summaryrefslogtreecommitdiff
path: root/arch/alpha/isa_desc
diff options
context:
space:
mode:
Diffstat (limited to 'arch/alpha/isa_desc')
-rw-r--r--arch/alpha/isa_desc2737
1 files changed, 0 insertions, 2737 deletions
diff --git a/arch/alpha/isa_desc b/arch/alpha/isa_desc
deleted file mode 100644
index c998b1a0a..000000000
--- a/arch/alpha/isa_desc
+++ /dev/null
@@ -1,2737 +0,0 @@
-// -*- mode:c++ -*-
-
-//Copyright (c) 2003, 2004, 2005
-//The Regents of The University of Michigan
-//All Rights Reserved
-
-//This code is part of the M5 simulator, developed by Nathan Binkert,
-//Erik Hallnor, Steve Raasch, and Steve Reinhardt, with contributions
-//from Ron Dreslinski, Dave Greene, Lisa Hsu, Kevin Lim, Ali Saidi,
-//and Andrew Schultz.
-
-//Permission is granted to use, copy, create derivative works and
-//redistribute this software and such derivative works for any purpose,
-//so long as the copyright notice above, this grant of permission, and
-//the disclaimer below appear in all copies made; and so long as the
-//name of The University of Michigan is not used in any advertising or
-//publicity pertaining to the use or distribution of this software
-//without specific, written prior authorization.
-
-//THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION FROM THE
-//UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY PURPOSE, AND WITHOUT
-//WARRANTY BY THE UNIVERSITY OF MICHIGAN OF ANY KIND, EITHER EXPRESS OR
-//IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
-//MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE REGENTS OF
-//THE UNIVERSITY OF MICHIGAN SHALL NOT BE LIABLE FOR ANY DAMAGES,
-//INCLUDING DIRECT, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
-//DAMAGES, WITH RESPECT TO ANY CLAIM ARISING OUT OF OR IN CONNECTION
-//WITH THE USE OF THE SOFTWARE, EVEN IF IT HAS BEEN OR IS HEREAFTER
-//ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
-
-////////////////////////////////////////////////////////////////////
-//
-// Alpha ISA description file.
-//
-////////////////////////////////////////////////////////////////////
-
-
-////////////////////////////////////////////////////////////////////
-//
-// Output include file directives.
-//
-
-output header {{
-#include <sstream>
-#include <iostream>
-#include <iomanip>
-
-#include "config/ss_compatible_fp.hh"
-#include "cpu/static_inst.hh"
-#include "mem/mem_req.hh" // some constructors use MemReq flags
-}};
-
-output decoder {{
-#include "base/cprintf.hh"
-#include "base/fenv.hh"
-#include "base/loader/symtab.hh"
-#include "config/ss_compatible_fp.hh"
-#include "cpu/exec_context.hh" // for Jump::branchTarget()
-
-#include <math.h>
-}};
-
-output exec {{
-#include <math.h>
-
-#if FULL_SYSTEM
-#include "arch/alpha/pseudo_inst.hh"
-#endif
-#include "base/fenv.hh"
-#include "config/ss_compatible_fp.hh"
-#include "cpu/base.hh"
-#include "cpu/exetrace.hh"
-#include "sim/sim_exit.hh"
-}};
-
-////////////////////////////////////////////////////////////////////
-//
-// Namespace statement. Everything below this line will be in the
-// AlphaISAInst namespace.
-//
-
-
-namespace AlphaISA;
-
-////////////////////////////////////////////////////////////////////
-//
-// Bitfield definitions.
-//
-
-// Universal (format-independent) fields
-def bitfield OPCODE <31:26>;
-def bitfield RA <25:21>;
-def bitfield RB <20:16>;
-
-// Memory format
-def signed bitfield MEMDISP <15: 0>; // displacement
-def bitfield MEMFUNC <15: 0>; // function code (same field, unsigned)
-
-// Memory-format jumps
-def bitfield JMPFUNC <15:14>; // function code (disp<15:14>)
-def bitfield JMPHINT <13: 0>; // tgt Icache idx hint (disp<13:0>)
-
-// Branch format
-def signed bitfield BRDISP <20: 0>; // displacement
-
-// Integer operate format(s>;
-def bitfield INTIMM <20:13>; // integer immediate (literal)
-def bitfield IMM <12:12>; // immediate flag
-def bitfield INTFUNC <11: 5>; // function code
-def bitfield RC < 4: 0>; // dest reg
-
-// Floating-point operate format
-def bitfield FA <25:21>;
-def bitfield FB <20:16>;
-def bitfield FP_FULLFUNC <15: 5>; // complete function code
- def bitfield FP_TRAPMODE <15:13>; // trapping mode
- def bitfield FP_ROUNDMODE <12:11>; // rounding mode
- def bitfield FP_TYPEFUNC <10: 5>; // type+func: handiest for decoding
- def bitfield FP_SRCTYPE <10: 9>; // source reg type
- def bitfield FP_SHORTFUNC < 8: 5>; // short function code
- def bitfield FP_SHORTFUNC_TOP2 <8:7>; // top 2 bits of short func code
-def bitfield FC < 4: 0>; // dest reg
-
-// PALcode format
-def bitfield PALFUNC <25: 0>; // function code
-
-// EV5 PAL instructions:
-// HW_LD/HW_ST
-def bitfield HW_LDST_PHYS <15>; // address is physical
-def bitfield HW_LDST_ALT <14>; // use ALT_MODE IPR
-def bitfield HW_LDST_WRTCK <13>; // HW_LD only: fault if no write acc
-def bitfield HW_LDST_QUAD <12>; // size: 0=32b, 1=64b
-def bitfield HW_LDST_VPTE <11>; // HW_LD only: is PTE fetch
-def bitfield HW_LDST_LOCK <10>; // HW_LD only: is load locked
-def bitfield HW_LDST_COND <10>; // HW_ST only: is store conditional
-def signed bitfield HW_LDST_DISP <9:0>; // signed displacement
-
-// HW_REI
-def bitfield HW_REI_TYP <15:14>; // type: stalling vs. non-stallingk
-def bitfield HW_REI_MBZ <13: 0>; // must be zero
-
-// HW_MTPR/MW_MFPR
-def bitfield HW_IPR_IDX <15:0>; // IPR index
-
-// M5 instructions
-def bitfield M5FUNC <7:0>;
-
-def operand_types {{
- 'sb' : ('signed int', 8),
- 'ub' : ('unsigned int', 8),
- 'sw' : ('signed int', 16),
- 'uw' : ('unsigned int', 16),
- 'sl' : ('signed int', 32),
- 'ul' : ('unsigned int', 32),
- 'sq' : ('signed int', 64),
- 'uq' : ('unsigned int', 64),
- 'sf' : ('float', 32),
- 'df' : ('float', 64)
-}};
-
-def operands {{
- # Int regs default to unsigned, but code should not count on this.
- # For clarity, descriptions that depend on unsigned behavior should
- # explicitly specify '.uq'.
- 'Ra': IntRegOperandTraits('uq', 'RA', 'IsInteger', 1),
- 'Rb': IntRegOperandTraits('uq', 'RB', 'IsInteger', 2),
- 'Rc': IntRegOperandTraits('uq', 'RC', 'IsInteger', 3),
- 'Fa': FloatRegOperandTraits('df', 'FA', 'IsFloating', 1),
- 'Fb': FloatRegOperandTraits('df', 'FB', 'IsFloating', 2),
- 'Fc': FloatRegOperandTraits('df', 'FC', 'IsFloating', 3),
- 'Mem': MemOperandTraits('uq', None,
- ('IsMemRef', 'IsLoad', 'IsStore'), 4),
- 'NPC': NPCOperandTraits('uq', None, ( None, None, 'IsControl' ), 4),
- 'Runiq': ControlRegOperandTraits('uq', 'Uniq', None, 1),
- 'FPCR': ControlRegOperandTraits('uq', 'Fpcr', None, 1),
- # The next two are hacks for non-full-system call-pal emulation
- 'R0': IntRegOperandTraits('uq', '0', None, 1),
- 'R16': IntRegOperandTraits('uq', '16', None, 1)
-}};
-
-////////////////////////////////////////////////////////////////////
-//
-// Basic instruction classes/templates/formats etc.
-//
-
-output header {{
-// uncomment the following to get SimpleScalar-compatible disassembly
-// (useful for diffing output traces).
-// #define SS_COMPATIBLE_DISASSEMBLY
-
- /**
- * Base class for all Alpha static instructions.
- */
- class AlphaStaticInst : public StaticInst<AlphaISA>
- {
- protected:
-
- /// Make AlphaISA register dependence tags directly visible in
- /// this class and derived classes. Maybe these should really
- /// live here and not in the AlphaISA namespace.
- enum DependenceTags {
- FP_Base_DepTag = AlphaISA::FP_Base_DepTag,
- Fpcr_DepTag = AlphaISA::Fpcr_DepTag,
- Uniq_DepTag = AlphaISA::Uniq_DepTag,
- IPR_Base_DepTag = AlphaISA::IPR_Base_DepTag
- };
-
- /// Constructor.
- AlphaStaticInst(const char *mnem, MachInst _machInst,
- OpClass __opClass)
- : StaticInst<AlphaISA>(mnem, _machInst, __opClass)
- {
- }
-
- /// Print a register name for disassembly given the unique
- /// dependence tag number (FP or int).
- void printReg(std::ostream &os, int reg) const;
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-}};
-
-output decoder {{
- void
- AlphaStaticInst::printReg(std::ostream &os, int reg) const
- {
- if (reg < FP_Base_DepTag) {
- ccprintf(os, "r%d", reg);
- }
- else {
- ccprintf(os, "f%d", reg - FP_Base_DepTag);
- }
- }
-
- std::string
- AlphaStaticInst::generateDisassembly(Addr pc,
- const SymbolTable *symtab) const
- {
- std::stringstream ss;
-
- ccprintf(ss, "%-10s ", mnemonic);
-
- // just print the first two source regs... if there's
- // a third one, it's a read-modify-write dest (Rc),
- // e.g. for CMOVxx
- if (_numSrcRegs > 0) {
- printReg(ss, _srcRegIdx[0]);
- }
- if (_numSrcRegs > 1) {
- ss << ",";
- printReg(ss, _srcRegIdx[1]);
- }
-
- // just print the first dest... if there's a second one,
- // it's generally implicit
- if (_numDestRegs > 0) {
- if (_numSrcRegs > 0)
- ss << ",";
- printReg(ss, _destRegIdx[0]);
- }
-
- return ss.str();
- }
-}};
-
-// Declarations for execute() methods.
-def template BasicExecDeclare {{
- Fault execute(%(CPU_exec_context)s *, Trace::InstRecord *) const;
-}};
-
-// Basic instruction class declaration template.
