summaryrefslogtreecommitdiff
path: root/arch/isa_parser.py
diff options
context:
space:
mode:
Diffstat (limited to 'arch/isa_parser.py')
-rwxr-xr-xarch/isa_parser.py1810
1 files changed, 0 insertions, 1810 deletions
diff --git a/arch/isa_parser.py b/arch/isa_parser.py
deleted file mode 100755
index a92c85c3f..000000000
--- a/arch/isa_parser.py
+++ /dev/null
@@ -1,1810 +0,0 @@
-# Copyright (c) 2003-2005 The Regents of The University of Michigan
-# All rights reserved.
-#
-# Redistribution and use in source and binary forms, with or without
-# modification, are permitted provided that the following conditions are
-# met: redistributions of source code must retain the above copyright
-# notice, this list of conditions and the following disclaimer;
-# redistributions in binary form must reproduce the above copyright
-# notice, this list of conditions and the following disclaimer in the
-# documentation and/or other materials provided with the distribution;
-# neither the name of the copyright holders nor the names of its
-# contributors may be used to endorse or promote products derived from
-# this software without specific prior written permission.
-#
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-import os
-import sys
-import re
-import string
-import traceback
-# get type names
-from types import *
-
-# Prepend the directory where the PLY lex & yacc modules are found
-# to the search path. Assumes we're compiling in a subdirectory
-# of 'build' in the current tree.
-sys.path[0:0] = [os.environ['M5_EXT'] + '/ply']
-
-import lex
-import yacc
-
-#####################################################################
-#
-# Lexer
-#
-# The PLY lexer module takes two things as input:
-# - A list of token names (the string list 'tokens')
-# - A regular expression describing a match for each token. The
-# regexp for token FOO can be provided in two ways:
-# - as a string variable named t_FOO
-# - as the doc string for a function named t_FOO. In this case,
-# the function is also executed, allowing an action to be
-# associated with each token match.
-#
-#####################################################################
-
-# Reserved words. These are listed separately as they are matched
-# using the same regexp as generic IDs, but distinguished in the
-# t_ID() function. The PLY documentation suggests this approach.
-reserved = (
- 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
- 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
- 'OUTPUT', 'SIGNED', 'TEMPLATE'
- )
-
-# List of tokens. The lex module requires this.
-tokens = reserved + (
- # identifier
- 'ID',
-
- # integer literal
- 'INTLIT',
-
- # string literal
- 'STRLIT',
-
- # code literal
- 'CODELIT',
-
- # ( ) [ ] { } < > , ; : :: *
- 'LPAREN', 'RPAREN',
- 'LBRACKET', 'RBRACKET',
- 'LBRACE', 'RBRACE',
- 'LESS', 'GREATER', 'EQUALS',
- 'COMMA', 'SEMI', 'COLON', 'DBLCOLON',
- 'ASTERISK',
-
- # C preprocessor directives
- 'CPPDIRECTIVE'
-
-# The following are matched but never returned. commented out to
-# suppress PLY warning
- # newfile directive
-# 'NEWFILE',
-
- # endfile directive
-# 'ENDFILE'
-)
-
-# Regular expressions for token matching
-t_LPAREN = r'\('
-t_RPAREN = r'\)'
-t_LBRACKET = r'\['
-t_RBRACKET = r'\]'
-t_LBRACE = r'\{'
-t_RBRACE = r'\}'
-t_LESS = r'\<'
-t_GREATER = r'\>'
-t_EQUALS = r'='
-t_COMMA = r','
-t_SEMI = r';'
-t_COLON = r':'
-t_DBLCOLON = r'::'
-t_ASTERISK = r'\*'
-
-# Identifiers and reserved words
-reserved_map = { }
-for r in reserved:
- reserved_map[r.lower()] = r
-
-def t_ID(t):
- r'[A-Za-z_]\w*'
- t.type = reserved_map.get(t.value,'ID')
- return t
-
-# Integer literal
-def t_INTLIT(t):
- r'(0x[\da-fA-F]+)|\d+'
- try:
- t.value = int(t.value,0)
- except ValueError:
- error(t.lineno, 'Integer value "%s" too large' % t.value)
- t.value = 0
- return t
-
-# String literal. Note that these use only single quotes, and
-# can span multiple lines.
-def t_STRLIT(t):
- r"(?m)'([^'])+'"
- # strip off quotes
- t.value = t.value[1:-1]
- t.lineno += t.value.count('\n')
- return t
-
-
-# "Code literal"... like a string literal, but delimiters are
-# '{{' and '}}' so they get formatted nicely under emacs c-mode
-def t_CODELIT(t):
- r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
- # strip off {{ & }}
- t.value = t.value[2:-2]
- t.lineno += t.value.count('\n')
- return t
-
-def t_CPPDIRECTIVE(t):
- r'^\#[^\#].*\n'
- t.lineno += t.value.count('\n')
- return t
-
-def t_NEWFILE(t):
- r'^\#\#newfile\s+"[\w/.-]*"'
- fileNameStack.push((t.value[11:-1], t.lineno))
- t.lineno = 0
-
-def t_ENDFILE(t):
- r'^\#\#endfile'
- (old_filename, t.lineno) = fileNameStack.pop()
-
-#
-# The functions t_NEWLINE, t_ignore, and t_error are
-# special for the lex module.
-#
-
-# Newlines
-def t_NEWLINE(t):
- r'\n+'
- t.lineno += t.value.count('\n')
-
-# Comments
-def t_comment(t):
- r'//.*'
-
-# Completely ignored characters
-t_ignore = ' \t\x0c'
-
-# Error handler
-def t_error(t):
- error(t.lineno, "illegal character '%s'" % t.value[0])
- t.skip(1)
-
-# Build the lexer
-lex.lex()
-
-#####################################################################
-#
-# Parser
-#
-# Every function whose name starts with 'p_' defines a grammar rule.
-# The rule is encoded in the function's doc string, while the
-# function body provides the action taken when the rule is matched.
-# The argument to each function is a list of the values of the
-# rule's symbols: t[0] for the LHS, and t[1..n] for the symbols
-# on the RHS. For tokens, the value is copied from the t.value
-# attribute provided by the lexer. For non-terminals, the value
-# is assigned by the producing rule; i.e., the job of the grammar
-# rule function is to set the value for the non-terminal on the LHS
-# (by assigning to t[0]).
-#####################################################################
-
-# The LHS of the first grammar rule is used as the start symbol
-# (in this case, 'specification'). Note that this rule enforces
-# that there will be exactly one namespace declaration, with 0 or more
-# global defs/decls before and after it. The defs & decls before
-# the namespace decl will be outside the namespace; those after
-# will be inside. The decoder function is always inside the namespace.
-def p_specification(t):
- 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
- global_code = t[1]
- isa_name = t[2]
- namespace = isa_name + "Inst"
- # wrap the decode block as a function definition
- t[4].wrap_decode_block('''
-StaticInstPtr
-%(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst)
-{
- using namespace %(namespace)s;
-''' % vars(), '}')
- # both the latter output blocks and the decode block are in the namespace
- namespace_code = t[3] + t[4]
- # pass it all back to the caller of yacc.parse()
- t[0] = (isa_name, namespace, global_code, namespace_code)
-
-# ISA name declaration looks like "namespace <foo>;"
-def p_name_decl(t):
- 'name_decl : NAMESPACE ID SEMI'
- t[0] = t[2]
-
-# 'opt_defs_and_outputs' is a possibly empty sequence of
-# def and/or output statements.
