA, 64); }}, + IsMemRef, IsStore, WrPort); + } + + format BasicOperate { + 0xc000: rpcc({{ Ra = curTick; }}); + } + +#ifdef FULL_SYSTEM + format BasicOperate { + 0xe000: rc({{ + Ra = xc->regs.intrflag; + xc->regs.intrflag = 0; + }}, No_OpClass); + 0xf000: rs({{ + Ra = xc->regs.intrflag; + xc->regs.intrflag = 1; + }}, No_OpClass); + } +#else + format FailUnimpl { + 0xe000: rc(); + 0xf000: rs(); + } +#endif + } + +#ifdef FULL_SYSTEM + 0x00: CallPal::call_pal({{ + // check to see if simulator wants to do something special + // on this PAL call (including maybe suppress it) + bool dopal = xc->simPalCheck(palFunc); + + Annotate::Callpal(xc, palFunc); + + if (dopal) { + if (!xc->misspeculating()) { + AlphaISA::swap_palshadow(&xc->regs, true); + } + xc->setIpr(AlphaISA::IPR_EXC_ADDR, NPC); + NPC = xc->readIpr(AlphaISA::IPR_PAL_BASE, fault) + palOffset; + } + }}); +#else + 0x00: decode PALFUNC { + format EmulatedCallPal { + 0x83: callsys({{ xc->syscall(); }}); + // Read uniq reg into ABI return value register (r0) + 0x9e: rduniq({{ R0 = Runiq; }}); + // Write uniq reg with value from ABI arg register (r16) + 0x9f: wruniq({{ Runiq = R16; }}); + } + } +#endif + +#ifdef FULL_SYSTEM + format HwLoadStore { + 0x1b: decode HW_LDST_QUAD { + 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L); + 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q); + } + + 0x1f: decode HW_LDST_COND { + 0: decode HW_LDST_QUAD { + 0: hw_st({{ EA = (Rb + disp) & ~3; }}, + {{ Mem.ul = Ra<31:0>; }}, L); + 1: hw_st({{ EA = (Rb + disp) & ~7; }}, + {{ Mem.uq = Ra.uq; }}, Q); + } + + 1: FailUnimpl::hw_st_cond(); + } + } + + format BasicOperate { + 0x1e: hw_rei({{ xc->hwrei(); }}); + + // M5 special opcodes use the reserved 0x01 opcode space + 0x01: decode M5FUNC { + 0x00: arm({{ + Annotate::ARM(xc); + xc->kernelStats.arm(); + }}); + 0x01: quiesce({{ + Annotate::QUIESCE(xc); + xc->setStatus(ExecContext::Suspended); + xc->kernelStats.quiesce(); + }}); + 0x10: ivlb({{ + Annotate::BeginInterval(xc); + xc->kernelStats.ivlb(); + }}, No_OpClass); + 0x11: ivle({{ Annotate::EndInterval(xc); }}, No_OpClass); + 0x20: m5exit({{ + if (!xc->misspeculating()) + m5_exit(); + }}, No_OpClass); + } + } + + format HwMoveIPR { + 0x19: hw_mfpr({{ + // this instruction is only valid in PAL mode + if (!PC_PAL(xc->regs.pc)) { + fault = Unimplemented_Opcode_Fault; + } + else { + Ra = xc->readIpr(ipr_index, fault); + } + }}); + 0x1d: hw_mtpr({{ + // this instruction is only valid in PAL mode + if (!PC_PAL(xc->regs.pc)) { + fault = Unimplemented_Opcode_Fault; + } + else { + xc->setIpr(ipr_index, Ra); + if (traceData) { traceData->setData(Ra); } + } + }}); + } +#endif +} |