-def template BasicDeclare {{
- /**
- * Static instruction class for "%(mnemonic)s".
- */
- class %(class_name)s : public %(base_class)s
- {
- public:
- /// Constructor.
- %(class_name)s(MachInst machInst);
-
- %(BasicExecDeclare)s
- };
-}};
-
-// Basic instruction class constructor template.
-def template BasicConstructor {{
- inline %(class_name)s::%(class_name)s(MachInst machInst)
- : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
- {
- %(constructor)s;
- }
-}};
-
-// Basic instruction class execute method template.
-def template BasicExecute {{
- Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
- Trace::InstRecord *traceData) const
- {
- Fault fault = No_Fault;
-
- %(fp_enable_check)s;
- %(op_decl)s;
- %(op_rd)s;
- %(code)s;
-
- if (fault == No_Fault) {
- %(op_wb)s;
- }
-
- return fault;
- }
-}};
-
-// Basic decode template.
-def template BasicDecode {{
- return new %(class_name)s(machInst);
-}};
-
-// Basic decode template, passing mnemonic in as string arg to constructor.
-def template BasicDecodeWithMnemonic {{
- return new %(class_name)s("%(mnemonic)s", machInst);
-}};
-
-// The most basic instruction format... used only for a few misc. insts
-def format BasicOperate(code, *flags) {{
- iop = InstObjParams(name, Name, 'AlphaStaticInst', CodeBlock(code), flags)
- header_output = BasicDeclare.subst(iop)
- decoder_output = BasicConstructor.subst(iop)
- decode_block = BasicDecode.subst(iop)
- exec_output = BasicExecute.subst(iop)
-}};
-
-
-
-////////////////////////////////////////////////////////////////////
-//
-// Nop
-//
-
-output header {{
- /**
- * Static instruction class for no-ops. This is a leaf class.
- */
- class Nop : public AlphaStaticInst
- {
- /// Disassembly of original instruction.
- const std::string originalDisassembly;
-
- public:
- /// Constructor
- Nop(const std::string _originalDisassembly, MachInst _machInst)
- : AlphaStaticInst("nop", _machInst, No_OpClass),
- originalDisassembly(_originalDisassembly)
- {
- flags[IsNop] = true;
- }
-
- ~Nop() { }
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
-
- %(BasicExecDeclare)s
- };
-}};
-
-output decoder {{
- std::string Nop::generateDisassembly(Addr pc,
- const SymbolTable *symtab) const
- {
-#ifdef SS_COMPATIBLE_DISASSEMBLY
- return originalDisassembly;
-#else
- return csprintf("%-10s (%s)", "nop", originalDisassembly);
-#endif
- }
-
- /// Helper function for decoding nops. Substitute Nop object
- /// for original inst passed in as arg (and delete latter).
- inline
- AlphaStaticInst *
- makeNop(AlphaStaticInst *inst)
- {
- AlphaStaticInst *nop = new Nop(inst->disassemble(0), inst->machInst);
- delete inst;
- return nop;
- }
-}};
-
-output exec {{
- Fault
- Nop::execute(%(CPU_exec_context)s *, Trace::InstRecord *) const
- {
- return No_Fault;
- }
-}};
-
-// integer & FP operate instructions use Rc as dest, so check for
-// Rc == 31 to detect nops
-def template OperateNopCheckDecode {{
- {
- AlphaStaticInst *i = new %(class_name)s(machInst);
- if (RC == 31) {
- i = makeNop(i);
- }
- return i;
- }
-}};
-
-// Like BasicOperate format, but generates NOP if RC/FC == 31
-def format BasicOperateWithNopCheck(code, *opt_args) {{
- iop = InstObjParams(name, Name, 'AlphaStaticInst', CodeBlock(code),
- opt_args)
- header_output = BasicDeclare.subst(iop)
- decoder_output = BasicConstructor.subst(iop)
- decode_block = OperateNopCheckDecode.subst(iop)
- exec_output = BasicExecute.subst(iop)
-}};
-
-
-////////////////////////////////////////////////////////////////////
-//
-// Integer operate instructions
-//
-
-output header {{
- /**
- * Base class for integer immediate instructions.
- */
- class IntegerImm : public AlphaStaticInst
- {
- protected:
- /// Immediate operand value (unsigned 8-bit int).
- uint8_t imm;
-
- /// Constructor
- IntegerImm(const char *mnem, MachInst _machInst, OpClass __opClass)
- : AlphaStaticInst(mnem, _machInst, __opClass), imm(INTIMM)
- {
- }
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-}};
-
-output decoder {{
- std::string
- IntegerImm::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
- std::stringstream ss;
-
- ccprintf(ss, "%-10s ", mnemonic);
-
- // just print the first source reg... if there's
- // a second one, it's a read-modify-write dest (Rc),
- // e.g. for CMOVxx
- if (_numSrcRegs > 0) {
- printReg(ss, _srcRegIdx[0]);
- ss << ",";
- }
-
- ss << (int)imm;
-
- if (_numDestRegs > 0) {
- ss << ",";
- printReg(ss, _destRegIdx[0]);
- }
-
- return ss.str();
- }
-}};
-
-
-def template RegOrImmDecode {{
- {
- AlphaStaticInst *i =
- (IMM) ? (AlphaStaticInst *)new %(class_name)sImm(machInst)
- : (AlphaStaticInst *)new %(class_name)s(machInst);
- if (RC == 31) {
- i = makeNop(i);
- }
- return i;
- }
-}};
-
-// Primary format for integer operate instructions:
-// - Generates both reg-reg and reg-imm versions if Rb_or_imm is used.
-// - Generates NOP if RC == 31.
-def format IntegerOperate(code, *opt_flags) {{
- # If the code block contains 'Rb_or_imm', we define two instructions,
- # one using 'Rb' and one using 'imm', and have the decoder select
- # the right one.
- uses_imm = (code.find('Rb_or_imm') != -1)
- if uses_imm:
- orig_code = code
- # base code is reg version:
- # rewrite by substituting 'Rb' for 'Rb_or_imm'
- code = re.sub(r'Rb_or_imm', 'Rb', orig_code)
- # generate immediate version by substituting 'imm'
- # note that imm takes no extenstion, so we extend
- # the regexp to replace any extension as well
- imm_code = re.sub(r'Rb_or_imm(\.\w+)?', 'imm', orig_code)
-
- # generate declaration for register version
- cblk = CodeBlock(code)
- iop = InstObjParams(name, Name, 'AlphaStaticInst', cblk, opt_flags)
- header_output = BasicDeclare.subst(iop)
- decoder_output = BasicConstructor.subst(iop)
- exec_output = BasicExecute.subst(iop)
-
- if uses_imm:
- # append declaration for imm version
- imm_cblk = CodeBlock(imm_code)
- imm_iop = InstObjParams(name, Name + 'Imm', 'IntegerImm', imm_cblk,
- opt_flags)
- header_output += BasicDeclare.subst(imm_iop)
- decoder_output += BasicConstructor.subst(imm_iop)
- exec_output += BasicExecute.subst(imm_iop)
- # decode checks IMM bit to pick correct version
- decode_block = RegOrImmDecode.subst(iop)
- else:
- # no imm version: just check for nop
- decode_block = OperateNopCheckDecode.subst(iop)
-}};
-
-
-////////////////////////////////////////////////////////////////////
-//
-// Floating-point instructions
-//
-// Note that many FP-type instructions which do not support all the
-// various rounding & trapping modes use the simpler format
-// BasicOperateWithNopCheck.
-//
-
-output exec {{
- /// Check "FP enabled" machine status bit. Called when executing any FP
- /// instruction in full-system mode.
- /// @retval Full-system mode: No_Fault if FP is enabled, Fen_Fault
- /// if not. Non-full-system mode: always returns No_Fault.
-#if FULL_SYSTEM
- inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc)
- {
- Fault fault = No_Fault; // dummy... this ipr access should not fault
- if (!EV5::ICSR_FPE(xc->readIpr(AlphaISA::IPR_ICSR, fault))) {
- fault = Fen_Fault;
- }
- return fault;
- }
-#else
- inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc)
- {
- return No_Fault;
- }
-#endif
-}};
-
-output header {{
- /**
- * Base class for general floating-point instructions. Includes
- * support for various Alpha rounding and trapping modes. Only FP
- * instructions that require this support are derived from this
- * class; the rest derive directly from AlphaStaticInst.
- */
- class AlphaFP : public AlphaStaticInst
- {
- public:
- /// Alpha FP rounding modes.
- enum RoundingMode {
- Chopped = 0, ///< round toward zero
- Minus_Infinity = 1, ///< round toward minus infinity
- Normal = 2, ///< round to nearest (default)
- Dynamic = 3, ///< use FPCR setting (in instruction)
- Plus_Infinity = 3 ///< round to plus inifinity (in FPCR)
- };
-
- /// Alpha FP trapping modes.
- /// For instructions that produce integer results, the
- /// "Underflow Enable" modes really mean "Overflow Enable", and
- /// the assembly modifier is V rather than U.
- enum TrappingMode {
- /// default: nothing enabled
- Imprecise = 0, ///< no modifier
- /// underflow/overflow traps enabled, inexact disabled
- Underflow_Imprecise = 1, ///< /U or /V
- Underflow_Precise = 5, ///< /SU or /SV
- /// underflow/overflow and inexact traps enabled
- Underflow_Inexact_Precise = 7 ///< /SUI or /SVI
- };
-
- protected:
- /// Map Alpha rounding mode to C99 constants from <fenv.h>.
- static const int alphaToC99RoundingMode[];
-
- /// Map enum RoundingMode values to disassembly suffixes.
- static const char *roundingModeSuffix[];
- /// Map enum TrappingMode values to FP disassembly suffixes.
- static const char *fpTrappingModeSuffix[];
- /// Map enum TrappingMode values to integer disassembly suffixes.
- static const char *intTrappingModeSuffix[];
-
- /// This instruction's rounding mode.
- RoundingMode roundingMode;
- /// This instruction's trapping mode.
- TrappingMode trappingMode;
-
- /// Have we warned about this instruction's unsupported
- /// rounding mode (if applicable)?
- mutable bool warnedOnRounding;
-
- /// Have we warned about this instruction's unsupported
- /// trapping mode (if applicable)?
- mutable bool warnedOnTrapping;
-
- /// Constructor
- AlphaFP(const char *mnem, MachInst _machInst, OpClass __opClass)
- : AlphaStaticInst(mnem, _machInst, __opClass),
- roundingMode((enum RoundingMode)FP_ROUNDMODE),
- trappingMode((enum TrappingMode)FP_TRAPMODE),
- warnedOnRounding(false),
- warnedOnTrapping(false)
- {
- }
-
- int getC99RoundingMode(uint64_t fpcr_val) const;
-
- // This differs from the AlphaStaticInst version only in
- // printing suffixes for non-default rounding & trapping modes.