-def p_opt_defs_and_outputs_0(t):
- 'opt_defs_and_outputs : empty'
- t[0] = GenCode()
-
-def p_opt_defs_and_outputs_1(t):
- 'opt_defs_and_outputs : defs_and_outputs'
- t[0] = t[1]
-
-def p_defs_and_outputs_0(t):
- 'defs_and_outputs : def_or_output'
- t[0] = t[1]
-
-def p_defs_and_outputs_1(t):
- 'defs_and_outputs : defs_and_outputs def_or_output'
- t[0] = t[1] + t[2]
-
-# The list of possible definition/output statements.
-def p_def_or_output(t):
- '''def_or_output : def_format
- | def_bitfield
- | def_template
- | def_operand_types
- | def_operands
- | output_header
- | output_decoder
- | output_exec
- | global_let'''
- t[0] = t[1]
-
-# Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
-# directly to the appropriate output section.
-
-
-# Protect any non-dict-substitution '%'s in a format string
-# (i.e. those not followed by '(')
-def protect_non_subst_percents(s):
- return re.sub(r'%(?!\()', '%%', s)
-
-# Massage output block by substituting in template definitions and bit
-# operators. We handle '%'s embedded in the string that don't
-# indicate template substitutions (or CPU-specific symbols, which get
-# handled in GenCode) by doubling them first so that the format
-# operation will reduce them back to single '%'s.
-def process_output(s):
- s = protect_non_subst_percents(s)
- # protects cpu-specific symbols too
- s = protect_cpu_symbols(s)
- return substBitOps(s % templateMap)
-
-def p_output_header(t):
- 'output_header : OUTPUT HEADER CODELIT SEMI'
- t[0] = GenCode(header_output = process_output(t[3]))
-
-def p_output_decoder(t):
- 'output_decoder : OUTPUT DECODER CODELIT SEMI'
- t[0] = GenCode(decoder_output = process_output(t[3]))
-
-def p_output_exec(t):
- 'output_exec : OUTPUT EXEC CODELIT SEMI'
- t[0] = GenCode(exec_output = process_output(t[3]))
-
-# global let blocks 'let {{...}}' (Python code blocks) are executed
-# directly when seen. Note that these execute in a special variable
-# context 'exportContext' to prevent the code from polluting this
-# script's namespace.
-def p_global_let(t):
- 'global_let : LET CODELIT SEMI'
- updateExportContext()
- try:
- exec fixPythonIndentation(t[2]) in exportContext
- except Exception, exc:
- error(t.lineno(1),
- 'error: %s in global let block "%s".' % (exc, t[2]))
- t[0] = GenCode() # contributes nothing to the output C++ file
-
-# Define the mapping from operand type extensions to C++ types and bit
-# widths (stored in operandTypeMap).
-def p_def_operand_types(t):
- 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
- try:
- userDict = eval('{' + t[3] + '}')
- except Exception, exc:
- error(t.lineno(1),
- 'error: %s in def operand_types block "%s".' % (exc, t[3]))
- buildOperandTypeMap(userDict, t.lineno(1))
- t[0] = GenCode() # contributes nothing to the output C++ file
-
-# Define the mapping from operand names to operand classes and other
-# traits. Stored in operandNameMap.
-def p_def_operands(t):
- 'def_operands : DEF OPERANDS CODELIT SEMI'
- if not globals().has_key('operandTypeMap'):
- error(t.lineno(1),
- 'error: operand types must be defined before operands')
- try:
- userDict = eval('{' + t[3] + '}')
- except Exception, exc:
- error(t.lineno(1),
- 'error: %s in def operands block "%s".' % (exc, t[3]))
- buildOperandNameMap(userDict, t.lineno(1))
- t[0] = GenCode() # contributes nothing to the output C++ file
-
-# A bitfield definition looks like:
-# 'def [signed] bitfield <ID> [<first>:<last>]'
-# This generates a preprocessor macro in the output file.
-def p_def_bitfield_0(t):
- 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
- expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
- if (t[2] == 'signed'):
- expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
- hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
- t[0] = GenCode(header_output = hash_define)
-
-# alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
-def p_def_bitfield_1(t):
- 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
- expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
- if (t[2] == 'signed'):
- expr = 'sext<%d>(%s)' % (1, expr)
- hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
- t[0] = GenCode(header_output = hash_define)
-
-def p_opt_signed_0(t):
- 'opt_signed : SIGNED'
- t[0] = t[1]
-
-def p_opt_signed_1(t):
- 'opt_signed : empty'
- t[0] = ''
-
-# Global map variable to hold templates
-templateMap = {}
-
-def p_def_template(t):
- 'def_template : DEF TEMPLATE ID CODELIT SEMI'
- templateMap[t[3]] = Template(t[4])
- t[0] = GenCode()
-
-# An instruction format definition looks like
-# "def format <fmt>(<params>) {{...}};"
-def p_def_format(t):
- 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
- (id, params, code) = (t[3], t[5], t[7])
- defFormat(id, params, code, t.lineno(1))
- t[0] = GenCode()
-
-# The formal parameter list for an instruction format is a possibly
-# empty list of comma-separated parameters. Positional (standard,
-# non-keyword) parameters must come first, followed by keyword
-# parameters, followed by a '*foo' parameter that gets excess
-# positional arguments (as in Python). Each of these three parameter
-# categories is optional.
-#
-# Note that we do not support the '**foo' parameter for collecting
-# otherwise undefined keyword args. Otherwise the parameter list is
-# (I believe) identical to what is supported in Python.
-#
-# The param list generates a tuple, where the first element is a list of
-# the positional params and the second element is a dict containing the
-# keyword params.
-def p_param_list_0(t):
- 'param_list : positional_param_list COMMA nonpositional_param_list'
- t[0] = t[1] + t[3]
-
-def p_param_list_1(t):
- '''param_list : positional_param_list
- | nonpositional_param_list'''
- t[0] = t[1]
-
-def p_positional_param_list_0(t):
- 'positional_param_list : empty'
- t[0] = []
-
-def p_positional_param_list_1(t):
- 'positional_param_list : ID'
- t[0] = [t[1]]
-
-def p_positional_param_list_2(t):
- 'positional_param_list : positional_param_list COMMA ID'
- t[0] = t[1] + [t[3]]
-
-def p_nonpositional_param_list_0(t):
- 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
- t[0] = t[1] + t[3]
-
-def p_nonpositional_param_list_1(t):
- '''nonpositional_param_list : keyword_param_list
- | excess_args_param'''
- t[0] = t[1]
-
-def p_keyword_param_list_0(t):
- 'keyword_param_list : keyword_param'
- t[0] = [t[1]]
-
-def p_keyword_param_list_1(t):
- 'keyword_param_list : keyword_param_list COMMA keyword_param'
- t[0] = t[1] + [t[3]]
-
-def p_keyword_param(t):
- 'keyword_param : ID EQUALS expr'
- t[0] = t[1] + ' = ' + t[3].__repr__()
-
-def p_excess_args_param(t):
- 'excess_args_param : ASTERISK ID'
- # Just concatenate them: '*ID'. Wrap in list to be consistent
- # with positional_param_list and keyword_param_list.
- t[0] = [t[1] + t[2]]
-
-# End of format definition-related rules.
