summaryrefslogtreecommitdiff
path: root/cpu/ozone/back_end_impl.hh
diff options
context:
space:
mode:
Diffstat (limited to 'cpu/ozone/back_end_impl.hh')
-rw-r--r--cpu/ozone/back_end_impl.hh1904
1 files changed, 1904 insertions, 0 deletions
diff --git a/cpu/ozone/back_end_impl.hh b/cpu/ozone/back_end_impl.hh
new file mode 100644
index 000000000..36770d65c
--- /dev/null
+++ b/cpu/ozone/back_end_impl.hh
@@ -0,0 +1,1904 @@
+
+#include "encumbered/cpu/full/op_class.hh"
+#include "cpu/ozone/back_end.hh"
+
+template <class Impl>
+BackEnd<Impl>::InstQueue::InstQueue(Params *params)
+ : size(params->numIQEntries), numInsts(0), width(params->issueWidth)
+{
+}
+
+template <class Impl>
+std::string
+BackEnd<Impl>::InstQueue::name() const
+{
+ return be->name() + ".iq";
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::InstQueue::regStats()
+{
+ using namespace Stats;
+
+ occ_dist
+ .init(1, 0, size, 2)
+ .name(name() + "occ_dist")
+ .desc("IQ Occupancy per cycle")
+ .flags(total | cdf)
+ ;
+
+ inst_count
+ .init(1)
+ .name(name() + "cum_num_insts")
+ .desc("Total occupancy")
+ .flags(total)
+ ;
+
+ peak_inst_count
+ .init(1)
+ .name(name() + "peak_occupancy")
+ .desc("Peak IQ occupancy")
+ .flags(total)
+ ;
+
+ current_count
+ .name(name() + "current_count")
+ .desc("Occupancy this cycle")
+ ;
+
+ empty_count
+ .name(name() + "empty_count")
+ .desc("Number of empty cycles")
+ ;
+
+ fullCount
+ .name(name() + "full_count")
+ .desc("Number of full cycles")
+ ;
+
+
+ occ_rate
+ .name(name() + "occ_rate")
+ .desc("Average occupancy")
+ .flags(total)
+ ;
+ occ_rate = inst_count / be->cpu->numCycles;
+
+ avg_residency
+ .name(name() + "avg_residency")
+ .desc("Average IQ residency")
+ .flags(total)
+ ;
+ avg_residency = occ_rate / be->cpu->numCycles;
+
+ empty_rate
+ .name(name() + "empty_rate")
+ .desc("Fraction of cycles empty")
+ ;
+ empty_rate = 100 * empty_count / be->cpu->numCycles;
+
+ full_rate
+ .name(name() + "full_rate")
+ .desc("Fraction of cycles full")
+ ;
+ full_rate = 100 * fullCount / be->cpu->numCycles;
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::InstQueue::setIssueExecQueue(TimeBuffer<IssueToExec> *i2e_queue)
+{
+ i2e = i2e_queue;
+ numIssued = i2e->getWire(0);
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::InstQueue::insert(DynInstPtr &inst)
+{
+ numInsts++;
+ inst_count[0]++;
+ if (!inst->isNonSpeculative()) {
+ DPRINTF(BE, "Instruction [sn:%lli] added to IQ\n", inst->seqNum);
+ if (inst->readyToIssue()) {
+ toBeScheduled.push_front(inst);
+ inst->iqIt = toBeScheduled.begin();
+ inst->iqItValid = true;
+ } else {
+ iq.push_front(inst);
+ inst->iqIt = iq.begin();
+ inst->iqItValid = true;
+ }
+ } else {
+ DPRINTF(BE, "Nonspeculative instruction [sn:%lli] added to IQ\n", inst->seqNum);
+ nonSpec.push_front(inst);
+ inst->iqIt = nonSpec.begin();
+ inst->iqItValid = true;
+ }
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::InstQueue::scheduleReadyInsts()
+{
+ int scheduled = numIssued->size;
+ InstListIt iq_it = --toBeScheduled.end();
+ InstListIt iq_end_it = toBeScheduled.end();
+
+ while (iq_it != iq_end_it && scheduled < width) {
+// if ((*iq_it)->readyToIssue()) {
+ DPRINTF(BE, "Instruction [sn:%lli] PC:%#x is ready\n",
+ (*iq_it)->seqNum, (*iq_it)->readPC());
+ readyQueue.push(*iq_it);
+ readyList.push_front(*iq_it);
+
+ (*iq_it)->iqIt = readyList.begin();
+
+ toBeScheduled.erase(iq_it--);
+
+ ++scheduled;
+// } else {
+// iq_it++;
+// }
+ }
+
+ numIssued->size+= scheduled;
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::InstQueue::scheduleNonSpec(const InstSeqNum &sn)
+{
+/*
+ InstListIt non_spec_it = nonSpec.begin();
+ InstListIt non_spec_end_it = nonSpec.end();
+
+ while ((*non_spec_it)->seqNum != sn) {
+ non_spec_it++;
+ assert(non_spec_it != non_spec_end_it);
+ }
+*/
+ DynInstPtr inst = nonSpec.back();
+
+ DPRINTF(BE, "Nonspeculative instruction [sn:%lli] scheduled\n", inst->seqNum);
+
+ assert(inst->seqNum == sn);
+
+ assert(find(NonSpec, inst->iqIt));
+ nonSpec.erase(inst->iqIt);
+ readyList.push_front(inst);
+ inst->iqIt = readyList.begin();
+ readyQueue.push(inst);
+ numIssued->size++;
+}
+
+template <class Impl>
+typename Impl::DynInstPtr
+BackEnd<Impl>::InstQueue::getReadyInst()
+{
+ assert(!readyList.empty());
+
+ DynInstPtr inst = readyQueue.top();
+ readyQueue.pop();
+ assert(find(ReadyList, inst->iqIt));
+ readyList.erase(inst->iqIt);
+ inst->iqItValid = false;
+// if (!inst->isMemRef())
+ --numInsts;
+ return inst;
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::InstQueue::squash(const InstSeqNum &sn)
+{
+ InstListIt iq_it = iq.begin();
+ InstListIt iq_end_it = iq.end();
+
+ while (iq_it != iq_end_it && (*iq_it)->seqNum > sn) {
+ DPRINTF(BE, "Instruction [sn:%lli] removed from IQ\n", (*iq_it)->seqNum);
+ (*iq_it)->iqItValid = false;
+ iq.erase(iq_it++);
+ --numInsts;
+ }
+
+ iq_it = nonSpec.begin();
+ iq_end_it = nonSpec.end();
+
+ while (iq_it != iq_end_it && (*iq_it)->seqNum > sn) {
+ DPRINTF(BE, "Instruction [sn:%lli] removed from IQ\n", (*iq_it)->seqNum);
+ (*iq_it)->iqItValid = false;
+ nonSpec.erase(iq_it++);
+ --numInsts;
+ }
+
+ iq_it = replayList.begin();
+ iq_end_it = replayList.end();
+
+ while (iq_it != iq_end_it) {
+ if ((*iq_it)->seqNum > sn) {
+ DPRINTF(BE, "Instruction [sn:%lli] removed from IQ\n", (*iq_it)->seqNum);
+ (*iq_it)->iqItValid = false;
+ replayList.erase(iq_it++);