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-
-}};
-
-
-output decoder {{
- int
- AlphaFP::getC99RoundingMode(uint64_t fpcr_val) const
- {
- if (roundingMode == Dynamic) {
- return alphaToC99RoundingMode[bits(fpcr_val, 59, 58)];
- }
- else {
- return alphaToC99RoundingMode[roundingMode];
- }
- }
-
- std::string
- AlphaFP::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
- std::string mnem_str(mnemonic);
-
-#ifndef SS_COMPATIBLE_DISASSEMBLY
- std::string suffix("");
- suffix += ((_destRegIdx[0] >= FP_Base_DepTag)
- ? fpTrappingModeSuffix[trappingMode]
- : intTrappingModeSuffix[trappingMode]);
- suffix += roundingModeSuffix[roundingMode];
-
- if (suffix != "") {
- mnem_str = csprintf("%s/%s", mnemonic, suffix);
- }
-#endif
-
- std::stringstream ss;
- ccprintf(ss, "%-10s ", mnem_str.c_str());
-
- // just print the first two source regs... if there's
- // a third one, it's a read-modify-write dest (Rc),
- // e.g. for CMOVxx
- if (_numSrcRegs > 0) {
- printReg(ss, _srcRegIdx[0]);
- }
- if (_numSrcRegs > 1) {
- ss << ",";
- printReg(ss, _srcRegIdx[1]);
- }
-
- // just print the first dest... if there's a second one,
- // it's generally implicit
- if (_numDestRegs > 0) {
- if (_numSrcRegs > 0)
- ss << ",";
- printReg(ss, _destRegIdx[0]);
- }
-
- return ss.str();
- }
-
- const int AlphaFP::alphaToC99RoundingMode[] = {
- FE_TOWARDZERO, // Chopped
- FE_DOWNWARD, // Minus_Infinity
- FE_TONEAREST, // Normal
- FE_UPWARD // Dynamic in inst, Plus_Infinity in FPCR
- };
-
- const char *AlphaFP::roundingModeSuffix[] = { "c", "m", "", "d" };
- // mark invalid trapping modes, but don't fail on them, because
- // you could decode anything on a misspeculated path
- const char *AlphaFP::fpTrappingModeSuffix[] =
- { "", "u", "INVTM2", "INVTM3", "INVTM4", "su", "INVTM6", "sui" };
- const char *AlphaFP::intTrappingModeSuffix[] =
- { "", "v", "INVTM2", "INVTM3", "INVTM4", "sv", "INVTM6", "svi" };
-}};
-
-// FP instruction class execute method template. Handles non-standard
-// rounding modes.
-def template FloatingPointExecute {{
- Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
- Trace::InstRecord *traceData) const
- {
- if (trappingMode != Imprecise && !warnedOnTrapping) {
- warn("%s: non-standard trapping mode not supported",
- generateDisassembly(0, NULL));
- warnedOnTrapping = true;
- }
-
- Fault fault = No_Fault;
-
- %(fp_enable_check)s;
- %(op_decl)s;
- %(op_rd)s;
-#if USE_FENV
- if (roundingMode == Normal) {
- %(code)s;
- } else {
- fesetround(getC99RoundingMode(xc->readFpcr()));
- %(code)s;
- fesetround(FE_TONEAREST);
- }
-#else
- if (roundingMode != Normal && !warnedOnRounding) {
- warn("%s: non-standard rounding mode not supported",
- generateDisassembly(0, NULL));
- warnedOnRounding = true;
- }
- %(code)s;
-#endif
-
- if (fault == No_Fault) {
- %(op_wb)s;
- }
-
- return fault;
- }
-}};
-
-// FP instruction class execute method template where no dynamic
-// rounding mode control is needed. Like BasicExecute, but includes
-// check & warning for non-standard trapping mode.
-def template FPFixedRoundingExecute {{
- Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
- Trace::InstRecord *traceData) const
- {
- if (trappingMode != Imprecise && !warnedOnTrapping) {
- warn("%s: non-standard trapping mode not supported",
- generateDisassembly(0, NULL));
- warnedOnTrapping = true;
- }
-
- Fault fault = No_Fault;
-
- %(fp_enable_check)s;
- %(op_decl)s;
- %(op_rd)s;
- %(code)s;
-
- if (fault == No_Fault) {
- %(op_wb)s;
- }
-
- return fault;
- }
-}};
-
-def template FloatingPointDecode {{
- {
- AlphaStaticInst *i = new %(class_name)s(machInst);
- if (FC == 31) {
- i = makeNop(i);
- }
- return i;
- }
-}};
-
-// General format for floating-point operate instructions:
-// - Checks trapping and rounding mode flags. Trapping modes
-// currently unimplemented (will fail).
-// - Generates NOP if FC == 31.
-def format FloatingPointOperate(code, *opt_args) {{
- iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args)
- decode_block = FloatingPointDecode.subst(iop)
- header_output = BasicDeclare.subst(iop)
- decoder_output = BasicConstructor.subst(iop)
- exec_output = FloatingPointExecute.subst(iop)
-}};
-
-// Special format for cvttq where rounding mode is pre-decoded
-def format FPFixedRounding(code, class_suffix, *opt_args) {{
- Name += class_suffix
- iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args)
- decode_block = FloatingPointDecode.subst(iop)
- header_output = BasicDeclare.subst(iop)
- decoder_output = BasicConstructor.subst(iop)
- exec_output = FPFixedRoundingExecute.subst(iop)
-}};
-
-////////////////////////////////////////////////////////////////////
-//
-// Memory-format instructions: LoadAddress, Load, Store
-//
-
-output header {{
- /**
- * Base class for general Alpha memory-format instructions.
- */
- class Memory : public AlphaStaticInst
- {
- protected:
-
- /// Memory request flags. See mem_req_base.hh.
- unsigned memAccessFlags;
- /// Pointer to EAComp object.
- const StaticInstPtr<AlphaISA> eaCompPtr;
- /// Pointer to MemAcc object.
- const StaticInstPtr<AlphaISA> memAccPtr;
-
- /// Constructor
- Memory(const char *mnem, MachInst _machInst, OpClass __opClass,
- StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr,
- StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr)
- : AlphaStaticInst(mnem, _machInst, __opClass),
- memAccessFlags(0), eaCompPtr(_eaCompPtr), memAccPtr(_memAccPtr)
- {
- }
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
-
- public:
-
- const StaticInstPtr<AlphaISA> &eaCompInst() const { return eaCompPtr; }
- const StaticInstPtr<AlphaISA> &memAccInst() const { return memAccPtr; }
- };
-
- /**
- * Base class for memory-format instructions using a 32-bit
- * displacement (i.e. most of them).
- */
- class MemoryDisp32 : public Memory
- {
- protected:
- /// Displacement for EA calculation (signed).
- int32_t disp;
-
- /// Constructor.
- MemoryDisp32(const char *mnem, MachInst _machInst, OpClass __opClass,
- StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr,
- StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr)
- : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr),
- disp(MEMDISP)
- {
- }
- };
-
-
- /**
- * Base class for a few miscellaneous memory-format insts
- * that don't interpret the disp field: wh64, fetch, fetch_m, ecb.
- * None of these instructions has a destination register either.
- */
- class MemoryNoDisp : public Memory
- {
- protected:
- /// Constructor
- MemoryNoDisp(const char *mnem, MachInst _machInst, OpClass __opClass,
- StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr,
- StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr)
- : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr)
- {
- }
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-}};
-
-
-output decoder {{
- std::string
- Memory::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
- return csprintf("%-10s %c%d,%d(r%d)", mnemonic,
- flags[IsFloating] ? 'f' : 'r', RA, MEMDISP, RB);
- }
-
- std::string
- MemoryNoDisp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
- return csprintf("%-10s (r%d)", mnemonic, RB);
- }
-}};
-
-def format LoadAddress(code) {{
- iop = InstObjParams(name, Name, 'MemoryDisp32', CodeBlock(code))
- header_output = BasicDeclare.subst(iop)
- decoder_output = BasicConstructor.subst(iop)
- decode_block = BasicDecode.subst(iop)
- exec_output = BasicExecute.subst(iop)
-}};
-
-
-def template LoadStoreDeclare {{
- /**
- * Static instruction class for "%(mnemonic)s".
- */
- class %(class_name)s : public %(base_class)s
- {
- protected:
-
- /**
- * "Fake" effective address computation class for "%(mnemonic)s".
- */
- class EAComp : public %(base_class)s
- {
- public:
- /// Constructor
- EAComp(MachInst machInst);
-
- %(BasicExecDeclare)s
- };
-
- /**
- * "Fake" memory access instruction class for "%(mnemonic)s".
- */
- class MemAcc : public %(base_class)s
- {
- public:
- /// Constructor
- MemAcc(MachInst machInst);
-
- %(BasicExecDeclare)s
- };
-
- public:
-
- /// Constructor.