-##############
-
-#
-# A decode block looks like:
-# decode <field1> [, <field2>]* [default <inst>] { ... }
-#
-def p_decode_block(t):
- 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
- default_defaults = defaultStack.pop()
- codeObj = t[5]
- # use the "default defaults" only if there was no explicit
- # default statement in decode_stmt_list
- if not codeObj.has_decode_default:
- codeObj += default_defaults
- codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
- t[0] = codeObj
-
-# The opt_default statement serves only to push the "default defaults"
-# onto defaultStack. This value will be used by nested decode blocks,
-# and used and popped off when the current decode_block is processed
-# (in p_decode_block() above).
-def p_opt_default_0(t):
- 'opt_default : empty'
- # no default specified: reuse the one currently at the top of the stack
- defaultStack.push(defaultStack.top())
- # no meaningful value returned
- t[0] = None
-
-def p_opt_default_1(t):
- 'opt_default : DEFAULT inst'
- # push the new default
- codeObj = t[2]
- codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
- defaultStack.push(codeObj)
- # no meaningful value returned
- t[0] = None
-
-def p_decode_stmt_list_0(t):
- 'decode_stmt_list : decode_stmt'
- t[0] = t[1]
-
-def p_decode_stmt_list_1(t):
- 'decode_stmt_list : decode_stmt decode_stmt_list'
- if (t[1].has_decode_default and t[2].has_decode_default):
- error(t.lineno(1), 'Two default cases in decode block')
- t[0] = t[1] + t[2]
-
-#
-# Decode statement rules
-#
-# There are four types of statements allowed in a decode block:
-# 1. Format blocks 'format <foo> { ... }'
-# 2. Nested decode blocks
-# 3. Instruction definitions.
-# 4. C preprocessor directives.
-
-
-# Preprocessor directives found in a decode statement list are passed
-# through to the output, replicated to all of the output code
-# streams. This works well for ifdefs, so we can ifdef out both the
-# declarations and the decode cases generated by an instruction
-# definition. Handling them as part of the grammar makes it easy to
-# keep them in the right place with respect to the code generated by
-# the other statements.
-def p_decode_stmt_cpp(t):
- 'decode_stmt : CPPDIRECTIVE'
- t[0] = GenCode(t[1], t[1], t[1], t[1])
-
-# A format block 'format <foo> { ... }' sets the default instruction
-# format used to handle instruction definitions inside the block.
-# This format can be overridden by using an explicit format on the
-# instruction definition or with a nested format block.
-def p_decode_stmt_format(t):
- 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
- # The format will be pushed on the stack when 'push_format_id' is
- # processed (see below). Once the parser has recognized the full
- # production (though the right brace), we're done with the format,
- # so now we can pop it.
- formatStack.pop()
- t[0] = t[4]
-
-# This rule exists so we can set the current format (& push the stack)
-# when we recognize the format name part of the format block.
-def p_push_format_id(t):
- 'push_format_id : ID'
- try:
- formatStack.push(formatMap[t[1]])
- t[0] = ('', '// format %s' % t[1])
- except KeyError:
- error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
-
-# Nested decode block: if the value of the current field matches the
-# specified constant, do a nested decode on some other field.
-def p_decode_stmt_decode(t):
- 'decode_stmt : case_label COLON decode_block'
- label = t[1]
- codeObj = t[3]
- # just wrap the decoding code from the block as a case in the
- # outer switch statement.
- codeObj.wrap_decode_block('\n%s:\n' % label)
- codeObj.has_decode_default = (label == 'default')
- t[0] = codeObj
-
-# Instruction definition (finally!).
-def p_decode_stmt_inst(t):
- 'decode_stmt : case_label COLON inst SEMI'
- label = t[1]
- codeObj = t[3]
- codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
- codeObj.has_decode_default = (label == 'default')
- t[0] = codeObj
-
-# The case label is either a list of one or more constants or 'default'
-def p_case_label_0(t):
- 'case_label : intlit_list'
- t[0] = ': '.join(map(lambda a: 'case %#x' % a, t[1]))
-
-def p_case_label_1(t):
- 'case_label : DEFAULT'
- t[0] = 'default'
-
-#
-# The constant list for a decode case label must be non-empty, but may have
-# one or more comma-separated integer literals in it.
-#
-def p_intlit_list_0(t):
- 'intlit_list : INTLIT'
- t[0] = [t[1]]
-
-def p_intlit_list_1(t):
- 'intlit_list : intlit_list COMMA INTLIT'
- t[0] = t[1]
- t[0].append(t[3])
-
-# Define an instruction using the current instruction format (specified
-# by an enclosing format block).
-# "<mnemonic>(<args>)"
-def p_inst_0(t):
- 'inst : ID LPAREN arg_list RPAREN'
- # Pass the ID and arg list to the current format class to deal with.
- currentFormat = formatStack.top()
- codeObj = currentFormat.defineInst(t[1], t[3], t.lineno(1))
- args = ','.join(map(str, t[3]))
- args = re.sub('(?m)^', '//', args)
- args = re.sub('^//', '', args)
- comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
- codeObj.prepend_all(comment)
- t[0] = codeObj
-
-# Define an instruction using an explicitly specified format:
-# "<fmt>::<mnemonic>(<args>)"
-def p_inst_1(t):
- 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
- try:
- format = formatMap[t[1]]
- except KeyError:
- error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
- codeObj = format.defineInst(t[3], t[5], t.lineno(1))
- comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
- codeObj.prepend_all(comment)
- t[0] = codeObj
-
-# The arg list generates a tuple, where the first element is a list of
-# the positional args and the second element is a dict containing the
-# keyword args.
-def p_arg_list_0(t):
- 'arg_list : positional_arg_list COMMA keyword_arg_list'
- t[0] = ( t[1], t[3] )
-
-def p_arg_list_1(t):
- 'arg_list : positional_arg_list'
- t[0] = ( t[1], {} )
-
-def p_arg_list_2(t):
- 'arg_list : keyword_arg_list'
- t[0] = ( [], t[1] )
-
-def p_positional_arg_list_0(t):
- 'positional_arg_list : empty'
- t[0] = []
-
-def p_positional_arg_list_1(t):
- 'positional_arg_list : expr'
- t[0] = [t[1]]
-
-def p_positional_arg_list_2(t):
- 'positional_arg_list : positional_arg_list COMMA expr'
- t[0] = t[1] + [t[3]]
-
-def p_keyword_arg_list_0(t):
- 'keyword_arg_list : keyword_arg'
- t[0] = t[1]
-
-def p_keyword_arg_list_1(t):
- 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
- t[0] = t[1]
- t[0].update(t[3])
-
-def p_keyword_arg(t):
- 'keyword_arg : ID EQUALS expr'
- t[0] = { t[1] : t[3] }
-
-#
-# Basic expressions. These constitute the argument values of
-# "function calls" (i.e. instruction definitions in the decode block)
-# and default values for formal parameters of format functions.
-#
-# Right now, these are either strings, integers, or (recursively)
-# lists of exprs (using Python square-bracket list syntax). Note that
-# bare identifiers are trated as string constants here (since there
-# isn't really a variable namespace to refer to).