+ --numInsts;
+ } else {
+ iq_it++;
+ }
+ }
+
+ assert(numInsts >= 0);
+/*
+ InstListIt ready_it = readyList.begin();
+ InstListIt ready_end_it = readyList.end();
+
+ while (ready_it != ready_end_it) {
+ if ((*ready_it)->seqNum > sn) {
+ readyList.erase(ready_it++);
+ } else {
+ ready_it++;
+ }
+ }
+*/
+}
+
+template <class Impl>
+int
+BackEnd<Impl>::InstQueue::wakeDependents(DynInstPtr &inst)
+{
+ assert(!inst->isSquashed());
+ std::vector<DynInstPtr> &dependents = inst->getDependents();
+ int num_outputs = dependents.size();
+
+ DPRINTF(BE, "Waking instruction [sn:%lli] dependents in IQ\n", inst->seqNum);
+
+ for (int i = 0; i < num_outputs; i++) {
+ DynInstPtr dep_inst = dependents[i];
+ dep_inst->markSrcRegReady();
+ DPRINTF(BE, "Marking source reg ready [sn:%lli] in IQ\n", dep_inst->seqNum);
+
+ if (dep_inst->readyToIssue() && dep_inst->iqItValid) {
+ if (dep_inst->isNonSpeculative()) {
+ assert(find(NonSpec, dep_inst->iqIt));
+ nonSpec.erase(dep_inst->iqIt);
+ } else {
+ assert(find(IQ, dep_inst->iqIt));
+ iq.erase(dep_inst->iqIt);
+ }
+
+ toBeScheduled.push_front(dep_inst);
+ dep_inst->iqIt = toBeScheduled.begin();
+ }
+ }
+ return num_outputs;
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::InstQueue::rescheduleMemInst(DynInstPtr &inst)
+{
+ DPRINTF(BE, "Rescheduling memory instruction [sn:%lli]\n", inst->seqNum);
+ assert(!inst->iqItValid);
+ replayList.push_front(inst);
+ inst->iqIt = replayList.begin();
+ inst->iqItValid = true;
+ ++numInsts;
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::InstQueue::replayMemInst(DynInstPtr &inst)
+{
+ DPRINTF(BE, "Replaying memory instruction [sn:%lli]\n", inst->seqNum);
+ assert(find(ReplayList, inst->iqIt));
+ InstListIt iq_it = --replayList.end();
+ InstListIt iq_end_it = replayList.end();
+ while (iq_it != iq_end_it) {
+ DynInstPtr rescheduled_inst = (*iq_it);
+
+ DPRINTF(BE, "Memory instruction [sn:%lli] also replayed\n", inst->seqNum);
+ replayList.erase(iq_it--);
+ toBeScheduled.push_front(rescheduled_inst);
+ rescheduled_inst->iqIt = toBeScheduled.begin();
+ }
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::InstQueue::completeMemInst(DynInstPtr &inst)
+{
+ panic("Not implemented.");
+}
+
+template <class Impl>
+bool
+BackEnd<Impl>::InstQueue::find(queue q, InstListIt it)
+{
+ InstListIt iq_it, iq_end_it;
+ switch(q) {
+ case NonSpec:
+ iq_it = nonSpec.begin();
+ iq_end_it = nonSpec.end();
+ break;
+ case IQ:
+ iq_it = iq.begin();
+ iq_end_it = iq.end();
+ break;
+ case ToBeScheduled:
+ iq_it = toBeScheduled.begin();
+ iq_end_it = toBeScheduled.end();
+ break;
+ case ReadyList:
+ iq_it = readyList.begin();
+ iq_end_it = readyList.end();
+ break;
+ case ReplayList:
+ iq_it = replayList.begin();
+ iq_end_it = replayList.end();
+ }
+
+ while (iq_it != it && iq_it != iq_end_it) {
+ iq_it++;
+ }
+ if (iq_it == it) {
+ return true;
+ } else {
+ return false;
+ }
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::InstQueue::dumpInsts()
+{
+ cprintf("IQ size: %i\n", iq.size());
+
+ InstListIt inst_list_it = --iq.end();
+
+ int num = 0;
+ int valid_num = 0;
+ while (inst_list_it != iq.end())
+ {
+ cprintf("Instruction:%i\n",
+ num);
+ if (!(*inst_list_it)->isSquashed()) {
+ if (!(*inst_list_it)->isIssued()) {
+ ++valid_num;
+ cprintf("Count:%i\n", valid_num);
+ } else if ((*inst_list_it)->isMemRef() &&
+ !(*inst_list_it)->memOpDone) {
+ // Loads that have not been marked as executed still count
+ // towards the total instructions.
+ ++valid_num;
+ cprintf("Count:%i\n", valid_num);
+ }
+ }
+
+ cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n"
+ "Issued:%i\nSquashed:%i\n",
+ (*inst_list_it)->readPC(),
+ (*inst_list_it)->seqNum,
+ (*inst_list_it)->threadNumber,
+ (*inst_list_it)->isIssued(),
+ (*inst_list_it)->isSquashed());
+
+ if ((*inst_list_it)->isMemRef()) {
+ cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
+ }
+
+ cprintf("\n");
+
+ inst_list_it--;
+ ++num;
+ }
+
+ cprintf("nonSpec size: %i\n", nonSpec.size());
+
+ inst_list_it = --nonSpec.end();
+
+ while (inst_list_it != nonSpec.end())
+ {
+ cprintf("Instruction:%i\n",
+ num);
+ if (!(*inst_list_it)->isSquashed()) {
+ if (!(*inst_list_it)->isIssued()) {
+ ++valid_num;
+ cprintf("Count:%i\n", valid_num);
+ } else if ((*inst_list_it)->isMemRef() &&
+ !(*inst_list_it)->memOpDone) {
+ // Loads that have not been marked as executed still count
+ // towards the total instructions.
+ ++valid_num;
+ cprintf("Count:%i\n", valid_num);
+ }
+ }
+
+ cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n"
+ "Issued:%i\nSquashed:%i\n",
+ (*inst_list_it)->readPC(),
+ (*inst_list_it)->seqNum,
+ (*inst_list_it)->threadNumber,
+ (*inst_list_it)->isIssued(),
+ (*inst_list_it)->isSquashed());
+
+ if ((*inst_list_it)->isMemRef()) {
+ cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
+ }
+
+ cprintf("\n");
+
+ inst_list_it--;
+ ++num;
+ }
+
+ cprintf("toBeScheduled size: %i\n", toBeScheduled.size());
+
+ inst_list_it = --toBeScheduled.end();
+
+ while (inst_list_it != toBeScheduled.end())
+ {
+ cprintf("Instruction:%i\n",
+ num);
+ if (!(*inst_list_it)->isSquashed()) {
+ if (!(*inst_list_it)->isIssued()) {
+ ++valid_num;
+ cprintf("Count:%i\n", valid_num);
+ } else if ((*inst_list_it)->isMemRef() &&
+ !(*inst_list_it)->memOpDone) {
+ // Loads that have not been marked as executed still count
+ // towards the total instructions.