- %(class_name)s(MachInst machInst);
-
- %(BasicExecDeclare)s
- };
-}};
-
-def template LoadStoreConstructor {{
- /** TODO: change op_class to AddrGenOp or something (requires
- * creating new member of OpClass enum in op_class.hh, updating
- * config files, etc.). */
- inline %(class_name)s::EAComp::EAComp(MachInst machInst)
- : %(base_class)s("%(mnemonic)s (EAComp)", machInst, IntAluOp)
- {
- %(ea_constructor)s;
- }
-
- inline %(class_name)s::MemAcc::MemAcc(MachInst machInst)
- : %(base_class)s("%(mnemonic)s (MemAcc)", machInst, %(op_class)s)
- {
- %(memacc_constructor)s;
- }
-
- inline %(class_name)s::%(class_name)s(MachInst machInst)
- : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s,
- new EAComp(machInst), new MemAcc(machInst))
- {
- %(constructor)s;
- }
-}};
-
-
-def template EACompExecute {{
- Fault
- %(class_name)s::EAComp::execute(%(CPU_exec_context)s *xc,
- Trace::InstRecord *traceData) const
- {
- Addr EA;
- Fault fault = No_Fault;
-
- %(fp_enable_check)s;
- %(op_decl)s;
- %(op_rd)s;
- %(code)s;
-
- if (fault == No_Fault) {
- %(op_wb)s;
- xc->setEA(EA);
- }
-
- return fault;
- }
-}};
-
-def template MemAccExecute {{
- Fault
- %(class_name)s::MemAcc::execute(%(CPU_exec_context)s *xc,
- Trace::InstRecord *traceData) const
- {
- Addr EA;
- Fault fault = No_Fault;
-
- %(fp_enable_check)s;
- %(op_decl)s;
- %(op_nonmem_rd)s;
- EA = xc->getEA();
-
- if (fault == No_Fault) {
- %(op_mem_rd)s;
- %(code)s;
- }
-
- if (fault == No_Fault) {
- %(op_mem_wb)s;
- }
-
- if (fault == No_Fault) {
- %(postacc_code)s;
- }
-
- if (fault == No_Fault) {
- %(op_nonmem_wb)s;
- }
-
- return fault;
- }
-}};
-
-
-def template LoadStoreExecute {{
- Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
- Trace::InstRecord *traceData) const
- {
- Addr EA;
- Fault fault = No_Fault;
-
- %(fp_enable_check)s;
- %(op_decl)s;
- %(op_nonmem_rd)s;
- %(ea_code)s;
-
- if (fault == No_Fault) {
- %(op_mem_rd)s;
- %(memacc_code)s;
- }
-
- if (fault == No_Fault) {
- %(op_mem_wb)s;
- }
-
- if (fault == No_Fault) {
- %(postacc_code)s;
- }
-
- if (fault == No_Fault) {
- %(op_nonmem_wb)s;
- }
-
- return fault;
- }
-}};
-
-
-def template PrefetchExecute {{
- Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
- Trace::InstRecord *traceData) const
- {
- Addr EA;
- Fault fault = No_Fault;
-
- %(fp_enable_check)s;
- %(op_decl)s;
- %(op_nonmem_rd)s;
- %(ea_code)s;
-
- if (fault == No_Fault) {
- xc->prefetch(EA, memAccessFlags);
- }
-
- return No_Fault;
- }
-}};
-
-// load instructions use Ra as dest, so check for
-// Ra == 31 to detect nops
-def template LoadNopCheckDecode {{
- {
- AlphaStaticInst *i = new %(class_name)s(machInst);
- if (RA == 31) {
- i = makeNop(i);
- }
- return i;
- }
-}};
-
-
-// for some load instructions, Ra == 31 indicates a prefetch (not a nop)
-def template LoadPrefetchCheckDecode {{
- {
- if (RA != 31) {
- return new %(class_name)s(machInst);
- }
- else {
- return new %(class_name)sPrefetch(machInst);
- }
- }
-}};
-
-
-let {{
-def LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code = '',
- base_class = 'MemoryDisp32', flags = [],
- decode_template = BasicDecode,
- exec_template = LoadStoreExecute):
- # Segregate flags into instruction flags (handled by InstObjParams)
- # and memory access flags (handled here).
-
- # Would be nice to autogenerate this list, but oh well.
- valid_mem_flags = ['LOCKED', 'NO_FAULT', 'EVICT_NEXT', 'PF_EXCLUSIVE']
- mem_flags = [f for f in flags if f in valid_mem_flags]
- inst_flags = [f for f in flags if f not in valid_mem_flags]
-
- # add hook to get effective addresses into execution trace output.
- ea_code += '\nif (traceData) { traceData->setAddr(EA); }\n'
-
- # generate code block objects
- ea_cblk = CodeBlock(ea_code)
- memacc_cblk = CodeBlock(memacc_code)
- postacc_cblk = CodeBlock(postacc_code)
-
- # Some CPU models execute the memory operation as an atomic unit,
- # while others want to separate them into an effective address
- # computation and a memory access operation. As a result, we need
- # to generate three StaticInst objects. Note that the latter two
- # are nested inside the larger "atomic" one.
-
- # generate InstObjParams for EAComp object
- ea_iop = InstObjParams(name, Name, base_class, ea_cblk, inst_flags)
-
- # generate InstObjParams for MemAcc object
- memacc_iop = InstObjParams(name, Name, base_class, memacc_cblk, inst_flags)
- # in the split execution model, the MemAcc portion is responsible
- # for the post-access code.
- memacc_iop.postacc_code = postacc_cblk.code
-
- # generate InstObjParams for unified execution
- cblk = CodeBlock(ea_code + memacc_code + postacc_code)
- iop = InstObjParams(name, Name, base_class, cblk, inst_flags)
-
- iop.ea_constructor = ea_cblk.constructor
- iop.ea_code = ea_cblk.code
- iop.memacc_constructor = memacc_cblk.constructor
- iop.memacc_code = memacc_cblk.code
- iop.postacc_code = postacc_cblk.code
-
- if mem_flags:
- s = '\n\tmemAccessFlags = ' + string.join(mem_flags, '|') + ';'
- iop.constructor += s
- memacc_iop.constructor += s
-
- # (header_output, decoder_output, decode_block, exec_output)
- return (LoadStoreDeclare.subst(iop), LoadStoreConstructor.subst(iop),
- decode_template.subst(iop),
- EACompExecute.subst(ea_iop)
- + MemAccExecute.subst(memacc_iop)
- + exec_template.subst(iop))
-}};
-
-
-def format LoadOrNop(ea_code, memacc_code, *flags) {{
- (header_output, decoder_output, decode_block, exec_output) = \
- LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags,
- decode_template = LoadNopCheckDecode)
-}};
-
-
-// Note that the flags passed in apply only to the prefetch version
-def format LoadOrPrefetch(ea_code, memacc_code, *pf_flags) {{
- # declare the load instruction object and generate the decode block
- (header_output, decoder_output, decode_block, exec_output) = \
- LoadStoreBase(name, Name, ea_code, memacc_code,
- decode_template = LoadPrefetchCheckDecode)
-
- # Declare the prefetch instruction object.
-
- # convert flags from tuple to list to make them mutable
- pf_flags = list(pf_flags) + ['IsMemRef', 'IsLoad', 'IsDataPrefetch', 'MemReadOp', 'NO_FAULT']
-
- (pf_header_output, pf_decoder_output, _, pf_exec_output) = \
- LoadStoreBase(name, Name + 'Prefetch', ea_code, '',
- flags = pf_flags, exec_template = PrefetchExecute)
-
- header_output += pf_header_output
- decoder_output += pf_decoder_output
- exec_output += pf_exec_output
-}};
-
-
-def format Store(ea_code, memacc_code, *flags) {{
- (header_output, decoder_output, decode_block, exec_output) = \
- LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags)
-}};
-
-
-def format StoreCond(ea_code, memacc_code, postacc_code, *flags) {{
- (header_output, decoder_output, decode_block, exec_output) = \
- LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code,
- flags = flags)
-}};
-
-
-// Use 'MemoryNoDisp' as base: for wh64, fetch, ecb
-def format MiscPrefetch(ea_code, memacc_code, *flags) {{
- (header_output, decoder_output, decode_block, exec_output) = \
- LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags,
- base_class = 'MemoryNoDisp')
-}};
-
-
-////////////////////////////////////////////////////////////////////
-//
-// Control transfer instructions
-//
-
-output header {{
-
- /**
- * Base class for instructions whose disassembly is not purely a
- * function of the machine instruction (i.e., it depends on the
- * PC). This class overrides the disassemble() method to check
- * the PC and symbol table values before re-using a cached
- * disassembly string. This is necessary for branches and jumps,
- * where the disassembly string includes the target address (which
- * may depend on the PC and/or symbol table).
- */
- class PCDependentDisassembly : public AlphaStaticInst
- {
- protected:
- /// Cached program counter from last disassembly
- mutable Addr cachedPC;
- /// Cached symbol table pointer from last disassembly
- mutable const SymbolTable *cachedSymtab;
-
- /// Constructor
- PCDependentDisassembly(const char *mnem, MachInst _machInst,
- OpClass __opClass)
- : AlphaStaticInst(mnem, _machInst, __opClass),
- cachedPC(0), cachedSymtab(0)
- {
- }
-
- const std::string &
- disassemble(Addr pc, const SymbolTable *symtab) const;
- };
-
- /**
- * Base class for branches (PC-relative control transfers),
- * conditional or unconditional.
- */
- class Branch : public PCDependentDisassembly
- {
- protected:
- /// Displacement to target address (signed).
- int32_t disp;
-
- /// Constructor.
- Branch(const char *mnem, MachInst _machInst, OpClass __opClass)
- : PCDependentDisassembly(mnem, _machInst, __opClass),
- disp(BRDISP << 2)
- {
- }
-
- Addr branchTarget(Addr branchPC) const;
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-
- /**
- * Base class for jumps (register-indirect control transfers). In
- * the Alpha ISA, these are always unconditional.
- */
- class Jump : public PCDependentDisassembly
- {
- protected:
-
- /// Displacement to target address (signed).