-#
-def p_expr_0(t):
- '''expr : ID
- | INTLIT
- | STRLIT
- | CODELIT'''
- t[0] = t[1]
-
-def p_expr_1(t):
- '''expr : LBRACKET list_expr RBRACKET'''
- t[0] = t[2]
-
-def p_list_expr_0(t):
- 'list_expr : expr'
- t[0] = [t[1]]
-
-def p_list_expr_1(t):
- 'list_expr : list_expr COMMA expr'
- t[0] = t[1] + [t[3]]
-
-def p_list_expr_2(t):
- 'list_expr : empty'
- t[0] = []
-
-#
-# Empty production... use in other rules for readability.
-#
-def p_empty(t):
- 'empty :'
- pass
-
-# Parse error handler. Note that the argument here is the offending
-# *token*, not a grammar symbol (hence the need to use t.value)
-def p_error(t):
- if t:
- error(t.lineno, "syntax error at '%s'" % t.value)
- else:
- error(0, "unknown syntax error", True)
-
-# END OF GRAMMAR RULES
-#
-# Now build the parser.
-yacc.yacc()
-
-
-#####################################################################
-#
-# Support Classes
-#
-#####################################################################
-
-# Expand template with CPU-specific references into a dictionary with
-# an entry for each CPU model name. The entry key is the model name
-# and the corresponding value is the template with the CPU-specific
-# refs substituted for that model.
-def expand_cpu_symbols_to_dict(template):
- # Protect '%'s that don't go with CPU-specific terms
- t = re.sub(r'%(?!\(CPU_)', '%%', template)
- result = {}
- for cpu in cpu_models:
- result[cpu.name] = t % cpu.strings
- return result
-
-# *If* the template has CPU-specific references, return a single
-# string containing a copy of the template for each CPU model with the
-# corresponding values substituted in. If the template has no
-# CPU-specific references, it is returned unmodified.
-def expand_cpu_symbols_to_string(template):
- if template.find('%(CPU_') != -1:
- return reduce(lambda x,y: x+y,
- expand_cpu_symbols_to_dict(template).values())
- else:
- return template
-
-# Protect CPU-specific references by doubling the corresponding '%'s
-# (in preparation for substituting a different set of references into
-# the template).
-def protect_cpu_symbols(template):
- return re.sub(r'%(?=\(CPU_)', '%%', template)
-
-###############
-# GenCode class
-#
-# The GenCode class encapsulates generated code destined for various
-# output files. The header_output and decoder_output attributes are
-# strings containing code destined for decoder.hh and decoder.cc
-# respectively. The decode_block attribute contains code to be
-# incorporated in the decode function itself (that will also end up in
-# decoder.cc). The exec_output attribute is a dictionary with a key
-# for each CPU model name; the value associated with a particular key
-# is the string of code for that CPU model's exec.cc file. The
-# has_decode_default attribute is used in the decode block to allow
-# explicit default clauses to override default default clauses.
-
-class GenCode:
- # Constructor. At this point we substitute out all CPU-specific
- # symbols. For the exec output, these go into the per-model
- # dictionary. For all other output types they get collapsed into
- # a single string.
- def __init__(self,
- header_output = '', decoder_output = '', exec_output = '',
- decode_block = '', has_decode_default = False):
- self.header_output = expand_cpu_symbols_to_string(header_output)
- self.decoder_output = expand_cpu_symbols_to_string(decoder_output)
- if isinstance(exec_output, dict):
- self.exec_output = exec_output
- elif isinstance(exec_output, str):
- # If the exec_output arg is a single string, we replicate
- # it for each of the CPU models, substituting and
- # %(CPU_foo)s params appropriately.
- self.exec_output = expand_cpu_symbols_to_dict(exec_output)
- self.decode_block = expand_cpu_symbols_to_string(decode_block)
- self.has_decode_default = has_decode_default
-
- # Override '+' operator: generate a new GenCode object that
- # concatenates all the individual strings in the operands.
- def __add__(self, other):
- exec_output = {}
- for cpu in cpu_models:
- n = cpu.name
- exec_output[n] = self.exec_output[n] + other.exec_output[n]
- return GenCode(self.header_output + other.header_output,
- self.decoder_output + other.decoder_output,
- exec_output,
- self.decode_block + other.decode_block,
- self.has_decode_default or other.has_decode_default)
-
- # Prepend a string (typically a comment) to all the strings.
- def prepend_all(self, pre):
- self.header_output = pre + self.header_output
- self.decoder_output = pre + self.decoder_output
- self.decode_block = pre + self.decode_block
- for cpu in cpu_models:
- self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
-
- # Wrap the decode block in a pair of strings (e.g., 'case foo:'
- # and 'break;'). Used to build the big nested switch statement.
- def wrap_decode_block(self, pre, post = ''):
- self.decode_block = pre + indent(self.decode_block) + post
-
-################
-# Format object.
-#
-# A format object encapsulates an instruction format. It must provide
-# a defineInst() method that generates the code for an instruction
-# definition.
-
-exportContextSymbols = ('InstObjParams', 'CodeBlock',
- 'makeList', 're', 'string')
-
-exportContext = {}
-
-def updateExportContext():
- exportContext.update(exportDict(*exportContextSymbols))
- exportContext.update(templateMap)
-
-def exportDict(*symNames):
- return dict([(s, eval(s)) for s in symNames])
-
-
-class Format:
- def __init__(self, id, params, code):
- # constructor: just save away arguments
- self.id = id
- self.params = params
- label = 'def format ' + id
- self.user_code = compile(fixPythonIndentation(code), label, 'exec')
- param_list = string.join(params, ", ")
- f = '''def defInst(_code, _context, %s):
- my_locals = vars().copy()
- exec _code in _context, my_locals
- return my_locals\n''' % param_list
- c = compile(f, label + ' wrapper', 'exec')
- exec c
- self.func = defInst
-
- def defineInst(self, name, args, lineno):
- context = {}
- updateExportContext()
- context.update(exportContext)
- context.update({ 'name': name, 'Name': string.capitalize(name) })
- try:
- vars = self.func(self.user_code, context, *args[0], **args[1])
- except Exception, exc:
- error(lineno, 'error defining "%s": %s.' % (name, exc))
- for k in vars.keys():
- if k not in ('header_output', 'decoder_output',
- 'exec_output', 'decode_block'):
- del vars[k]
- return GenCode(**vars)
-
-# Special null format to catch an implicit-format instruction
-# definition outside of any format block.
-class NoFormat:
- def __init__(self):
- self.defaultInst = ''
-
- def defineInst(self, name, args, lineno):
- error(lineno,
- 'instruction definition "%s" with no active format!' % name)
-
-# This dictionary maps format name strings to Format objects.
-formatMap = {}
-
-# Define a new format
-def defFormat(id, params, code, lineno):
- # make sure we haven't already defined this one
- if formatMap.get(id, None) != None:
- error(lineno, 'format %s redefined.' % id)
- # create new object and store in global map
- formatMap[id] = Format(id, params, code)
-
-
-##############
-# Stack: a simple stack object. Used for both formats (formatStack)
-# and default cases (defaultStack). Simply wraps a list to give more
-# stack-like syntax and enable initialization with an argument list
-# (as opposed to an argument that's a list).
-
-class Stack(list):
- def __init__(self, *items):
- list.__init__(self, items)
-
- def push(self, item):
- self.append(item);
-
- def top(self):
- return self[-1]
-
-# The global format stack.
-formatStack = Stack(NoFormat())
-
-# The global default case stack.
-defaultStack = Stack( None )
-
-# Global stack that tracks current file and line number.