+ ++valid_num;
+ cprintf("Count:%i\n", valid_num);
+ }
+ }
+
+ cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n"
+ "Issued:%i\nSquashed:%i\n",
+ (*inst_list_it)->readPC(),
+ (*inst_list_it)->seqNum,
+ (*inst_list_it)->threadNumber,
+ (*inst_list_it)->isIssued(),
+ (*inst_list_it)->isSquashed());
+
+ if ((*inst_list_it)->isMemRef()) {
+ cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
+ }
+
+ cprintf("\n");
+
+ inst_list_it--;
+ ++num;
+ }
+
+ cprintf("readyList size: %i\n", readyList.size());
+
+ inst_list_it = --readyList.end();
+
+ while (inst_list_it != readyList.end())
+ {
+ cprintf("Instruction:%i\n",
+ num);
+ if (!(*inst_list_it)->isSquashed()) {
+ if (!(*inst_list_it)->isIssued()) {
+ ++valid_num;
+ cprintf("Count:%i\n", valid_num);
+ } else if ((*inst_list_it)->isMemRef() &&
+ !(*inst_list_it)->memOpDone) {
+ // Loads that have not been marked as executed still count
+ // towards the total instructions.
+ ++valid_num;
+ cprintf("Count:%i\n", valid_num);
+ }
+ }
+
+ cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n"
+ "Issued:%i\nSquashed:%i\n",
+ (*inst_list_it)->readPC(),
+ (*inst_list_it)->seqNum,
+ (*inst_list_it)->threadNumber,
+ (*inst_list_it)->isIssued(),
+ (*inst_list_it)->isSquashed());
+
+ if ((*inst_list_it)->isMemRef()) {
+ cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
+ }
+
+ cprintf("\n");
+
+ inst_list_it--;
+ ++num;
+ }
+}
+
+template<class Impl>
+BackEnd<Impl>::LdWritebackEvent::LdWritebackEvent(DynInstPtr &_inst,
+ BackEnd<Impl> *_be)
+ : Event(&mainEventQueue), inst(_inst), be(_be)
+{
+ this->setFlags(Event::AutoDelete);
+}
+
+template<class Impl>
+void
+BackEnd<Impl>::LdWritebackEvent::process()
+{
+ DPRINTF(BE, "Load writeback event [sn:%lli]\n", inst->seqNum);
+// DPRINTF(Activity, "Activity: Ld Writeback event [sn:%lli]\n", inst->seqNum);
+
+ //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
+
+// iewStage->wakeCPU();
+
+ if (inst->isSquashed()) {
+ inst = NULL;
+ return;
+ }
+
+ if (!inst->isExecuted()) {
+ inst->setExecuted();
+
+ // Execute again to copy data to proper place.
+ inst->completeAcc();
+ }
+
+ // Need to insert instruction into queue to commit
+ be->instToCommit(inst);
+
+ //wroteToTimeBuffer = true;
+// iewStage->activityThisCycle();
+
+ inst = NULL;
+}
+
+template<class Impl>
+const char *
+BackEnd<Impl>::LdWritebackEvent::description()
+{
+ return "Load writeback event";
+}
+
+
+template <class Impl>
+BackEnd<Impl>::DCacheCompletionEvent::DCacheCompletionEvent(BackEnd *_be)
+ : Event(&mainEventQueue, CPU_Tick_Pri), be(_be)
+{
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::DCacheCompletionEvent::process()
+{
+}
+
+template <class Impl>
+const char *
+BackEnd<Impl>::DCacheCompletionEvent::description()
+{
+ return "Cache completion event";
+}
+
+template <class Impl>
+BackEnd<Impl>::BackEnd(Params *params)
+ : d2i(5, 5), i2e(5, 5), e2c(5, 5), numInstsToWB(5, 5),
+ xcSquash(false), IQ(params),
+ cacheCompletionEvent(this), width(params->backEndWidth),
+ exactFullStall(true)
+{
+ numROBEntries = params->numROBEntries;
+ numInsts = 0;
+ numDispatchEntries = 32;
+ IQ.setBE(this);
+ LSQ.setBE(this);
+
+ // Setup IQ and LSQ with their parameters here.
+ instsToDispatch = d2i.getWire(-1);
+
+ instsToExecute = i2e.getWire(-1);
+
+ IQ.setIssueExecQueue(&i2e);
+
+ dispatchWidth = params->dispatchWidth ? params->dispatchWidth : width;
+ issueWidth = params->issueWidth ? params->issueWidth : width;
+ wbWidth = params->wbWidth ? params->wbWidth : width;
+ commitWidth = params->commitWidth ? params->commitWidth : width;
+
+ LSQ.init(params, params->LQEntries, params->SQEntries, 0);
+
+ dispatchStatus = Running;
+}
+
+template <class Impl>
+std::string
+BackEnd<Impl>::name() const
+{
+ return cpu->name() + ".backend";
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::regStats()
+{
+ using namespace Stats;
+ rob_cap_events
+ .init(cpu->number_of_threads)
+ .name(name() + ".ROB:cap_events")
+ .desc("number of cycles where ROB cap was active")
+ .flags(total)
+ ;
+
+ rob_cap_inst_count
+ .init(cpu->number_of_threads)
+ .name(name() + ".ROB:cap_inst")
+ .desc("number of instructions held up by ROB cap")
+ .flags(total)
+ ;
+
+ iq_cap_events
+ .init(cpu->number_of_threads)
+ .name(name() +".IQ:cap_events" )
+ .desc("number of cycles where IQ cap was active")
+ .flags(total)
+ ;
+
+ iq_cap_inst_count
+ .init(cpu->number_of_threads)
+ .name(name() + ".IQ:cap_inst")
+ .desc("number of instructions held up by IQ cap")
+ .flags(total)
+ ;
+
+
+ exe_inst
+ .init(cpu->number_of_threads)
+ .name(name() + ".ISSUE:count")
+ .desc("number of insts issued")
+ .flags(total)
+ ;
+
+ exe_swp
+ .init(cpu->number_of_threads)
+ .name(name() + ".ISSUE:swp")
+ .desc("number of swp insts issued")
+ .flags(total)
+ ;
+
+ exe_nop
+ .init(cpu->number_of_threads)
+ .name(name() + ".ISSUE:nop")
+ .desc("number of nop insts issued")
+ .flags(total)
+ ;
+
+ exe_refs
+ .init(cpu->number_of_threads)
+ .name(name() + ".ISSUE:refs")
+ .desc("number of memory reference insts issued")
+ .flags(total)
+ ;
+
+ exe_loads
+ .init(cpu->number_of_threads)
+ .name(name() + ".ISSUE:loads")
+ .desc("number of load insts issued")
+ .flags(total)
+ ;
+
+ exe_branches
+ .init(cpu->number_of_threads)
+ .name(name() + ".ISSUE:branches")
+ .desc("Number of branches issued")
+ .flags(total)
+ ;
+
+ issued_ops
+ .init(cpu->number_of_threads)
+ .name(name() + ".ISSUE:op_count")
+ .desc("number of insts issued")
+ .flags(total)
+ ;
+
+/*
+ for (int i=0; i<Num_OpClasses; ++i) {