- int32_t disp;
-
- public:
- /// Constructor
- Jump(const char *mnem, MachInst _machInst, OpClass __opClass)
- : PCDependentDisassembly(mnem, _machInst, __opClass),
- disp(BRDISP)
- {
- }
-
- Addr branchTarget(ExecContext *xc) const;
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-}};
-
-output decoder {{
- Addr
- Branch::branchTarget(Addr branchPC) const
- {
- return branchPC + 4 + disp;
- }
-
- Addr
- Jump::branchTarget(ExecContext *xc) const
- {
- Addr NPC = xc->readPC() + 4;
- uint64_t Rb = xc->readIntReg(_srcRegIdx[0]);
- return (Rb & ~3) | (NPC & 1);
- }
-
- const std::string &
- PCDependentDisassembly::disassemble(Addr pc,
- const SymbolTable *symtab) const
- {
- if (!cachedDisassembly ||
- pc != cachedPC || symtab != cachedSymtab)
- {
- if (cachedDisassembly)
- delete cachedDisassembly;
-
- cachedDisassembly =
- new std::string(generateDisassembly(pc, symtab));
- cachedPC = pc;
- cachedSymtab = symtab;
- }
-
- return *cachedDisassembly;
- }
-
- std::string
- Branch::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
- std::stringstream ss;
-
- ccprintf(ss, "%-10s ", mnemonic);
-
- // There's only one register arg (RA), but it could be
- // either a source (the condition for conditional
- // branches) or a destination (the link reg for
- // unconditional branches)
- if (_numSrcRegs > 0) {
- printReg(ss, _srcRegIdx[0]);
- ss << ",";
- }
- else if (_numDestRegs > 0) {
- printReg(ss, _destRegIdx[0]);
- ss << ",";
- }
-
-#ifdef SS_COMPATIBLE_DISASSEMBLY
- if (_numSrcRegs == 0 && _numDestRegs == 0) {
- printReg(ss, 31);
- ss << ",";
- }
-#endif
-
- Addr target = pc + 4 + disp;
-
- std::string str;
- if (symtab && symtab->findSymbol(target, str))
- ss << str;
- else
- ccprintf(ss, "0x%x", target);
-
- return ss.str();
- }
-
- std::string
- Jump::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
- std::stringstream ss;
-
- ccprintf(ss, "%-10s ", mnemonic);
-
-#ifdef SS_COMPATIBLE_DISASSEMBLY
- if (_numDestRegs == 0) {
- printReg(ss, 31);
- ss << ",";
- }
-#endif
-
- if (_numDestRegs > 0) {
- printReg(ss, _destRegIdx[0]);
- ss << ",";
- }
-
- ccprintf(ss, "(r%d)", RB);
-
- return ss.str();
- }
-}};
-
-def template JumpOrBranchDecode {{
- return (RA == 31)
- ? (StaticInst<AlphaISA> *)new %(class_name)s(machInst)
- : (StaticInst<AlphaISA> *)new %(class_name)sAndLink(machInst);
-}};
-
-def format CondBranch(code) {{
- code = 'bool cond;\n' + code + '\nif (cond) NPC = NPC + disp;\n';
- iop = InstObjParams(name, Name, 'Branch', CodeBlock(code),
- ('IsDirectControl', 'IsCondControl'))
- header_output = BasicDeclare.subst(iop)
- decoder_output = BasicConstructor.subst(iop)
- decode_block = BasicDecode.subst(iop)
- exec_output = BasicExecute.subst(iop)
-}};
-
-let {{
-def UncondCtrlBase(name, Name, base_class, npc_expr, flags):
- # Declare basic control transfer w/o link (i.e. link reg is R31)
- nolink_code = 'NPC = %s;\n' % npc_expr
- nolink_iop = InstObjParams(name, Name, base_class,
- CodeBlock(nolink_code), flags)
- header_output = BasicDeclare.subst(nolink_iop)
- decoder_output = BasicConstructor.subst(nolink_iop)
- exec_output = BasicExecute.subst(nolink_iop)
-
- # Generate declaration of '*AndLink' version, append to decls
- link_code = 'Ra = NPC & ~3;\n' + nolink_code
- link_iop = InstObjParams(name, Name + 'AndLink', base_class,
- CodeBlock(link_code), flags)
- header_output += BasicDeclare.subst(link_iop)
- decoder_output += BasicConstructor.subst(link_iop)
- exec_output += BasicExecute.subst(link_iop)
-
- # need to use link_iop for the decode template since it is expecting
- # the shorter version of class_name (w/o "AndLink")
-
- return (header_output, decoder_output,
- JumpOrBranchDecode.subst(nolink_iop), exec_output)
-}};
-
-def format UncondBranch(*flags) {{
- flags += ('IsUncondControl', 'IsDirectControl')
- (header_output, decoder_output, decode_block, exec_output) = \
- UncondCtrlBase(name, Name, 'Branch', 'NPC + disp', flags)
-}};
-
-def format Jump(*flags) {{
- flags += ('IsUncondControl', 'IsIndirectControl')
- (header_output, decoder_output, decode_block, exec_output) = \
- UncondCtrlBase(name, Name, 'Jump', '(Rb & ~3) | (NPC & 1)', flags)
-}};
-
-
-////////////////////////////////////////////////////////////////////
-//
-// PAL calls
-//
-
-output header {{
- /**
- * Base class for emulated call_pal calls (used only in
- * non-full-system mode).
- */
- class EmulatedCallPal : public AlphaStaticInst
- {
- protected:
-
- /// Constructor.
- EmulatedCallPal(const char *mnem, MachInst _machInst,
- OpClass __opClass)
- : AlphaStaticInst(mnem, _machInst, __opClass)
- {
- }
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-}};
-
-output decoder {{
- std::string
- EmulatedCallPal::generateDisassembly(Addr pc,
- const SymbolTable *symtab) const
- {
-#ifdef SS_COMPATIBLE_DISASSEMBLY
- return csprintf("%s %s", "call_pal", mnemonic);
-#else
- return csprintf("%-10s %s", "call_pal", mnemonic);
-#endif
- }
-}};
-
-def format EmulatedCallPal(code, *flags) {{
- iop = InstObjParams(name, Name, 'EmulatedCallPal', CodeBlock(code), flags)
- header_output = BasicDeclare.subst(iop)
- decoder_output = BasicConstructor.subst(iop)
- decode_block = BasicDecode.subst(iop)
- exec_output = BasicExecute.subst(iop)
-}};
-
-output header {{
- /**
- * Base class for full-system-mode call_pal instructions.
- * Probably could turn this into a leaf class and get rid of the
- * parser template.
- */
- class CallPalBase : public AlphaStaticInst
- {
- protected:
- int palFunc; ///< Function code part of instruction
- int palOffset; ///< Target PC, offset from IPR_PAL_BASE
- bool palValid; ///< is the function code valid?
- bool palPriv; ///< is this call privileged?
-
- /// Constructor.
- CallPalBase(const char *mnem, MachInst _machInst,
- OpClass __opClass);
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-}};
-
-output decoder {{
- inline
- CallPalBase::CallPalBase(const char *mnem, MachInst _machInst,
- OpClass __opClass)
- : AlphaStaticInst(mnem, _machInst, __opClass),
- palFunc(PALFUNC)
- {
- // From the 21164 HRM (paraphrased):
- // Bit 7 of the function code (mask 0x80) indicates
- // whether the call is privileged (bit 7 == 0) or
- // unprivileged (bit 7 == 1). The privileged call table
- // starts at 0x2000, the unprivielged call table starts at
- // 0x3000. Bits 5-0 (mask 0x3f) are used to calculate the
- // offset.
- const int palPrivMask = 0x80;
- const int palOffsetMask = 0x3f;
-
- // Pal call is invalid unless all other bits are 0
- palValid = ((machInst & ~(palPrivMask | palOffsetMask)) == 0);
- palPriv = ((machInst & palPrivMask) == 0);
- int shortPalFunc = (machInst & palOffsetMask);
- // Add 1 to base to set pal-mode bit
- palOffset = (palPriv ? 0x2001 : 0x3001) + (shortPalFunc << 6);
- }
-
- std::string
- CallPalBase::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
- return csprintf("%-10s %#x", "call_pal", palFunc);
- }
-}};
-
-def format CallPal(code, *flags) {{
- iop = InstObjParams(name, Name, 'CallPalBase', CodeBlock(code), flags)
- header_output = BasicDeclare.subst(iop)
- decoder_output = BasicConstructor.subst(iop)
- decode_block = BasicDecode.subst(iop)
- exec_output = BasicExecute.subst(iop)
-}};
-
-////////////////////////////////////////////////////////////////////
-//
-// hw_ld, hw_st
-//
-
-output header {{
- /**
- * Base class for hw_ld and hw_st.
- */
- class HwLoadStore : public Memory
- {
- protected:
-
- /// Displacement for EA calculation (signed).
- int16_t disp;
-
- /// Constructor
- HwLoadStore(const char *mnem, MachInst _machInst, OpClass __opClass,
- StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr,
- StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr);
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-}};
-
-
-output decoder {{
- inline
- HwLoadStore::HwLoadStore(const char *mnem, MachInst _machInst,
- OpClass __opClass,
- StaticInstPtr<AlphaISA> _eaCompPtr,
- StaticInstPtr<AlphaISA> _memAccPtr)
- : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr),
- disp(HW_LDST_DISP)
- {
- memAccessFlags = 0;
- if (HW_LDST_PHYS) memAccessFlags |= PHYSICAL;
- if (HW_LDST_ALT) memAccessFlags |= ALTMODE;
- if (HW_LDST_VPTE) memAccessFlags |= VPTE;
- if (HW_LDST_LOCK) memAccessFlags |= LOCKED;
- }
-
- std::string
- HwLoadStore::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
-#ifdef SS_COMPATIBLE_DISASSEMBLY
- return csprintf("%-10s r%d,%d(r%d)", mnemonic, RA, disp, RB);
-#else
- // HW_LDST_LOCK and HW_LDST_COND are the same bit.
- const char *lock_str =
- (HW_LDST_LOCK) ? (flags[IsLoad] ? ",LOCK" : ",COND") : "";
-
- return csprintf("%-10s r%d,%d(r%d)%s%s%s%s%s",
- mnemonic, RA, disp, RB,
- HW_LDST_PHYS ? ",PHYS" : "",
- HW_LDST_ALT ? ",ALT" : "",
- HW_LDST_QUAD ? ",QUAD" : "",
- HW_LDST_VPTE ? ",VPTE" : "",
- lock_str);
-#endif
- }
-}};
-
-def format HwLoadStore(ea_code, memacc_code, class_ext, *flags) {{
- (header_output, decoder_output, decode_block, exec_output) = \
- LoadStoreBase(name, Name + class_ext, ea_code, memacc_code,
- flags = flags, base_class = 'HwLoadStore')
-}};
-
-
-def format HwStoreCond(ea_code, memacc_code, postacc_code, class_ext, *flags) {{
- (header_output, decoder_output, decode_block, exec_output) = \
- LoadStoreBase(name, Name + class_ext, ea_code, memacc_code,
- postacc_code, flags = flags, base_class = 'HwLoadStore')
-}};
-
-
-output header {{
- /**
- * Base class for hw_mfpr and hw_mtpr.
- */
- class HwMoveIPR : public AlphaStaticInst
- {
- protected:
- /// Index of internal processor register.
- int ipr_index;
-
- /// Constructor
- HwMoveIPR(const char *mnem, MachInst _machInst, OpClass __opClass)
- : AlphaStaticInst(mnem, _machInst, __opClass),
- ipr_index(HW_IPR_IDX)
- {
- }
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-}};
-
-output decoder {{
- std::string
- HwMoveIPR::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
- if (_numSrcRegs > 0) {
- // must be mtpr
- return csprintf("%-10s r%d,IPR(%#x)",
- mnemonic, RA, ipr_index);
- }
- else {
- // must be mfpr
- return csprintf("%-10s IPR(%#x),r%d",
- mnemonic, ipr_index, RA);
- }
- }
-}};
-
-def format HwMoveIPR(code) {{
- iop = InstObjParams(name, Name, 'HwMoveIPR', CodeBlock(code),
- ['IprAccessOp'])
- header_output = BasicDeclare.subst(iop)
- decoder_output = BasicConstructor.subst(iop)
- decode_block = BasicDecode.subst(iop)
- exec_output = BasicExecute.subst(iop)
-}};
-
-
-////////////////////////////////////////////////////////////////////
-//
-// Unimplemented instructions
-//
-
-output header {{
- /**
- * Static instruction class for unimplemented instructions that
- * cause simulator termination. Note that these are recognized
- * (legal) instructions that the simulator does not support; the
- * 'Unknown' class is used for unrecognized/illegal instructions.
- * This is a leaf class.