-# Each element is a tuple (filename, lineno) that records the
-# *current* filename and the line number in the *previous* file where
-# it was included.
-fileNameStack = Stack()
-
-###################
-# Utility functions
-
-#
-# Indent every line in string 's' by two spaces
-# (except preprocessor directives).
-# Used to make nested code blocks look pretty.
-#
-def indent(s):
- return re.sub(r'(?m)^(?!#)', ' ', s)
-
-#
-# Munge a somewhat arbitrarily formatted piece of Python code
-# (e.g. from a format 'let' block) into something whose indentation
-# will get by the Python parser.
-#
-# The two keys here are that Python will give a syntax error if
-# there's any whitespace at the beginning of the first line, and that
-# all lines at the same lexical nesting level must have identical
-# indentation. Unfortunately the way code literals work, an entire
-# let block tends to have some initial indentation. Rather than
-# trying to figure out what that is and strip it off, we prepend 'if
-# 1:' to make the let code the nested block inside the if (and have
-# the parser automatically deal with the indentation for us).
-#
-# We don't want to do this if (1) the code block is empty or (2) the
-# first line of the block doesn't have any whitespace at the front.
-
-def fixPythonIndentation(s):
- # get rid of blank lines first
- s = re.sub(r'(?m)^\s*\n', '', s);
- if (s != '' and re.match(r'[ \t]', s[0])):
- s = 'if 1:\n' + s
- return s
-
-# Error handler. Just call exit. Output formatted to work under
-# Emacs compile-mode. Optional 'print_traceback' arg, if set to True,
-# prints a Python stack backtrace too (can be handy when trying to
-# debug the parser itself).
-def error(lineno, string, print_traceback = False):
- spaces = ""
- for (filename, line) in fileNameStack[0:-1]:
- print spaces + "In file included from " + filename + ":"
- spaces += " "
- # Print a Python stack backtrace if requested.
- if (print_traceback):
- traceback.print_exc()
- if lineno != 0:
- line_str = "%d:" % lineno
- else:
- line_str = ""
- sys.exit(spaces + "%s:%s %s" % (fileNameStack[-1][0], line_str, string))
-
-
-#####################################################################
-#
-# Bitfield Operator Support
-#
-#####################################################################
-
-bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
-
-bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
-bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
-
-def substBitOps(code):
- # first convert single-bit selectors to two-index form
- # i.e., <n> --> <n:n>
- code = bitOp1ArgRE.sub(r'<\1:\1>', code)
- # simple case: selector applied to ID (name)
- # i.e., foo<a:b> --> bits(foo, a, b)
- code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
- # if selector is applied to expression (ending in ')'),
- # we need to search backward for matching '('
- match = bitOpExprRE.search(code)
- while match:
- exprEnd = match.start()
- here = exprEnd - 1
- nestLevel = 1
- while nestLevel > 0:
- if code[here] == '(':
- nestLevel -= 1
- elif code[here] == ')':
- nestLevel += 1
- here -= 1
- if here < 0:
- sys.exit("Didn't find '('!")
- exprStart = here+1
- newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
- match.group(1), match.group(2))
- code = code[:exprStart] + newExpr + code[match.end():]
- match = bitOpExprRE.search(code)
- return code
-
-
-####################
-# Template objects.
-#
-# Template objects are format strings that allow substitution from
-# the attribute spaces of other objects (e.g. InstObjParams instances).
-
-class Template:
- def __init__(self, t):
- self.template = t
-
- def subst(self, d):
- # Start with the template namespace. Make a copy since we're
- # going to modify it.
- myDict = templateMap.copy()
- # if the argument is a dictionary, we just use it.
- if isinstance(d, dict):
- myDict.update(d)
- # if the argument is an object, we use its attribute map.
- elif hasattr(d, '__dict__'):
- myDict.update(d.__dict__)
- else:
- raise TypeError, "Template.subst() arg must be or have dictionary"
- # Protect non-Python-dict substitutions (e.g. if there's a printf
- # in the templated C++ code)
- template = protect_non_subst_percents(self.template)
- # CPU-model-specific substitutions are handled later (in GenCode).
- template = protect_cpu_symbols(template)
- return template % myDict
-
- # Convert to string. This handles the case when a template with a
- # CPU-specific term gets interpolated into another template or into
- # an output block.
- def __str__(self):
- return expand_cpu_symbols_to_string(self.template)
-
-#####################################################################
-#
-# Code Parser
-#
-# The remaining code is the support for automatically extracting
-# instruction characteristics from pseudocode.
-#
-#####################################################################
-
-# Force the argument to be a list. Useful for flags, where a caller
-# can specify a singleton flag or a list of flags. Also usful for
-# converting tuples to lists so they can be modified.
-def makeList(arg):
- if isinstance(arg, list):
- return arg
- elif isinstance(arg, tuple):
- return list(arg)
- elif not arg:
- return []
- else:
- return [ arg ]
-
-# Generate operandTypeMap from the user's 'def operand_types'
-# statement.
-def buildOperandTypeMap(userDict, lineno):
- global operandTypeMap
- operandTypeMap = {}
- for (ext, (desc, size)) in userDict.iteritems():
- if desc == 'signed int':
- ctype = 'int%d_t' % size
- is_signed = 1
- elif desc == 'unsigned int':
- ctype = 'uint%d_t' % size
- is_signed = 0
- elif desc == 'float':
- is_signed = 1 # shouldn't really matter
- if size == 32:
- ctype = 'float'
- elif size == 64:
- ctype = 'double'
- if ctype == '':
- error(lineno, 'Unrecognized type description "%s" in userDict')
- operandTypeMap[ext] = (size, ctype, is_signed)
-
-#
-#
-#
-# Base class for operand descriptors. An instance of this class (or
-# actually a class derived from this one) represents a specific
-# operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
-# derived classes encapsulates the traits of a particular operand type
-# (e.g., "32-bit integer register").
-#
-class Operand(object):
- def __init__(self, full_name, ext, is_src, is_dest):
- self.full_name = full_name
- self.ext = ext
- self.is_src = is_src
- self.is_dest = is_dest
- # The 'effective extension' (eff_ext) is either the actual
- # extension, if one was explicitly provided, or the default.
- if ext:
- self.eff_ext = ext
- else:
- self.eff_ext = self.dflt_ext
-
- (self.size, self.ctype, self.is_signed) = operandTypeMap[self.eff_ext]
-
- # note that mem_acc_size is undefined for non-mem operands...
- # template must be careful not to use it if it doesn't apply.
- if self.isMem():
- self.mem_acc_size = self.makeAccSize()
- self.mem_acc_type = self.ctype
-
- # Finalize additional fields (primarily code fields). This step
- # is done separately since some of these fields may depend on the
- # register index enumeration that hasn't been performed yet at the
- # time of __init__().
- def finalize(self):
- self.flags = self.getFlags()
- self.constructor = self.makeConstructor()
- self.op_decl = self.makeDecl()
-
- if self.is_src:
- self.op_rd = self.makeRead()
- self.op_src_decl = self.makeDecl()
- else:
- self.op_rd = ''
- self.op_src_decl = ''
-
- if self.is_dest:
- self.op_wb = self.makeWrite()
- self.op_dest_decl = self.makeDecl()
- else:
- self.op_wb = ''
- self.op_dest_decl = ''
-
- def isMem(self):
- return 0
-
- def isReg(self):
- return 0
-
- def isFloatReg(self):
- return 0
-
- def isIntReg(self):
- return 0
-
- def isControlReg(self):
- return 0
-
- def getFlags(self):
- # note the empty slice '[:]' gives us a copy of self.flags[0]
- # instead of a reference to it
- my_flags = self.flags[0][:]
- if self.is_src:
- my_flags += self.flags[1]
- if self.is_dest:
- my_flags += self.flags[2]
- return my_flags
-
- def makeDecl(self):
- # Note that initializations in the declarations are solely
- # to avoid 'uninitialized variable' errors from the compiler.