+ stringstream subname;
+ subname << opClassStrings[i] << "_delay";
+ issue_delay_dist.subname(i, subname.str());
+ }
+*/
+ //
+ // Other stats
+ //
+ lsq_forw_loads
+ .init(cpu->number_of_threads)
+ .name(name() + ".LSQ:forw_loads")
+ .desc("number of loads forwarded via LSQ")
+ .flags(total)
+ ;
+
+ inv_addr_loads
+ .init(cpu->number_of_threads)
+ .name(name() + ".ISSUE:addr_loads")
+ .desc("number of invalid-address loads")
+ .flags(total)
+ ;
+
+ inv_addr_swpfs
+ .init(cpu->number_of_threads)
+ .name(name() + ".ISSUE:addr_swpfs")
+ .desc("number of invalid-address SW prefetches")
+ .flags(total)
+ ;
+
+ lsq_blocked_loads
+ .init(cpu->number_of_threads)
+ .name(name() + ".LSQ:blocked_loads")
+ .desc("number of ready loads not issued due to memory disambiguation")
+ .flags(total)
+ ;
+
+ lsqInversion
+ .name(name() + ".ISSUE:lsq_invert")
+ .desc("Number of times LSQ instruction issued early")
+ ;
+
+ n_issued_dist
+ .init(issueWidth + 1)
+ .name(name() + ".ISSUE:issued_per_cycle")
+ .desc("Number of insts issued each cycle")
+ .flags(total | pdf | dist)
+ ;
+ issue_delay_dist
+ .init(Num_OpClasses,0,99,2)
+ .name(name() + ".ISSUE:")
+ .desc("cycles from operands ready to issue")
+ .flags(pdf | cdf)
+ ;
+
+ queue_res_dist
+ .init(Num_OpClasses, 0, 99, 2)
+ .name(name() + ".IQ:residence:")
+ .desc("cycles from dispatch to issue")
+ .flags(total | pdf | cdf )
+ ;
+ for (int i = 0; i < Num_OpClasses; ++i) {
+ queue_res_dist.subname(i, opClassStrings[i]);
+ }
+
+ writeback_count
+ .init(cpu->number_of_threads)
+ .name(name() + ".WB:count")
+ .desc("cumulative count of insts written-back")
+ .flags(total)
+ ;
+
+ producer_inst
+ .init(cpu->number_of_threads)
+ .name(name() + ".WB:producers")
+ .desc("num instructions producing a value")
+ .flags(total)
+ ;
+
+ consumer_inst
+ .init(cpu->number_of_threads)
+ .name(name() + ".WB:consumers")
+ .desc("num instructions consuming a value")
+ .flags(total)
+ ;
+
+ wb_penalized
+ .init(cpu->number_of_threads)
+ .name(name() + ".WB:penalized")
+ .desc("number of instrctions required to write to 'other' IQ")
+ .flags(total)
+ ;
+
+
+ wb_penalized_rate
+ .name(name() + ".WB:penalized_rate")
+ .desc ("fraction of instructions written-back that wrote to 'other' IQ")
+ .flags(total)
+ ;
+
+ wb_penalized_rate = wb_penalized / writeback_count;
+
+ wb_fanout
+ .name(name() + ".WB:fanout")
+ .desc("average fanout of values written-back")
+ .flags(total)
+ ;
+
+ wb_fanout = producer_inst / consumer_inst;
+
+ wb_rate
+ .name(name() + ".WB:rate")
+ .desc("insts written-back per cycle")
+ .flags(total)
+ ;
+ wb_rate = writeback_count / cpu->numCycles;
+
+ stat_com_inst
+ .init(cpu->number_of_threads)
+ .name(name() + ".COM:count")
+ .desc("Number of instructions committed")
+ .flags(total)
+ ;
+
+ stat_com_swp
+ .init(cpu->number_of_threads)
+ .name(name() + ".COM:swp_count")
+ .desc("Number of s/w prefetches committed")
+ .flags(total)
+ ;
+
+ stat_com_refs
+ .init(cpu->number_of_threads)
+ .name(name() + ".COM:refs")
+ .desc("Number of memory references committed")
+ .flags(total)
+ ;
+
+ stat_com_loads
+ .init(cpu->number_of_threads)
+ .name(name() + ".COM:loads")
+ .desc("Number of loads committed")
+ .flags(total)
+ ;
+
+ stat_com_membars
+ .init(cpu->number_of_threads)
+ .name(name() + ".COM:membars")
+ .desc("Number of memory barriers committed")
+ .flags(total)
+ ;
+
+ stat_com_branches
+ .init(cpu->number_of_threads)
+ .name(name() + ".COM:branches")
+ .desc("Number of branches committed")
+ .flags(total)
+ ;
+ n_committed_dist
+ .init(0,commitWidth,1)
+ .name(name() + ".COM:committed_per_cycle")
+ .desc("Number of insts commited each cycle")
+ .flags(pdf)
+ ;
+
+ //
+ // Commit-Eligible instructions...
+ //
+ // -> The number of instructions eligible to commit in those
+ // cycles where we reached our commit BW limit (less the number
+ // actually committed)
+ //
+ // -> The average value is computed over ALL CYCLES... not just
+ // the BW limited cycles
+ //
+ // -> The standard deviation is computed only over cycles where
+ // we reached the BW limit
+ //
+ commit_eligible
+ .init(cpu->number_of_threads)
+ .name(name() + ".COM:bw_limited")
+ .desc("number of insts not committed due to BW limits")
+ .flags(total)
+ ;
+
+ commit_eligible_samples
+ .name(name() + ".COM:bw_lim_events")
+ .desc("number cycles where commit BW limit reached")
+ ;
+
+ ROB_fcount
+ .name(name() + ".ROB:full_count")
+ .desc("number of cycles where ROB was full")
+ ;
+
+ ROB_count
+ .init(cpu->number_of_threads)
+ .name(name() + ".ROB:occupancy")
+ .desc(name() + ".ROB occupancy (cumulative)")
+ .flags(total)
+ ;
+
+ ROB_full_rate
+ .name(name() + ".ROB:full_rate")
+ .desc("ROB full per cycle")
+ ;
+ ROB_full_rate = ROB_fcount / cpu->numCycles;
+
+ ROB_occ_rate
+ .name(name() + ".ROB:occ_rate")
+ .desc("ROB occupancy rate")
+ .flags(total)
+ ;
+ ROB_occ_rate = ROB_count / cpu->numCycles;
+
+ ROB_occ_dist
+ .init(cpu->number_of_threads,0,numROBEntries,2)
+ .name(name() + ".ROB:occ_dist")
+ .desc("ROB Occupancy per cycle")
+ .flags(total | cdf)
+ ;
+
+ IQ.regStats();
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::setCommBuffer(TimeBuffer<CommStruct> *_comm)
+{
+ comm = _comm;
+ toIEW = comm->getWire(0);
+ fromCommit = comm->getWire(-1);
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::tick()
+{
+ DPRINTF(BE, "Ticking back end\n");
+
+ ROB_count[0]+= numInsts;
+
+ wbCycle = 0;
+
+ if (xcSquash) {
+ squashFromXC();
+ }
+
+ // Read in any done instruction information and update the IQ or LSQ.