- */
- class FailUnimplemented : public AlphaStaticInst
- {
- public:
- /// Constructor
- FailUnimplemented(const char *_mnemonic, MachInst _machInst)
- : AlphaStaticInst(_mnemonic, _machInst, No_OpClass)
- {
- // don't call execute() (which panics) if we're on a
- // speculative path
- flags[IsNonSpeculative] = true;
- }
-
- %(BasicExecDeclare)s
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-
- /**
- * Base class for unimplemented instructions that cause a warning
- * to be printed (but do not terminate simulation). This
- * implementation is a little screwy in that it will print a
- * warning for each instance of a particular unimplemented machine
- * instruction, not just for each unimplemented opcode. Should
- * probably make the 'warned' flag a static member of the derived
- * class.
- */
- class WarnUnimplemented : public AlphaStaticInst
- {
- private:
- /// Have we warned on this instruction yet?
- mutable bool warned;
-
- public:
- /// Constructor
- WarnUnimplemented(const char *_mnemonic, MachInst _machInst)
- : AlphaStaticInst(_mnemonic, _machInst, No_OpClass), warned(false)
- {
- // don't call execute() (which panics) if we're on a
- // speculative path
- flags[IsNonSpeculative] = true;
- }
-
- %(BasicExecDeclare)s
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-}};
-
-output decoder {{
- std::string
- FailUnimplemented::generateDisassembly(Addr pc,
- const SymbolTable *symtab) const
- {
- return csprintf("%-10s (unimplemented)", mnemonic);
- }
-
- std::string
- WarnUnimplemented::generateDisassembly(Addr pc,
- const SymbolTable *symtab) const
- {
-#ifdef SS_COMPATIBLE_DISASSEMBLY
- return csprintf("%-10s", mnemonic);
-#else
- return csprintf("%-10s (unimplemented)", mnemonic);
-#endif
- }
-}};
-
-output exec {{
- Fault
- FailUnimplemented::execute(%(CPU_exec_context)s *xc,
- Trace::InstRecord *traceData) const
- {
- panic("attempt to execute unimplemented instruction '%s' "
- "(inst 0x%08x, opcode 0x%x)", mnemonic, machInst, OPCODE);
- return Unimplemented_Opcode_Fault;
- }
-
- Fault
- WarnUnimplemented::execute(%(CPU_exec_context)s *xc,
- Trace::InstRecord *traceData) const
- {
- if (!warned) {
- warn("instruction '%s' unimplemented\n", mnemonic);
- warned = true;
- }
-
- return No_Fault;
- }
-}};
-
-
-def format FailUnimpl() {{
- iop = InstObjParams(name, 'FailUnimplemented')
- decode_block = BasicDecodeWithMnemonic.subst(iop)
-}};
-
-def format WarnUnimpl() {{
- iop = InstObjParams(name, 'WarnUnimplemented')
- decode_block = BasicDecodeWithMnemonic.subst(iop)
-}};
-
-output header {{
- /**
- * Static instruction class for unknown (illegal) instructions.
- * These cause simulator termination if they are executed in a
- * non-speculative mode. This is a leaf class.
- */
- class Unknown : public AlphaStaticInst
- {
- public:
- /// Constructor
- Unknown(MachInst _machInst)
- : AlphaStaticInst("unknown", _machInst, No_OpClass)
- {
- // don't call execute() (which panics) if we're on a
- // speculative path
- flags[IsNonSpeculative] = true;
- }
-
- %(BasicExecDeclare)s
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-}};
-
-////////////////////////////////////////////////////////////////////
-//
-// Unknown instructions
-//
-
-output decoder {{
- std::string
- Unknown::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
- return csprintf("%-10s (inst 0x%x, opcode 0x%x)",
- "unknown", machInst, OPCODE);
- }
-}};
-
-output exec {{
- Fault
- Unknown::execute(%(CPU_exec_context)s *xc,
- Trace::InstRecord *traceData) const
- {
- panic("attempt to execute unknown instruction "
- "(inst 0x%08x, opcode 0x%x)", machInst, OPCODE);
- return Unimplemented_Opcode_Fault;
- }
-}};
-
-def format Unknown() {{
- decode_block = 'return new Unknown(machInst);\n'
-}};
-
-////////////////////////////////////////////////////////////////////
-//
-// Utility functions for execute methods
-//
-
-output exec {{
-
- /// Return opa + opb, summing carry into third arg.
- inline uint64_t
- addc(uint64_t opa, uint64_t opb, int &carry)
- {
- uint64_t res = opa + opb;
- if (res < opa || res < opb)
- ++carry;
- return res;
- }
-
- /// Multiply two 64-bit values (opa * opb), returning the 128-bit
- /// product in res_hi and res_lo.
- inline void
- mul128(uint64_t opa, uint64_t opb, uint64_t &res_hi, uint64_t &res_lo)
- {
- // do a 64x64 --> 128 multiply using four 32x32 --> 64 multiplies
- uint64_t opa_hi = opa<63:32>;
- uint64_t opa_lo = opa<31:0>;
- uint64_t opb_hi = opb<63:32>;
- uint64_t opb_lo = opb<31:0>;
-
- res_lo = opa_lo * opb_lo;
-
- // The middle partial products logically belong in bit
- // positions 95 to 32. Thus the lower 32 bits of each product
- // sum into the upper 32 bits of the low result, while the
- // upper 32 sum into the low 32 bits of the upper result.
- uint64_t partial1 = opa_hi * opb_lo;
- uint64_t partial2 = opa_lo * opb_hi;
-
- uint64_t partial1_lo = partial1<31:0> << 32;
- uint64_t partial1_hi = partial1<63:32>;
- uint64_t partial2_lo = partial2<31:0> << 32;
- uint64_t partial2_hi = partial2<63:32>;
-
- // Add partial1_lo and partial2_lo to res_lo, keeping track
- // of any carries out
- int carry_out = 0;
- res_lo = addc(partial1_lo, res_lo, carry_out);
- res_lo = addc(partial2_lo, res_lo, carry_out);
-
- // Now calculate the high 64 bits...
- res_hi = (opa_hi * opb_hi) + partial1_hi + partial2_hi + carry_out;
- }
-
- /// Map 8-bit S-floating exponent to 11-bit T-floating exponent.
- /// See Table 2-2 of Alpha AHB.
- inline int
- map_s(int old_exp)
- {
- int hibit = old_exp<7:>;
- int lobits = old_exp<6:0>;
-
- if (hibit == 1) {
- return (lobits == 0x7f) ? 0x7ff : (0x400 | lobits);
- }
- else {
- return (lobits == 0) ? 0 : (0x380 | lobits);
- }
- }
-
- /// Convert a 32-bit S-floating value to the equivalent 64-bit
- /// representation to be stored in an FP reg.
- inline uint64_t
- s_to_t(uint32_t s_val)
- {
- uint64_t tmp = s_val;
- return (tmp<31:> << 63 // sign bit
- | (uint64_t)map_s(tmp<30:23>) << 52 // exponent
- | tmp<22:0> << 29); // fraction
- }
-
- /// Convert a 64-bit T-floating value to the equivalent 32-bit
- /// S-floating representation to be stored in memory.
- inline int32_t
- t_to_s(uint64_t t_val)
- {
- return (t_val<63:62> << 30 // sign bit & hi exp bit
- | t_val<58:29>); // rest of exp & fraction
- }
-}};
-
-////////////////////////////////////////////////////////////////////
-//
-// The actual decoder specification
-//
-
-decode OPCODE default Unknown::unknown() {
-
- format LoadAddress {
- 0x08: lda({{ Ra = Rb + disp; }});
- 0x09: ldah({{ Ra = Rb + (disp << 16); }});
- }
-
- format LoadOrNop {
- 0x0a: ldbu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.ub; }});
- 0x0c: ldwu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uw; }});
- 0x0b: ldq_u({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }});
- 0x23: ldt({{ EA = Rb + disp; }}, {{ Fa = Mem.df; }});
- 0x2a: ldl_l({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}, LOCKED);
- 0x2b: ldq_l({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, LOCKED);
- 0x20: copy_load({{EA = Ra;}},
- {{fault = xc->copySrcTranslate(EA);}},
- IsMemRef, IsLoad, IsCopy);
- }
-
- format LoadOrPrefetch {
- 0x28: ldl({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }});
- 0x29: ldq({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, EVICT_NEXT);
- // IsFloating flag on lds gets the prefetch to disassemble
- // using f31 instead of r31... funcitonally it's unnecessary
- 0x22: lds({{ EA = Rb + disp; }}, {{ Fa.uq = s_to_t(Mem.ul); }},
- PF_EXCLUSIVE, IsFloating);
- }
-
- format Store {
- 0x0e: stb({{ EA = Rb + disp; }}, {{ Mem.ub = Ra<7:0>; }});
- 0x0d: stw({{ EA = Rb + disp; }}, {{ Mem.uw = Ra<15:0>; }});
- 0x2c: stl({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }});
- 0x2d: stq({{ EA = Rb + disp; }}, {{ Mem.uq = Ra.uq; }});
- 0x0f: stq_u({{ EA = (Rb + disp) & ~7; }}, {{ Mem.uq = Ra.uq; }});
- 0x26: sts({{ EA = Rb + disp; }}, {{ Mem.ul = t_to_s(Fa.uq); }});
- 0x27: stt({{ EA = Rb + disp; }}, {{ Mem.df = Fa; }});
- 0x24: copy_store({{EA = Rb;}},
- {{fault = xc->copy(EA);}},
- IsMemRef, IsStore, IsCopy);
- }
-
- format StoreCond {
- 0x2e: stl_c({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }},
- {{
- uint64_t tmp = Mem_write_result;
- // see stq_c
- Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
- }}, LOCKED);
- 0x2f: stq_c({{ EA = Rb + disp; }}, {{ Mem.uq = Ra; }},
- {{
- uint64_t tmp = Mem_write_result;
- // If the write operation returns 0 or 1, then
- // this was a conventional store conditional,
- // and the value indicates the success/failure
- // of the operation. If another value is
- // returned, then this was a Turbolaser
- // mailbox access, and we don't update the
- // result register at all.
- Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
- }}, LOCKED);
- }
-
- format IntegerOperate {
-
- 0x10: decode INTFUNC { // integer arithmetic operations
-
- 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }});
- 0x40: addlv({{
- uint32_t tmp = Ra.sl + Rb_or_imm.sl;
- // signed overflow occurs when operands have same sign
- // and sign of result does not match.
- if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
- fault = Integer_Overflow_Fault;
- Rc.sl = tmp;
- }});
- 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }});
- 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }});
-
- 0x20: addq({{ Rc = Ra + Rb_or_imm; }});
- 0x60: addqv({{
- uint64_t tmp = Ra + Rb_or_imm;
- // signed overflow occurs when operands have same sign
- // and sign of result does not match.