- return self.ctype + ' ' + self.base_name + ' = 0;\n';
-
-class IntRegOperand(Operand):
- def isReg(self):
- return 1
-
- def isIntReg(self):
- return 1
-
- def makeConstructor(self):
- c = ''
- if self.is_src:
- c += '\n\t_srcRegIdx[%d] = %s;' % \
- (self.src_reg_idx, self.reg_spec)
- if self.is_dest:
- c += '\n\t_destRegIdx[%d] = %s;' % \
- (self.dest_reg_idx, self.reg_spec)
- return c
-
- def makeRead(self):
- if (self.ctype == 'float' or self.ctype == 'double'):
- error(0, 'Attempt to read integer register as FP')
- if (self.size == self.dflt_size):
- return '%s = xc->readIntReg(this, %d);\n' % \
- (self.base_name, self.src_reg_idx)
- else:
- return '%s = bits(xc->readIntReg(this, %d), %d, 0);\n' % \
- (self.base_name, self.src_reg_idx, self.size-1)
-
- def makeWrite(self):
- if (self.ctype == 'float' or self.ctype == 'double'):
- error(0, 'Attempt to write integer register as FP')
- if (self.size != self.dflt_size and self.is_signed):
- final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
- else:
- final_val = self.base_name
- wb = '''
- {
- %s final_val = %s;
- xc->setIntReg(this, %d, final_val);\n
- if (traceData) { traceData->setData(final_val); }
- }''' % (self.dflt_ctype, final_val, self.dest_reg_idx)
- return wb
-
-class FloatRegOperand(Operand):
- def isReg(self):
- return 1
-
- def isFloatReg(self):
- return 1
-
- def makeConstructor(self):
- c = ''
- if self.is_src:
- c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \
- (self.src_reg_idx, self.reg_spec)
- if self.is_dest:
- c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \
- (self.dest_reg_idx, self.reg_spec)
- return c
-
- def makeRead(self):
- bit_select = 0
- width = 0;
- if (self.ctype == 'float'):
- func = 'readFloatReg'
- width = 32;
- elif (self.ctype == 'double'):
- func = 'readFloatReg'
- width = 64;
- else:
- func = 'readFloatRegBits'
- if (self.ctype == 'uint32_t'):
- width = 32;
- elif (self.ctype == 'uint64_t'):
- width = 64;
- if (self.size != self.dflt_size):
- bit_select = 1
- if width:
- base = 'xc->%s(this, %d, %d)' % \
- (func, self.src_reg_idx, width)
- else:
- base = 'xc->%s(this, %d)' % \
- (func, self.src_reg_idx)
- if bit_select:
- return '%s = bits(%s, %d, 0);\n' % \
- (self.base_name, base, self.size-1)
- else:
- return '%s = %s;\n' % (self.base_name, base)
-
- def makeWrite(self):
- final_val = self.base_name
- final_ctype = self.ctype
- widthSpecifier = ''
- width = 0
- if (self.ctype == 'float'):
- width = 32
- func = 'setFloatReg'
- elif (self.ctype == 'double'):
- width = 64
- func = 'setFloatReg'
- elif (self.ctype == 'uint32_t'):
- func = 'setFloatRegBits'
- width = 32
- elif (self.ctype == 'uint64_t'):
- func = 'setFloatRegBits'
- width = 64
- else:
- func = 'setFloatRegBits'
- final_ctype = 'uint%d_t' % self.dflt_size
- if (self.size != self.dflt_size and self.is_signed):
- final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
- if width:
- widthSpecifier = ', %d' % width
- wb = '''
- {
- %s final_val = %s;
- xc->%s(this, %d, final_val%s);\n
- if (traceData) { traceData->setData(final_val); }
- }''' % (final_ctype, final_val, func, self.dest_reg_idx,
- widthSpecifier)
- return wb
-
-class ControlRegOperand(Operand):
- def isReg(self):
- return 1
-
- def isControlReg(self):
- return 1
-
- def makeConstructor(self):
- c = ''
- if self.is_src:
- c += '\n\t_srcRegIdx[%d] = %s;' % \
- (self.src_reg_idx, self.reg_spec)
- if self.is_dest:
- c += '\n\t_destRegIdx[%d] = %s;' % \
- (self.dest_reg_idx, self.reg_spec)
- return c
-
- def makeRead(self):
- bit_select = 0
- if (self.ctype == 'float' or self.ctype == 'double'):
- error(0, 'Attempt to read control register as FP')
- base = 'xc->readMiscReg(%s)' % self.reg_spec
- if self.size == self.dflt_size:
- return '%s = %s;\n' % (self.base_name, base)
- else:
- return '%s = bits(%s, %d, 0);\n' % \
- (self.base_name, base, self.size-1)
-
- def makeWrite(self):
- if (self.ctype == 'float' or self.ctype == 'double'):
- error(0, 'Attempt to write control register as FP')
- wb = 'xc->setMiscReg(%s, %s);\n' % (self.reg_spec, self.base_name)
- wb += 'if (traceData) { traceData->setData(%s); }' % \
- self.base_name
- return wb
-
-class MemOperand(Operand):
- def isMem(self):
- return 1
-
- def makeConstructor(self):
- return ''
-
- def makeDecl(self):
- # Note that initializations in the declarations are solely
- # to avoid 'uninitialized variable' errors from the compiler.
- # Declare memory data variable.
- c = '%s %s = 0;\n' % (self.ctype, self.base_name)
- return c
-
- def makeRead(self):
- return ''
-
- def makeWrite(self):
- return ''
-
- # Return the memory access size *in bits*, suitable for
- # forming a type via "uint%d_t". Divide by 8 if you want bytes.
- def makeAccSize(self):
- return self.size
-
-
-class NPCOperand(Operand):
- def makeConstructor(self):
- return ''
-
- def makeRead(self):
- return '%s = xc->readNextPC();\n' % self.base_name
-
- def makeWrite(self):
- return 'xc->setNextPC(%s);\n' % self.base_name
-
-class NNPCOperand(Operand):
- def makeConstructor(self):
- return ''
-
- def makeRead(self):
- return '%s = xc->readNextNPC();\n' % self.base_name
-
- def makeWrite(self):
- return 'xc->setNextNPC(%s);\n' % self.base_name
-
-def buildOperandNameMap(userDict, lineno):
- global operandNameMap
- operandNameMap = {}
- for (op_name, val) in userDict.iteritems():
- (base_cls_name, dflt_ext, reg_spec, flags, sort_pri) = val
- (dflt_size, dflt_ctype, dflt_is_signed) = operandTypeMap[dflt_ext]
- # Canonical flag structure is a triple of lists, where each list
- # indicates the set of flags implied by this operand always, when
- # used as a source, and when used as a dest, respectively.
- # For simplicity this can be initialized using a variety of fairly
- # obvious shortcuts; we convert these to canonical form here.