+ updateStructures();
+
+ if (dispatchStatus != Blocked) {
+ d2i.advance();
+ dispatchInsts();
+ } else {
+ checkDispatchStatus();
+ }
+
+ i2e.advance();
+ scheduleReadyInsts();
+
+ e2c.advance();
+ executeInsts();
+
+ numInstsToWB.advance();
+ writebackInsts();
+
+ commitInsts();
+
+ DPRINTF(BE, "IQ entries in use: %i, ROB entries in use: %i, LSQ loads: %i, LSQ stores: %i\n",
+ IQ.numInsts, numInsts, LSQ.numLoads(), LSQ.numStores());
+
+ assert(numInsts == instList.size());
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::updateStructures()
+{
+ if (fromCommit->doneSeqNum) {
+ IQ.commit(fromCommit->doneSeqNum);
+ LSQ.commitLoads(fromCommit->doneSeqNum);
+ LSQ.commitStores(fromCommit->doneSeqNum);
+ }
+
+ if (fromCommit->nonSpecSeqNum) {
+ if (fromCommit->uncached) {
+ LSQ.executeLoad(fromCommit->lqIdx);
+ } else {
+ IQ.scheduleNonSpec(
+ fromCommit->nonSpecSeqNum);
+ }
+ }
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::addToIQ(DynInstPtr &inst)
+{
+ // Do anything IQ specific here?
+ IQ.insert(inst);
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::addToLSQ(DynInstPtr &inst)
+{
+ // Do anything LSQ specific here?
+ LSQ.insert(inst);
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::dispatchInsts()
+{
+ DPRINTF(BE, "Trying to dispatch instructions.\n");
+
+ // Pull instructions out of the front end.
+ int disp_width = dispatchWidth ? dispatchWidth : width;
+
+ // Could model dispatching time, but in general 1 cycle is probably
+ // good enough.
+
+ if (dispatchSize < numDispatchEntries) {
+ for (int i = 0; i < disp_width; i++) {
+ // Get instructions
+ DynInstPtr inst = frontEnd->getInst();
+
+ if (!inst) {
+ // No more instructions to get
+ break;
+ }
+
+ DPRINTF(BE, "Processing instruction [sn:%lli] PC:%#x\n",
+ inst->seqNum, inst->readPC());
+
+ for (int i = 0; i < inst->numDestRegs(); ++i)
+ renameTable[inst->destRegIdx(i)] = inst;
+
+ // Add to queue to be dispatched.
+ dispatch.push_back(inst);
+
+ d2i[0].size++;
+ ++dispatchSize;
+ }
+ }
+
+ assert(dispatch.size() < 64);
+
+ for (int i = 0; i < instsToDispatch->size; ++i) {
+ assert(!dispatch.empty());
+ // Get instruction from front of time buffer
+ DynInstPtr inst = dispatch.front();
+ dispatch.pop_front();
+ --dispatchSize;
+
+ if (inst->isSquashed())
+ continue;
+
+ ++numInsts;
+ instList.push_back(inst);
+
+ DPRINTF(BE, "Dispatching instruction [sn:%lli] PC:%#x\n",
+ inst->seqNum, inst->readPC());
+
+ addToIQ(inst);
+
+ if (inst->isMemRef()) {
+ addToLSQ(inst);
+ }
+
+ if (inst->isNonSpeculative()) {
+ inst->setCanCommit();
+ }
+
+ // Check if IQ or LSQ is full. If so we'll need to break and stop
+ // removing instructions. Also update the number of insts to remove
+ // from the queue.
+ if (exactFullStall) {
+ bool stall = false;
+ if (IQ.isFull()) {
+ DPRINTF(BE, "IQ is full!\n");
+ stall = true;
+ } else if (LSQ.isFull()) {
+ DPRINTF(BE, "LSQ is full!\n");
+ stall = true;
+ } else if (isFull()) {
+ DPRINTF(BE, "ROB is full!\n");
+ stall = true;
+ ROB_fcount++;
+ }
+ if (stall) {
+ instsToDispatch->size-= i+1;
+ dispatchStall();
+ return;
+ }
+ }
+ }
+
+ // Check if IQ or LSQ is full. If so we'll need to break and stop
+ // removing instructions. Also update the number of insts to remove
+ // from the queue. Check here if we don't care about exact stall
+ // conditions.
+
+ bool stall = false;
+ if (IQ.isFull()) {
+ DPRINTF(BE, "IQ is full!\n");
+ stall = true;
+ } else if (LSQ.isFull()) {
+ DPRINTF(BE, "LSQ is full!\n");
+ stall = true;
+ } else if (isFull()) {
+ DPRINTF(BE, "ROB is full!\n");
+ stall = true;
+ ROB_fcount++;
+ }
+ if (stall) {
+ d2i.advance();
+ dispatchStall();
+ return;
+ }
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::dispatchStall()
+{
+ dispatchStatus = Blocked;
+ if (!cpu->decoupledFrontEnd) {
+ // Tell front end to stall here through a timebuffer, or just tell
+ // it directly.
+ }
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::checkDispatchStatus()
+{
+ DPRINTF(BE, "Checking dispatch status\n");
+ assert(dispatchStatus == Blocked);
+ if (!IQ.isFull() && !LSQ.isFull() && !isFull()) {
+ DPRINTF(BE, "Dispatch no longer blocked\n");
+ dispatchStatus = Running;
+ dispatchInsts();
+ }
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::scheduleReadyInsts()
+{
+ // Tell IQ to put any ready instructions into the instruction list.
+ // Probably want to have a list of DynInstPtrs returned here. Then I
+ // can choose to either put them into a time buffer to simulate
+ // IQ scheduling time, or hand them directly off to the next stage.
+ // Do you ever want to directly hand it off to the next stage?
+ DPRINTF(BE, "Trying to schedule ready instructions\n");
+ IQ.scheduleReadyInsts();
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::executeInsts()
+{
+ int insts_to_execute = instsToExecute->size;
+
+ issued_ops[0]+= insts_to_execute;
+ n_issued_dist[insts_to_execute]++;
+
+ DPRINTF(BE, "Trying to execute %i instructions\n", insts_to_execute);
+
+ fetchRedirect[0] = false;
+
+ while (insts_to_execute > 0) {
+ // Get ready instruction from the IQ (or queue coming out of IQ)
+ // Execute the ready instruction.
+ // Wakeup any dependents if it's done.
+ DynInstPtr inst = IQ.getReadyInst();
+
+ DPRINTF(BE, "Executing inst [sn:%lli] PC: %#x\n",
+ inst->seqNum, inst->readPC());
+
+ ++funcExeInst;
+
+ // Check if the instruction is squashed; if so then skip it
+ // and don't count it towards the FU usage.
+ if (inst->isSquashed()) {
+ DPRINTF(BE, "Execute: Instruction was squashed.\n");
+
+ // Not sure how to handle this plus the method of sending # of
+ // instructions to use. Probably will just have to count it
+ // towards the bandwidth usage, but not the FU usage.