- if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
- fault = Integer_Overflow_Fault;
- Rc = tmp;
- }});
- 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }});
- 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }});
-
- 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }});
- 0x49: sublv({{
- uint32_t tmp = Ra.sl - Rb_or_imm.sl;
- // signed overflow detection is same as for add,
- // except we need to look at the *complemented*
- // sign bit of the subtrahend (Rb), i.e., if the initial
- // signs are the *same* then no overflow can occur
- if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
- fault = Integer_Overflow_Fault;
- Rc.sl = tmp;
- }});
- 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }});
- 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }});
-
- 0x29: subq({{ Rc = Ra - Rb_or_imm; }});
- 0x69: subqv({{
- uint64_t tmp = Ra - Rb_or_imm;
- // signed overflow detection is same as for add,
- // except we need to look at the *complemented*
- // sign bit of the subtrahend (Rb), i.e., if the initial
- // signs are the *same* then no overflow can occur
- if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
- fault = Integer_Overflow_Fault;
- Rc = tmp;
- }});
- 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }});
- 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }});
-
- 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }});
- 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }});
- 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }});
- 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }});
- 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }});
-
- 0x0f: cmpbge({{
- int hi = 7;
- int lo = 0;
- uint64_t tmp = 0;
- for (int i = 0; i < 8; ++i) {
- tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i;
- hi += 8;
- lo += 8;
- }
- Rc = tmp;
- }});
- }
-
- 0x11: decode INTFUNC { // integer logical operations
-
- 0x00: and({{ Rc = Ra & Rb_or_imm; }});
- 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }});
- 0x20: bis({{ Rc = Ra | Rb_or_imm; }});
- 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }});
- 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }});
- 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }});
-
- // conditional moves
- 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }});
- 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }});
- 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }});
- 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }});
- 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }});
- 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }});
- 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }});
- 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }});
-
- // For AMASK, RA must be R31.
- 0x61: decode RA {
- 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }});
- }
-
- // For IMPLVER, RA must be R31 and the B operand
- // must be the immediate value 1.
- 0x6c: decode RA {
- 31: decode IMM {
- 1: decode INTIMM {
- // return EV5 for FULL_SYSTEM and EV6 otherwise
- 1: implver({{
-#if FULL_SYSTEM
- Rc = 1;
-#else
- Rc = 2;
-#endif
- }});
- }
- }
- }
-
-#if FULL_SYSTEM
- // The mysterious 11.25...
- 0x25: WarnUnimpl::eleven25();
-#endif
- }
-
- 0x12: decode INTFUNC {
- 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }});
- 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }});
- 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }});
-
- 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }});
- 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }});
- 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }});
- 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }});
-
- 0x52: mskwh({{
- int bv = Rb_or_imm<2:0>;
- Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra;
- }});
- 0x62: msklh({{
- int bv = Rb_or_imm<2:0>;
- Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra;
- }});
- 0x72: mskqh({{
- int bv = Rb_or_imm<2:0>;
- Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra;
- }});
-
- 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }});
- 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }});
- 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }});
- 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }});
-
- 0x5a: extwh({{
- Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }});
- 0x6a: extlh({{
- Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }});
- 0x7a: extqh({{
- Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }});
-
- 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }});
- 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }});
- 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }});
- 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }});
-
- 0x57: inswh({{
- int bv = Rb_or_imm<2:0>;
- Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0;
- }});
- 0x67: inslh({{
- int bv = Rb_or_imm<2:0>;
- Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0;
- }});
- 0x77: insqh({{
- int bv = Rb_or_imm<2:0>;
- Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0;
- }});
-
- 0x30: zap({{
- uint64_t zapmask = 0;
- for (int i = 0; i < 8; ++i) {
- if (Rb_or_imm<i:>)
- zapmask |= (mask(8) << (i * 8));
- }
- Rc = Ra & ~zapmask;
- }});
- 0x31: zapnot({{
- uint64_t zapmask = 0;
- for (int i = 0; i < 8; ++i) {
- if (!Rb_or_imm<i:>)
- zapmask |= (mask(8) << (i * 8));
- }
- Rc = Ra & ~zapmask;
- }});
- }
-
- 0x13: decode INTFUNC { // integer multiplies
- 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp);
- 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp);
- 0x30: umulh({{
- uint64_t hi, lo;
- mul128(Ra, Rb_or_imm, hi, lo);
- Rc = hi;
- }}, IntMultOp);
- 0x40: mullv({{
- // 32-bit multiply with trap on overflow
- int64_t Rax = Ra.sl; // sign extended version of Ra.sl
- int64_t Rbx = Rb_or_imm.sl;
- int64_t tmp = Rax * Rbx;
- // To avoid overflow, all the upper 32 bits must match
- // the sign bit of the lower 32. We code this as
- // checking the upper 33 bits for all 0s or all 1s.
- uint64_t sign_bits = tmp<63:31>;
- if (sign_bits != 0 && sign_bits != mask(33))
- fault = Integer_Overflow_Fault;
- Rc.sl = tmp<31:0>;
- }}, IntMultOp);
- 0x60: mulqv({{
- // 64-bit multiply with trap on overflow
- uint64_t hi, lo;
- mul128(Ra, Rb_or_imm, hi, lo);
- // all the upper 64 bits must match the sign bit of
- // the lower 64
- if (!((hi == 0 && lo<63:> == 0) ||
- (hi == mask(64) && lo<63:> == 1)))
- fault = Integer_Overflow_Fault;
- Rc = lo;
- }}, IntMultOp);
- }
-
- 0x1c: decode INTFUNC {
- 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); }
- 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); }
- 0x32: ctlz({{
- uint64_t count = 0;
- uint64_t temp = Rb;
- if (temp<63:32>) temp >>= 32; else count += 32;
- if (temp<31:16>) temp >>= 16; else count += 16;
- if (temp<15:8>) temp >>= 8; else count += 8;
- if (temp<7:4>) temp >>= 4; else count += 4;
- if (temp<3:2>) temp >>= 2; else count += 2;
- if (temp<1:1>) temp >>= 1; else count += 1;
- if ((temp<0:0>) != 0x1) count += 1;
- Rc = count;
- }}, IntAluOp);
-
- 0x33: cttz({{
- uint64_t count = 0;
- uint64_t temp = Rb;
- if (!(temp<31:0>)) { temp >>= 32; count += 32; }
- if (!(temp<15:0>)) { temp >>= 16; count += 16; }
- if (!(temp<7:0>)) { temp >>= 8; count += 8; }
- if (!(temp<3:0>)) { temp >>= 4; count += 4; }
- if (!(temp<1:0>)) { temp >>= 2; count += 2; }
- if (!(temp<0:0> & ULL(0x1))) count += 1;
- Rc = count;
- }}, IntAluOp);
-
- format FailUnimpl {
- 0x30: ctpop();
- 0x31: perr();
- 0x34: unpkbw();
- 0x35: unpkbl();
- 0x36: pkwb();
- 0x37: pklb();
- 0x38: minsb8();
- 0x39: minsw4();
- 0x3a: minub8();
- 0x3b: minuw4();
- 0x3c: maxub8();
- 0x3d: maxuw4();
- 0x3e: maxsb8();
- 0x3f: maxsw4();
- }
-
- format BasicOperateWithNopCheck {
- 0x70: decode RB {
- 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp);
- }
- 0x78: decode RB {
- 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }},
- FloatCvtOp);
- }
- }
- }
- }
-
- // Conditional branches.
- format CondBranch {
- 0x39: beq({{ cond = (Ra == 0); }});
- 0x3d: bne({{ cond = (Ra != 0); }});
- 0x3e: bge({{ cond = (Ra.sq >= 0); }});
- 0x3f: bgt({{ cond = (Ra.sq > 0); }});
- 0x3b: ble({{ cond = (Ra.sq <= 0); }});
- 0x3a: blt({{ cond = (Ra.sq < 0); }});
- 0x38: blbc({{ cond = ((Ra & 1) == 0); }});
- 0x3c: blbs({{ cond = ((Ra & 1) == 1); }});
-
- 0x31: fbeq({{ cond = (Fa == 0); }});
- 0x35: fbne({{ cond = (Fa != 0); }});
- 0x36: fbge({{ cond = (Fa >= 0); }});
- 0x37: fbgt({{ cond = (Fa > 0); }});
- 0x33: fble({{ cond = (Fa <= 0); }});
- 0x32: fblt({{ cond = (Fa < 0); }});
- }
-
- // unconditional branches
- format UncondBranch {
- 0x30: br();
- 0x34: bsr(IsCall);
- }
-
- // indirect branches
- 0x1a: decode JMPFUNC {
- format Jump {
- 0: jmp();
- 1: jsr(IsCall);
- 2: ret(IsReturn);
- 3: jsr_coroutine(IsCall, IsReturn);
- }
- }
-
- // Square root and integer-to-FP moves
- 0x14: decode FP_SHORTFUNC {
- // Integer to FP register moves must have RB == 31
- 0x4: decode RB {
- 31: decode FP_FULLFUNC {
- format BasicOperateWithNopCheck {
- 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp);
- 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp);
- 0x014: FailUnimpl::itoff(); // VAX-format conversion
- }
- }
- }
-
- // Square root instructions must have FA == 31
- 0xb: decode FA {
- 31: decode FP_TYPEFUNC {
- format FloatingPointOperate {
-#if SS_COMPATIBLE_FP
- 0x0b: sqrts({{
- if (Fb < 0.0)
- fault = Arithmetic_Fault;
- Fc = sqrt(Fb);
- }}, FloatSqrtOp);
-#else
- 0x0b: sqrts({{
- if (Fb.sf < 0.0)
- fault = Arithmetic_Fault;
- Fc.sf = sqrt(Fb.sf);
- }}, FloatSqrtOp);
-#endif
- 0x2b: sqrtt({{
- if (Fb < 0.0)
- fault = Arithmetic_Fault;
- Fc = sqrt(Fb);
- }}, FloatSqrtOp);
- }
- }
- }
-
- // VAX-format sqrtf and sqrtg are not implemented
- 0xa: FailUnimpl::sqrtfg();
- }
-
- // IEEE floating point
- 0x16: decode FP_SHORTFUNC_TOP2 {
- // The top two bits of the short function code break this
- // space into four groups: binary ops, compares, reserved, and
- // conversions. See Table 4-12 of AHB. There are different
- // special cases in these different groups, so we decode on
- // these top two bits first just to select a decode strategy.
- // Most of these instructions may have various trapping and
- // rounding mode flags set; these are decoded in the
- // FloatingPointDecode template used by the
- // FloatingPointOperate format.
-
- // add/sub/mul/div: just decode on the short function code
- // and source type. All valid trapping and rounding modes apply.