- if not flags:
- # no flags specified (e.g., 'None')
- flags = ( [], [], [] )
- elif isinstance(flags, str):
- # a single flag: assumed to be unconditional
- flags = ( [ flags ], [], [] )
- elif isinstance(flags, list):
- # a list of flags: also assumed to be unconditional
- flags = ( flags, [], [] )
- elif isinstance(flags, tuple):
- # it's a tuple: it should be a triple,
- # but each item could be a single string or a list
- (uncond_flags, src_flags, dest_flags) = flags
- flags = (makeList(uncond_flags),
- makeList(src_flags), makeList(dest_flags))
- # Accumulate attributes of new operand class in tmp_dict
- tmp_dict = {}
- for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri',
- 'dflt_size', 'dflt_ctype', 'dflt_is_signed'):
- tmp_dict[attr] = eval(attr)
- tmp_dict['base_name'] = op_name
- # New class name will be e.g. "IntReg_Ra"
- cls_name = base_cls_name + '_' + op_name
- # Evaluate string arg to get class object. Note that the
- # actual base class for "IntReg" is "IntRegOperand", i.e. we
- # have to append "Operand".
- try:
- base_cls = eval(base_cls_name + 'Operand')
- except NameError:
- error(lineno,
- 'error: unknown operand base class "%s"' % base_cls_name)
- # The following statement creates a new class called
- # <cls_name> as a subclass of <base_cls> with the attributes
- # in tmp_dict, just as if we evaluated a class declaration.
- operandNameMap[op_name] = type(cls_name, (base_cls,), tmp_dict)
-
- # Define operand variables.
- operands = userDict.keys()
-
- operandsREString = (r'''
- (?<![\w\.]) # neg. lookbehind assertion: prevent partial matches
- ((%s)(?:\.(\w+))?) # match: operand with optional '.' then suffix
- (?![\w\.]) # neg. lookahead assertion: prevent partial matches
- '''
- % string.join(operands, '|'))
-
- global operandsRE
- operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
-
- # Same as operandsREString, but extension is mandatory, and only two
- # groups are returned (base and ext, not full name as above).
- # Used for subtituting '_' for '.' to make C++ identifiers.
- operandsWithExtREString = (r'(?<![\w\.])(%s)\.(\w+)(?![\w\.])'
- % string.join(operands, '|'))
-
- global operandsWithExtRE
- operandsWithExtRE = re.compile(operandsWithExtREString, re.MULTILINE)
-
-
-class OperandList:
-
- # Find all the operands in the given code block. Returns an operand
- # descriptor list (instance of class OperandList).
- def __init__(self, code):
- self.items = []
- self.bases = {}
- # delete comments so we don't match on reg specifiers inside
- code = commentRE.sub('', code)
- # search for operands
- next_pos = 0
- while 1:
- match = operandsRE.search(code, next_pos)
- if not match:
- # no more matches: we're done
- break
- op = match.groups()
- # regexp groups are operand full name, base, and extension
- (op_full, op_base, op_ext) = op
- # if the token following the operand is an assignment, this is
- # a destination (LHS), else it's a source (RHS)
- is_dest = (assignRE.match(code, match.end()) != None)
- is_src = not is_dest
- # see if we've already seen this one
- op_desc = self.find_base(op_base)
- if op_desc:
- if op_desc.ext != op_ext:
- error(0, 'Inconsistent extensions for operand %s' % \
- op_base)
- op_desc.is_src = op_desc.is_src or is_src
- op_desc.is_dest = op_desc.is_dest or is_dest
- else:
- # new operand: create new descriptor
- op_desc = operandNameMap[op_base](op_full, op_ext,
- is_src, is_dest)
- self.append(op_desc)
- # start next search after end of current match
- next_pos = match.end()
- self.sort()
- # enumerate source & dest register operands... used in building
- # constructor later
- self.numSrcRegs = 0
- self.numDestRegs = 0
- self.numFPDestRegs = 0
- self.numIntDestRegs = 0
- self.memOperand = None
- for op_desc in self.items:
- if op_desc.isReg():
- if op_desc.is_src:
- op_desc.src_reg_idx = self.numSrcRegs
- self.numSrcRegs += 1
- if op_desc.is_dest:
- op_desc.dest_reg_idx = self.numDestRegs
- self.numDestRegs += 1
- if op_desc.isFloatReg():
- self.numFPDestRegs += 1
- elif op_desc.isIntReg():
- self.numIntDestRegs += 1
- elif op_desc.isMem():
- if self.memOperand:
- error(0, "Code block has more than one memory operand.")
- self.memOperand = op_desc
- # now make a final pass to finalize op_desc fields that may depend
- # on the register enumeration
- for op_desc in self.items:
- op_desc.finalize()
-
- def __len__(self):
- return len(self.items)
-
- def __getitem__(self, index):
- return self.items[index]
-
- def append(self, op_desc):
- self.items.append(op_desc)
- self.bases[op_desc.base_name] = op_desc
-
- def find_base(self, base_name):
- # like self.bases[base_name], but returns None if not found
- # (rather than raising exception)
- return self.bases.get(base_name)
-
- # internal helper function for concat[Some]Attr{Strings|Lists}
- def __internalConcatAttrs(self, attr_name, filter, result):
- for op_desc in self.items:
- if filter(op_desc):
- result += getattr(op_desc, attr_name)
- return result
-
- # return a single string that is the concatenation of the (string)
- # values of the specified attribute for all operands
- def concatAttrStrings(self, attr_name):
- return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
-
- # like concatAttrStrings, but only include the values for the operands
- # for which the provided filter function returns true
- def concatSomeAttrStrings(self, filter, attr_name):
- return self.__internalConcatAttrs(attr_name, filter, '')
-
- # return a single list that is the concatenation of the (list)
- # values of the specified attribute for all operands
- def concatAttrLists(self, attr_name):
- return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
-
- # like concatAttrLists, but only include the values for the operands
- # for which the provided filter function returns true
- def concatSomeAttrLists(self, filter, attr_name):
- return self.__internalConcatAttrs(attr_name, filter, [])
-
- def sort(self):
- self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
-
-# Regular expression object to match C++ comments
-# (used in findOperands())
-commentRE = re.compile(r'//.*\n')
-
-# Regular expression object to match assignment statements
-# (used in findOperands())
-assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
-
-# Munge operand names in code string to make legal C++ variable names.
-# This means getting rid of the type extension if any.
-# (Will match base_name attribute of Operand object.)
-def substMungedOpNames(code):
- return operandsWithExtRE.sub(r'\1', code)
-
-def joinLists(t):
- return map(string.join, t)
-
-def makeFlagConstructor(flag_list):
- if len(flag_list) == 0:
- return ''
- # filter out repeated flags
- flag_list.sort()
- i = 1
- while i < len(flag_list):
- if flag_list[i] == flag_list[i-1]:
- del flag_list[i]
- else:
- i += 1
- pre = '\n\tflags['
- post = '] = true;'
- code = pre + string.join(flag_list, post + pre) + post
- return code
-
-class CodeBlock:
- def __init__(self, code):
- self.orig_code = code
- self.operands = OperandList(code)
- self.code = substMungedOpNames(substBitOps(code))
- self.constructor = self.operands.concatAttrStrings('constructor')
- self.constructor += \
- '\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs
- self.constructor += \
- '\n\t_numDestRegs = %d;' % self.operands.numDestRegs
- self.constructor += \
- '\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs
- self.constructor += \
- '\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs
-
- self.op_decl = self.operands.concatAttrStrings('op_decl')
-
- is_src = lambda op: op.is_src
- is_dest = lambda op: op.is_dest
-
- self.op_src_decl = \
- self.operands.concatSomeAttrStrings(is_src, 'op_src_decl')
- self.op_dest_decl = \
- self.operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
-
- self.op_rd = self.operands.concatAttrStrings('op_rd')
- self.op_wb = self.operands.concatAttrStrings('op_wb')
-
- self.flags = self.operands.concatAttrLists('flags')
-
- if self.operands.memOperand:
- self.mem_acc_size = self.operands.memOperand.mem_acc_size
- self.mem_acc_type = self.operands.memOperand.mem_acc_type
-
- # Make a basic guess on the operand class (function unit type).