+ --insts_to_execute;
+
+ // Consider this instruction executed so that commit can go
+ // ahead and retire the instruction.
+ inst->setExecuted();
+
+ // Not sure if I should set this here or just let commit try to
+ // commit any squashed instructions. I like the latter a bit more.
+ inst->setCanCommit();
+
+// ++iewExecSquashedInsts;
+
+ continue;
+ }
+
+ Fault fault = NoFault;
+
+ // Execute instruction.
+ // Note that if the instruction faults, it will be handled
+ // at the commit stage.
+ if (inst->isMemRef() &&
+ (!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
+ DPRINTF(BE, "Execute: Initiating access for memory "
+ "reference.\n");
+
+ // Tell the LDSTQ to execute this instruction (if it is a load).
+ if (inst->isLoad()) {
+ // Loads will mark themselves as executed, and their writeback
+ // event adds the instruction to the queue to commit
+ fault = LSQ.executeLoad(inst);
+
+// ++iewExecLoadInsts;
+ } else if (inst->isStore()) {
+ LSQ.executeStore(inst);
+
+// ++iewExecStoreInsts;
+
+ if (!(inst->req->flags & LOCKED)) {
+ inst->setExecuted();
+
+ instToCommit(inst);
+ }
+ // Store conditionals will mark themselves as executed, and
+ // their writeback event will add the instruction to the queue
+ // to commit.
+ } else {
+ panic("Unexpected memory type!\n");
+ }
+
+ } else {
+ inst->execute();
+
+// ++iewExecutedInsts;
+
+ inst->setExecuted();
+
+ instToCommit(inst);
+ }
+
+ updateExeInstStats(inst);
+
+ // Probably should have some sort of function for this.
+ // More general question of how to handle squashes? Have some sort of
+ // squash unit that controls it? Probably...
+ // Check if branch was correct. This check happens after the
+ // instruction is added to the queue because even if the branch
+ // is mispredicted, the branch instruction itself is still valid.
+ // Only handle this if there hasn't already been something that
+ // redirects fetch in this group of instructions.
+
+ // This probably needs to prioritize the redirects if a different
+ // scheduler is used. Currently the scheduler schedules the oldest
+ // instruction first, so the branch resolution order will be correct.
+ unsigned tid = inst->threadNumber;
+
+ if (!fetchRedirect[tid]) {
+
+ if (inst->mispredicted()) {
+ fetchRedirect[tid] = true;
+
+ DPRINTF(BE, "Execute: Branch mispredict detected.\n");
+ DPRINTF(BE, "Execute: Redirecting fetch to PC: %#x.\n",
+ inst->nextPC);
+
+ // If incorrect, then signal the ROB that it must be squashed.
+ squashDueToBranch(inst);
+
+ if (inst->predTaken()) {
+// predictedTakenIncorrect++;
+ } else {
+// predictedNotTakenIncorrect++;
+ }
+ } else if (LSQ.violation()) {
+ fetchRedirect[tid] = true;
+
+ // Get the DynInst that caused the violation. Note that this
+ // clears the violation signal.
+ DynInstPtr violator;
+ violator = LSQ.getMemDepViolator();
+
+ DPRINTF(BE, "LDSTQ detected a violation. Violator PC: "
+ "%#x, inst PC: %#x. Addr is: %#x.\n",
+ violator->readPC(), inst->readPC(), inst->physEffAddr);
+
+ // Tell the instruction queue that a violation has occured.
+// IQ.violation(inst, violator);
+
+ // Squash.
+// squashDueToMemOrder(inst,tid);
+ squashDueToBranch(inst);
+
+// ++memOrderViolationEvents;
+ } else if (LSQ.loadBlocked()) {
+ fetchRedirect[tid] = true;
+
+ DPRINTF(BE, "Load operation couldn't execute because the "
+ "memory system is blocked. PC: %#x [sn:%lli]\n",
+ inst->readPC(), inst->seqNum);
+
+ squashDueToMemBlocked(inst);
+ }
+ }
+
+// instList.pop_front();
+
+ --insts_to_execute;
+
+ // keep an instruction count
+ thread->numInst++;
+ thread->numInsts++;
+ }
+
+ assert(insts_to_execute >= 0);
+}
+
+template<class Impl>
+void
+BackEnd<Impl>::instToCommit(DynInstPtr &inst)
+{
+ int wb_width = wbWidth;
+ // First check the time slot that this instruction will write
+ // to. If there are free write ports at the time, then go ahead
+ // and write the instruction to that time. If there are not,
+ // keep looking back to see where's the first time there's a
+ // free slot. What happens if you run out of free spaces?
+ // For now naively assume that all instructions take one cycle.
+ // Otherwise would have to look into the time buffer based on the
+ // latency of the instruction.
+
+ DPRINTF(BE, "Sending instructions to commit [sn:%lli] PC %#x.\n",
+ inst->seqNum, inst->readPC());
+
+ while (numInstsToWB[wbCycle].size >= wb_width) {
+ ++wbCycle;
+
+ assert(wbCycle < 5);
+ }
+
+ // Add finished instruction to queue to commit.
+ writeback.push_back(inst);
+ numInstsToWB[wbCycle].size++;
+
+ if (wbCycle)
+ wb_penalized[0]++;
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::writebackInsts()
+{
+ int wb_width = wbWidth;
+ // Using this method I'm not quite sure how to prevent an
+ // instruction from waking its own dependents multiple times,
+ // without the guarantee that commit always has enough bandwidth
+ // to accept all instructions being written back. This guarantee
+ // might not be too unrealistic.
+ InstListIt wb_inst_it = writeback.begin();
+ InstListIt wb_end_it = writeback.end();
+ int inst_num = 0;
+ int consumer_insts = 0;
+
+ for (; inst_num < wb_width &&
+ wb_inst_it != wb_end_it; inst_num++) {
+ DynInstPtr inst = (*wb_inst_it);
+
+ // Some instructions will be sent to commit without having
+ // executed because they need commit to handle them.
+ // E.g. Uncached loads have not actually executed when they
+ // are first sent to commit. Instead commit must tell the LSQ
+ // when it's ready to execute the uncached load.
+ if (!inst->isSquashed()) {
+ DPRINTF(BE, "Writing back instruction [sn:%lli] PC %#x.\n",
+ inst->seqNum, inst->readPC());
+
+ inst->setCanCommit();
+ inst->setResultReady();
+
+ if (inst->isExecuted()) {
+ int dependents = IQ.wakeDependents(inst);
+ if (dependents) {
+ producer_inst[0]++;
+ consumer_insts+= dependents;
+ }
+ }
+ }
+
+ writeback.erase(wb_inst_it++);
+ }
+ LSQ.writebackStores();
+ consumer_inst[0]+= consumer_insts;
+ writeback_count[0]+= inst_num;
+}
+
+template <class Impl>
+bool
+BackEnd<Impl>::commitInst(int inst_num)
+{
+ // Read instruction from the head of the ROB
+ DynInstPtr inst = instList.front();
+
+ // Make sure instruction is valid
+ assert(inst);
+
+ if (!inst->readyToCommit())
+ return false;
+
+ DPRINTF(BE, "Trying to commit instruction [sn:%lli] PC:%#x\n",
+ inst->seqNum, inst->readPC());
+
+ // If the instruction is not executed yet, then it is a non-speculative
+ // or store inst. Signal backwards that it should be executed.