- 0: decode FP_TRAPMODE {
- // check for valid trapping modes here
- 0,1,5,7: decode FP_TYPEFUNC {
- format FloatingPointOperate {
-#if SS_COMPATIBLE_FP
- 0x00: adds({{ Fc = Fa + Fb; }});
- 0x01: subs({{ Fc = Fa - Fb; }});
- 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp);
- 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp);
-#else
- 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }});
- 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }});
- 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp);
- 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp);
-#endif
-
- 0x20: addt({{ Fc = Fa + Fb; }});
- 0x21: subt({{ Fc = Fa - Fb; }});
- 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp);
- 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp);
- }
- }
- }
-
- // Floating-point compare instructions must have the default
- // rounding mode, and may use the default trapping mode or
- // /SU. Both trapping modes are treated the same by M5; the
- // only difference on the real hardware (as far a I can tell)
- // is that without /SU you'd get an imprecise trap if you
- // tried to compare a NaN with something else (instead of an
- // "unordered" result).
- 1: decode FP_FULLFUNC {
- format BasicOperateWithNopCheck {
- 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }},
- FloatCmpOp);
- 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }},
- FloatCmpOp);
- 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }},
- FloatCmpOp);
- 0x0a4, 0x5a4: cmptun({{ // unordered
- Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0;
- }}, FloatCmpOp);
- }
- }
-
- // The FP-to-integer and integer-to-FP conversion insts
- // require that FA be 31.
- 3: decode FA {
- 31: decode FP_TYPEFUNC {
- format FloatingPointOperate {
- 0x2f: decode FP_ROUNDMODE {
- format FPFixedRounding {
- // "chopped" i.e. round toward zero
- 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }},
- Chopped);
- // round to minus infinity
- 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }},
- MinusInfinity);
- }
- default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }});
- }
-
- // The cvtts opcode is overloaded to be cvtst if the trap
- // mode is 2 or 6 (which are not valid otherwise)
- 0x2c: decode FP_FULLFUNC {
- format BasicOperateWithNopCheck {
- // trap on denorm version "cvtst/s" is
- // simulated same as cvtst
- 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }});
- }
- default: cvtts({{ Fc.sf = Fb; }});
- }
-
- // The trapping mode for integer-to-FP conversions
- // must be /SUI or nothing; /U and /SU are not
- // allowed. The full set of rounding modes are
- // supported though.
- 0x3c: decode FP_TRAPMODE {
- 0,7: cvtqs({{ Fc.sf = Fb.sq; }});
- }
- 0x3e: decode FP_TRAPMODE {
- 0,7: cvtqt({{ Fc = Fb.sq; }});
- }
- }
- }
- }
- }
-
- // misc FP operate
- 0x17: decode FP_FULLFUNC {
- format BasicOperateWithNopCheck {
- 0x010: cvtlq({{
- Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>;
- }});
- 0x030: cvtql({{
- Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
- }});
-
- // We treat the precise & imprecise trapping versions of
- // cvtql identically.
- 0x130, 0x530: cvtqlv({{
- // To avoid overflow, all the upper 32 bits must match
- // the sign bit of the lower 32. We code this as
- // checking the upper 33 bits for all 0s or all 1s.
- uint64_t sign_bits = Fb.uq<63:31>;
- if (sign_bits != 0 && sign_bits != mask(33))
- fault = Integer_Overflow_Fault;
- Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
- }});
-
- 0x020: cpys({{ // copy sign
- Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>;
- }});
- 0x021: cpysn({{ // copy sign negated
- Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>;
- }});
- 0x022: cpyse({{ // copy sign and exponent
- Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>;
- }});
-
- 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }});
- 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }});
- 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }});
- 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }});
- 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }});
- 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }});
-
- 0x024: mt_fpcr({{ FPCR = Fa.uq; }});
- 0x025: mf_fpcr({{ Fa.uq = FPCR; }});
- }
- }
-
- // miscellaneous mem-format ops
- 0x18: decode MEMFUNC {
- format WarnUnimpl {
- 0x8000: fetch();
- 0xa000: fetch_m();
- 0xe800: ecb();
- }
-
- format MiscPrefetch {
- 0xf800: wh64({{ EA = Rb & ~ULL(63); }},
- {{ xc->writeHint(EA, 64, memAccessFlags); }},
- IsMemRef, IsDataPrefetch, IsStore, MemWriteOp,
- NO_FAULT);
- }
-
- format BasicOperate {
- 0xc000: rpcc({{
-#if FULL_SYSTEM
- /* Rb is a fake dependency so here is a fun way to get
- * the parser to understand that.
- */
- Ra = xc->readIpr(AlphaISA::IPR_CC, fault) + (Rb & 0);
-
-#else
- Ra = curTick;
-#endif
- }});
-
- // All of the barrier instructions below do nothing in
- // their execute() methods (hence the empty code blocks).
- // All of their functionality is hard-coded in the
- // pipeline based on the flags IsSerializing,
- // IsMemBarrier, and IsWriteBarrier. In the current
- // detailed CPU model, the execute() function only gets
- // called at fetch, so there's no way to generate pipeline
- // behavior at any other stage. Once we go to an
- // exec-in-exec CPU model we should be able to get rid of
- // these flags and implement this behavior via the
- // execute() methods.
-
- // trapb is just a barrier on integer traps, where excb is
- // a barrier on integer and FP traps. "EXCB is thus a
- // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat
- // them the same though.
- 0x0000: trapb({{ }}, IsSerializing, No_OpClass);
- 0x0400: excb({{ }}, IsSerializing, No_OpClass);
- 0x4000: mb({{ }}, IsMemBarrier, MemReadOp);
- 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp);
- }
-
-#if FULL_SYSTEM
- format BasicOperate {
- 0xe000: rc({{
- Ra = xc->readIntrFlag();
- xc->setIntrFlag(0);
- }}, IsNonSpeculative);
- 0xf000: rs({{
- Ra = xc->readIntrFlag();
- xc->setIntrFlag(1);
- }}, IsNonSpeculative);
- }
-#else
- format FailUnimpl {
- 0xe000: rc();
- 0xf000: rs();
- }
-#endif
- }
-
-#if FULL_SYSTEM
- 0x00: CallPal::call_pal({{
- if (!palValid ||
- (palPriv
- && xc->readIpr(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) {
- // invalid pal function code, or attempt to do privileged
- // PAL call in non-kernel mode
- fault = Unimplemented_Opcode_Fault;
- }
- else {
- // check to see if simulator wants to do something special
- // on this PAL call (including maybe suppress it)
- bool dopal = xc->simPalCheck(palFunc);
-
- if (dopal) {
- AlphaISA::swap_palshadow(&xc->xcBase()->regs, true);
- xc->setIpr(AlphaISA::IPR_EXC_ADDR, NPC);
- NPC = xc->readIpr(AlphaISA::IPR_PAL_BASE, fault) + palOffset;
- }
- }
- }}, IsNonSpeculative);
-#else
- 0x00: decode PALFUNC {
- format EmulatedCallPal {
- 0x00: halt ({{
- SimExit(curTick, "halt instruction encountered");
- }}, IsNonSpeculative);
- 0x83: callsys({{
- xc->syscall();
- }}, IsNonSpeculative);
- // Read uniq reg into ABI return value register (r0)
- 0x9e: rduniq({{ R0 = Runiq; }});
- // Write uniq reg with value from ABI arg register (r16)
- 0x9f: wruniq({{ Runiq = R16; }});
- }
- }
-#endif
-
-#if FULL_SYSTEM
- format HwLoadStore {
- 0x1b: decode HW_LDST_QUAD {
- 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L);
- 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q);
- }
-
- 0x1f: decode HW_LDST_COND {
- 0: decode HW_LDST_QUAD {
- 0: hw_st({{ EA = (Rb + disp) & ~3; }},
- {{ Mem.ul = Ra<31:0>; }}, L);
- 1: hw_st({{ EA = (Rb + disp) & ~7; }},
- {{ Mem.uq = Ra.uq; }}, Q);
- }
-
- 1: FailUnimpl::hw_st_cond();
- }
- }
-
- format HwMoveIPR {
- 0x19: hw_mfpr({{
- // this instruction is only valid in PAL mode
- if (!xc->inPalMode()) {
- fault = Unimplemented_Opcode_Fault;
- }
- else {
- Ra = xc->readIpr(ipr_index, fault);
- }
- }});
- 0x1d: hw_mtpr({{
- // this instruction is only valid in PAL mode
- if (!xc->inPalMode()) {
- fault = Unimplemented_Opcode_Fault;
- }
- else {
- xc->setIpr(ipr_index, Ra);
- if (traceData) { traceData->setData(Ra); }
- }
- }});
- }
-
- format BasicOperate {
- 0x1e: hw_rei({{ xc->hwrei(); }}, IsSerializing);
-
- // M5 special opcodes use the reserved 0x01 opcode space
- 0x01: decode M5FUNC {
- 0x00: arm({{
- AlphaPseudo::arm(xc->xcBase());
- }}, IsNonSpeculative);
- 0x01: quiesce({{
- AlphaPseudo::quiesce(xc->xcBase());
- }}, IsNonSpeculative);
- 0x10: ivlb({{
- AlphaPseudo::ivlb(xc->xcBase());
- }}, No_OpClass, IsNonSpeculative);
- 0x11: ivle({{
- AlphaPseudo::ivle(xc->xcBase());
- }}, No_OpClass, IsNonSpeculative);
- 0x20: m5exit_old({{
- AlphaPseudo::m5exit_old(xc->xcBase());
- }}, No_OpClass, IsNonSpeculative);
- 0x21: m5exit({{
- AlphaPseudo::m5exit(xc->xcBase());
- }}, No_OpClass, IsNonSpeculative);
- 0x30: initparam({{ Ra = xc->xcBase()->cpu->system->init_param; }});
- 0x40: resetstats({{
- AlphaPseudo::resetstats(xc->xcBase());
- }}, IsNonSpeculative);
- 0x41: dumpstats({{
- AlphaPseudo::dumpstats(xc->xcBase());
- }}, IsNonSpeculative);
- 0x42: dumpresetstats({{
- AlphaPseudo::dumpresetstats(xc->xcBase());
- }}, IsNonSpeculative);
- 0x43: m5checkpoint({{
- AlphaPseudo::m5checkpoint(xc->xcBase());
- }}, IsNonSpeculative);
- 0x50: m5readfile({{
- AlphaPseudo::readfile(xc->xcBase());
- }}, IsNonSpeculative);
- 0x51: m5break({{
- AlphaPseudo::debugbreak(xc->xcBase());
- }}, IsNonSpeculative);
- 0x52: m5switchcpu({{
- AlphaPseudo::switchcpu(xc->xcBase());
- }}, IsNonSpeculative);
- 0x53: m5addsymbol({{
- AlphaPseudo::addsymbol(xc->xcBase());
- }}, IsNonSpeculative);
-
- }
- }
-#endif
-}