- # These are good enough for most cases, and will be overridden
- # later otherwise.
- if 'IsStore' in self.flags:
- self.op_class = 'MemWriteOp'
- elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
- self.op_class = 'MemReadOp'
- elif 'IsFloating' in self.flags:
- self.op_class = 'FloatAddOp'
- else:
- self.op_class = 'IntAluOp'
-
-# Assume all instruction flags are of the form 'IsFoo'
-instFlagRE = re.compile(r'Is.*')
-
-# OpClass constants end in 'Op' except No_OpClass
-opClassRE = re.compile(r'.*Op|No_OpClass')
-
-class InstObjParams:
- def __init__(self, mnem, class_name, base_class = '',
- code = None, opt_args = [], *extras):
- self.mnemonic = mnem
- self.class_name = class_name
- self.base_class = base_class
- if code:
- #If the user already made a CodeBlock, pick the parts from it
- if isinstance(code, CodeBlock):
- origCode = code.orig_code
- codeBlock = code
- else:
- origCode = code
- codeBlock = CodeBlock(code)
- compositeCode = '\n'.join([origCode] +
- [pair[1] for pair in extras])
- compositeBlock = CodeBlock(compositeCode)
- for code_attr in compositeBlock.__dict__.keys():
- setattr(self, code_attr, getattr(compositeBlock, code_attr))
- for (key, snippet) in extras:
- setattr(self, key, CodeBlock(snippet).code)
- self.code = codeBlock.code
- self.orig_code = origCode
- else:
- self.constructor = ''
- self.flags = []
- # Optional arguments are assumed to be either StaticInst flags
- # or an OpClass value. To avoid having to import a complete
- # list of these values to match against, we do it ad-hoc
- # with regexps.
- for oa in opt_args:
- if instFlagRE.match(oa):
- self.flags.append(oa)
- elif opClassRE.match(oa):
- self.op_class = oa
- else:
- error(0, 'InstObjParams: optional arg "%s" not recognized '
- 'as StaticInst::Flag or OpClass.' % oa)
-
- # add flag initialization to contructor here to include
- # any flags added via opt_args
- self.constructor += makeFlagConstructor(self.flags)
-
- # if 'IsFloating' is set, add call to the FP enable check
- # function (which should be provided by isa_desc via a declare)
- if 'IsFloating' in self.flags:
- self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
- else:
- self.fp_enable_check = ''
-
-#######################
-#
-# Output file template
-#
-
-file_template = '''
-/*
- * DO NOT EDIT THIS FILE!!!
- *
- * It was automatically generated from the ISA description in %(filename)s
- */
-
-%(includes)s
-
-%(global_output)s
-
-namespace %(namespace)s {
-
-%(namespace_output)s
-
-} // namespace %(namespace)s
-
-%(decode_function)s
-'''
-
-
-# Update the output file only if the new contents are different from
-# the current contents. Minimizes the files that need to be rebuilt
-# after minor changes.
-def update_if_needed(file, contents):
- update = False
- if os.access(file, os.R_OK):
- f = open(file, 'r')
- old_contents = f.read()
- f.close()
- if contents != old_contents:
- print 'Updating', file
- os.remove(file) # in case it's write-protected
- update = True
- else:
- print 'File', file, 'is unchanged'
- else:
- print 'Generating', file
- update = True
- if update:
- f = open(file, 'w')
- f.write(contents)
- f.close()
-
-# This regular expression matches '##include' directives
-includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[\w/.-]*)".*$',
- re.MULTILINE)
-
-# Function to replace a matched '##include' directive with the
-# contents of the specified file (with nested ##includes replaced
-# recursively). 'matchobj' is an re match object (from a match of
-# includeRE) and 'dirname' is the directory relative to which the file
-# path should be resolved.
-def replace_include(matchobj, dirname):
- fname = matchobj.group('filename')
- full_fname = os.path.normpath(os.path.join(dirname, fname))
- contents = '##newfile "%s"\n%s\n##endfile\n' % \
- (full_fname, read_and_flatten(full_fname))
- return contents
-
-# Read a file and recursively flatten nested '##include' files.
-def read_and_flatten(filename):
- current_dir = os.path.dirname(filename)
- try:
- contents = open(filename).read()
- except IOError:
- error(0, 'Error including file "%s"' % filename)
- fileNameStack.push((filename, 0))
- # Find any includes and include them
- contents = includeRE.sub(lambda m: replace_include(m, current_dir),
- contents)
- fileNameStack.pop()
- return contents
-
-#
-# Read in and parse the ISA description.
-#
-def parse_isa_desc(isa_desc_file, output_dir):
- # Read file and (recursively) all included files into a string.
- # PLY requires that the input be in a single string so we have to
- # do this up front.
- isa_desc = read_and_flatten(isa_desc_file)
-
- # Initialize filename stack with outer file.
- fileNameStack.push((isa_desc_file, 0))
-
- # Parse it.
- (isa_name, namespace, global_code, namespace_code) = yacc.parse(isa_desc)
-
- # grab the last three path components of isa_desc_file to put in
- # the output
- filename = '/'.join(isa_desc_file.split('/')[-3:])
-
- # generate decoder.hh
- includes = '#include "base/bitfield.hh" // for bitfield support'
- global_output = global_code.header_output
- namespace_output = namespace_code.header_output
- decode_function = ''
- update_if_needed(output_dir + '/decoder.hh', file_template % vars())
-
- # generate decoder.cc
- includes = '#include "decoder.hh"'
- global_output = global_code.decoder_output
- namespace_output = namespace_code.decoder_output
- # namespace_output += namespace_code.decode_block
- decode_function = namespace_code.decode_block
- update_if_needed(output_dir + '/decoder.cc', file_template % vars())
-
- # generate per-cpu exec files
- for cpu in cpu_models:
- includes = '#include "decoder.hh"\n'
- includes += cpu.includes
- global_output = global_code.exec_output[cpu.name]
- namespace_output = namespace_code.exec_output[cpu.name]
- decode_function = ''
- update_if_needed(output_dir + '/' + cpu.filename,
- file_template % vars())
-
-# global list of CpuModel objects (see cpu_models.py)
-cpu_models = []
-
-# Called as script: get args from command line.
-# Args are: <path to cpu_models.py> <isa desc file> <output dir> <cpu models>
-if __name__ == '__main__':
- execfile(sys.argv[1]) # read in CpuModel definitions
- cpu_models = [CpuModel.dict[cpu] for cpu in sys.argv[4:]]
- parse_isa_desc(sys.argv[2], sys.argv[3])