+ if (!inst->isExecuted()) {
+ // Keep this number correct. We have not yet actually executed
+ // and committed this instruction.
+// thread->funcExeInst--;
+
+ if (inst->isNonSpeculative()) {
+#if !FULL_SYSTEM
+ // Hack to make sure syscalls aren't executed until all stores
+ // write back their data. This direct communication shouldn't
+ // be used for anything other than this.
+ if (inst_num > 0 || LSQ.hasStoresToWB()) {
+ DPRINTF(BE, "Waiting for all stores to writeback.\n");
+ return false;
+ }
+#endif
+
+ DPRINTF(BE, "Encountered a store or non-speculative "
+ "instruction at the head of the ROB, PC %#x.\n",
+ inst->readPC());
+
+ // Send back the non-speculative instruction's sequence number.
+ toIEW->nonSpecSeqNum = inst->seqNum;
+
+ // Change the instruction so it won't try to commit again until
+ // it is executed.
+ inst->clearCanCommit();
+
+// ++commitNonSpecStalls;
+
+ return false;
+ } else if (inst->isLoad()) {
+ DPRINTF(BE, "[sn:%lli]: Uncached load, PC %#x.\n",
+ inst->seqNum, inst->readPC());
+
+ // Send back the non-speculative instruction's sequence
+ // number. Maybe just tell the lsq to re-execute the load.
+ toIEW->nonSpecSeqNum = inst->seqNum;
+ toIEW->uncached = true;
+ toIEW->lqIdx = inst->lqIdx;
+
+ inst->clearCanCommit();
+
+ return false;
+ } else {
+ panic("Trying to commit un-executed instruction "
+ "of unknown type!\n");
+ }
+ }
+
+ // Now check if it's one of the special trap or barrier or
+ // serializing instructions.
+ if (inst->isThreadSync())
+ {
+ // Not handled for now.
+ panic("Barrier instructions are not handled yet.\n");
+ }
+
+ // Check if the instruction caused a fault. If so, trap.
+ Fault inst_fault = inst->getFault();
+
+ if (inst_fault != NoFault) {
+ if (!inst->isNop()) {
+#if FULL_SYSTEM
+ DPRINTF(BE, "Inst [sn:%lli] PC %#x has a fault\n",
+ inst->seqNum, inst->readPC());
+
+// assert(!thread->inSyscall);
+
+// thread->inSyscall = true;
+
+ // Consider holding onto the trap and waiting until the trap event
+ // happens for this to be executed.
+ inst_fault->invoke(thread->getXCProxy());
+
+ // Exit state update mode to avoid accidental updating.
+// thread->inSyscall = false;
+
+// commitStatus = TrapPending;
+
+ // Generate trap squash event.
+// generateTrapEvent();
+
+ return false;
+#else // !FULL_SYSTEM
+ panic("fault (%d) detected @ PC %08p", inst_fault,
+ inst->PC);
+#endif // FULL_SYSTEM
+ }
+ }
+
+ if (inst->isControl()) {
+// ++commitCommittedBranches;
+ }
+
+ int freed_regs = 0;
+
+ for (int i = 0; i < inst->numDestRegs(); ++i) {
+ DPRINTF(BE, "Commit rename map setting register %i to [sn:%lli]\n",
+ (int)inst->destRegIdx(i), inst->seqNum);
+ thread->renameTable[inst->destRegIdx(i)] = inst;
+ ++freed_regs;
+ }
+
+ if (inst->traceData) {
+ inst->traceData->finalize();
+ inst->traceData = NULL;
+ }
+
+ inst->clearDependents();
+
+ frontEnd->addFreeRegs(freed_regs);
+
+ instList.pop_front();
+
+ --numInsts;
+ cpu->numInst++;
+ thread->numInsts++;
+ ++thread->funcExeInst;
+ thread->PC = inst->readNextPC();
+ updateComInstStats(inst);
+
+ // Write the done sequence number here.
+ toIEW->doneSeqNum = inst->seqNum;
+
+#if FULL_SYSTEM
+ int count = 0;
+ Addr oldpc;
+ do {
+ if (count == 0)
+ assert(!thread->inSyscall && !thread->trapPending);
+ oldpc = thread->readPC();
+ cpu->system->pcEventQueue.service(
+ thread->getXCProxy());
+ count++;
+ } while (oldpc != thread->readPC());
+ if (count > 1) {
+ DPRINTF(BE, "PC skip function event, stopping commit\n");
+// completed_last_inst = false;
+// squashPending = true;
+ return false;
+ }
+#endif
+ return true;
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::commitInsts()
+{
+ int commit_width = commitWidth ? commitWidth : width;
+
+ // Not sure this should be a loop or not.
+ int inst_num = 0;
+ while (!instList.empty() && inst_num < commit_width) {
+ if (instList.front()->isSquashed()) {
+ panic("No squashed insts should still be on the list!");
+ instList.front()->clearDependents();
+ instList.pop_front();
+ continue;
+ }
+
+ if (!commitInst(inst_num++)) {
+ break;
+ }
+ }
+ n_committed_dist.sample(inst_num);
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::squash(const InstSeqNum &sn)
+{
+ IQ.squash(sn);
+ LSQ.squash(sn);
+
+ int freed_regs = 0;
+ InstListIt dispatch_end = dispatch.end();
+ InstListIt insts_it = dispatch.end();
+ insts_it--;
+
+ while (insts_it != dispatch_end && (*insts_it)->seqNum > sn)
+ {
+ if ((*insts_it)->isSquashed()) {
+ --insts_it;
+ continue;
+ }
+ DPRINTF(BE, "Squashing instruction on dispatch list PC %#x, [sn:%lli].\n",
+ (*insts_it)->readPC(),
+ (*insts_it)->seqNum);
+
+ // Mark the instruction as squashed, and ready to commit so that
+ // it can drain out of the pipeline.
+ (*insts_it)->setSquashed();
+
+ (*insts_it)->setCanCommit();
+
+ // Be careful with IPRs and such here
+ for (int i = 0; i < (*insts_it)->numDestRegs(); ++i) {
+ DynInstPtr prev_dest = (*insts_it)->getPrevDestInst(i);
+ DPRINTF(BE, "Commit rename map setting register %i to [sn:%lli]\n",
+ (int)(*insts_it)->destRegIdx(i), prev_dest);
+ renameTable[(*insts_it)->destRegIdx(i)] = prev_dest;
+ ++freed_regs;
+ }
+
+ (*insts_it)->clearDependents();
+
+ --insts_it;
+ }
+
+ insts_it = instList.end();
+ insts_it--;
+
+ while (!instList.empty() && (*insts_it)->seqNum > sn)
+ {
+ if ((*insts_it)->isSquashed()) {
+ --insts_it;
+ continue;
+ }
+ DPRINTF(BE, "Squashing instruction on inst list PC %#x, [sn:%lli].\n",
+ (*insts_it)->readPC(),
+ (*insts_it)->seqNum);
+
+ // Mark the instruction as squashed, and ready to commit so that
+ // it can drain out of the pipeline.
+ (*insts_it)->setSquashed();
+
+ (*insts_it)->setCanCommit();
+
+ for (int i = 0; i < (*insts_it)->numDestRegs(); ++i) {
+ DynInstPtr prev_dest = (*insts_it)->getPrevDestInst(i);
+ DPRINTF(BE, "Commit rename map setting register %i to [sn:%lli]\n",
+ (int)(*insts_it)->destRegIdx(i), prev_dest);
+ renameTable[(*insts_it)->destRegIdx(i)] = prev_dest;
+ ++freed_regs;
+ }
+
+ (*insts_it)->clearDependents();
+
+ instList.erase(insts_it--);
+ --numInsts;
+ }
+
+ frontEnd->addFreeRegs(freed_regs);
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::squashFromXC()
+{
+ xcSquash = true;
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::squashDueToBranch(DynInstPtr &inst)
+{
+ // Update the branch predictor state I guess
+ squash(inst->seqNum);
+ frontEnd->squash(inst->seqNum, inst->readNextPC(),
+ true, inst->mispredicted());
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::squashDueToMemBlocked(DynInstPtr &inst)
+{
+ DPRINTF(IEW, "Memory blocked, squashing load and younger insts, "
+ "PC: %#x [sn:%i].\n", inst->readPC(), inst->seqNum);
+
+ squash(inst->seqNum - 1);
+ frontEnd->squash(inst->seqNum - 1, inst->readPC());
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::fetchFault(Fault &fault)
+{
+ faultFromFetch = fault;
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::updateExeInstStats(DynInstPtr &inst)
+{
+ int thread_number = inst->threadNumber;
+
+ //
+ // Pick off the software prefetches
+ //
+#ifdef TARGET_ALPHA
+ if (inst->isDataPrefetch())
+ exe_swp[thread_number]++;
+ else
+ exe_inst[thread_number]++;
+#else
+ exe_inst[thread_number]++;
+#endif
+
+ //
+ // Control operations
+ //
+ if (inst->isControl())
+ exe_branches[thread_number]++;
+
+ //
+ // Memory operations
+ //
+ if (inst->isMemRef()) {
+ exe_refs[thread_number]++;
+
+ if (inst->isLoad())
+ exe_loads[thread_number]++;
+ }
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::updateComInstStats(DynInstPtr &inst)
+{
+ unsigned thread = inst->threadNumber;
+
+ //
+ // Pick off the software prefetches
+ //
+#ifdef TARGET_ALPHA
+ if (inst->isDataPrefetch()) {
+ stat_com_swp[thread]++;
+ } else {
+ stat_com_inst[thread]++;
+ }
+#else
+ stat_com_inst[thread]++;
+#endif
+
+ //
+ // Control Instructions
+ //
+ if (inst->isControl())
+ stat_com_branches[thread]++;
+
+ //
+ // Memory references
+ //
+ if (inst->isMemRef()) {
+ stat_com_refs[thread]++;
+
+ if (inst->isLoad()) {
+ stat_com_loads[thread]++;
+ }
+ }
+
+ if (inst->isMemBarrier()) {
+ stat_com_membars[thread]++;
+ }
+}
+
+template <class Impl>
+void
+BackEnd<Impl>::dumpInsts()
+{
+ int num = 0;
+ int valid_num = 0;
+
+ InstListIt inst_list_it = instList.begin();
+
+ cprintf("Inst list size: %i\n", instList.size());
+
+ while (inst_list_it != instList.end())
+ {
+ cprintf("Instruction:%i\n",
+ num);
+ if (!(*inst_list_it)->isSquashed()) {
+ if (!(*inst_list_it)->isIssued()) {
+ ++valid_num;
+ cprintf("Count:%i\n", valid_num);
+ } else if ((*inst_list_it)->isMemRef() &&
+ !(*inst_list_it)->memOpDone) {
+ // Loads that have not been marked as executed still count
+ // towards the total instructions.
+ ++valid_num;
+ cprintf("Count:%i\n", valid_num);
+ }
+ }
+
+ cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n"
+ "Issued:%i\nSquashed:%i\n",
+ (*inst_list_it)->readPC(),
+ (*inst_list_it)->seqNum,
+ (*inst_list_it)->threadNumber,
+ (*inst_list_it)->isIssued(),
+ (*inst_list_it)->isSquashed());
+
+ if ((*inst_list_it)->isMemRef()) {
+ cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
+ }
+
+ cprintf("\n");
+
+ inst_list_it++;
+ ++num;
+ }
+
+ cprintf("Dispatch list size: %i\n", dispatch.size());
+
+ inst_list_it = dispatch.begin();
+
+ while (inst_list_it != dispatch.end())
+ {
+ cprintf("Instruction:%i\n",
+ num);
+ if (!(*inst_list_it)->isSquashed()) {
+ if (!(*inst_list_it)->isIssued()) {
+ ++valid_num;
+ cprintf("Count:%i\n", valid_num);
+ } else if ((*inst_list_it)->isMemRef() &&
+ !(*inst_list_it)->memOpDone) {
+ // Loads that have not been marked as executed still count
+ // towards the total instructions.
+ ++valid_num;
+ cprintf("Count:%i\n", valid_num);
+ }
+ }
+
+ cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n"
+ "Issued:%i\nSquashed:%i\n",
+ (*inst_list_it)->readPC(),
+ (*inst_list_it)->seqNum,
+ (*inst_list_it)->threadNumber,
+ (*inst_list_it)->isIssued(),
+ (*inst_list_it)->isSquashed());
+
+ if ((*inst_list_it)->isMemRef()) {
+ cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
+ }
+
+ cprintf("\n");
+
+ inst_list_it++;
+ ++num;
+ }
+
+ cprintf("Writeback list size: %i\n", writeback.size());
+
+ inst_list_it = writeback.begin();
+
+ while (inst_list_it != writeback.end())
+ {
+ cprintf("Instruction:%i\n",
+ num);
+ if (!(*inst_list_it)->isSquashed()) {
+ if (!(*inst_list_it)->isIssued()) {
+ ++valid_num;
+ cprintf("Count:%i\n", valid_num);
+ } else if ((*inst_list_it)->isMemRef() &&
+ !(*inst_list_it)->memOpDone) {
+ // Loads that have not been marked as executed still count
+ // towards the total instructions.
+ ++valid_num;
+ cprintf("Count:%i\n", valid_num);
+ }
+ }
+
+ cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n"
+ "Issued:%i\nSquashed:%i\n",
+ (*inst_list_it)->readPC(),
+ (*inst_list_it)->seqNum,
+ (*inst_list_it)->threadNumber,
+ (*inst_list_it)->isIssued(),
+ (*inst_list_it)->isSquashed());
+
+ if ((*inst_list_it)->isMemRef()) {
+ cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
+ }
+
+ cprintf("\n");
+
+ inst_list_it++;
+ ++num;
+ }
+}