summaryrefslogtreecommitdiff
path: root/cpu/simple
diff options
context:
space:
mode:
Diffstat (limited to 'cpu/simple')
-rw-r--r--cpu/simple/cpu.cc911
-rw-r--r--cpu/simple/cpu.hh343
2 files changed, 1254 insertions, 0 deletions
diff --git a/cpu/simple/cpu.cc b/cpu/simple/cpu.cc
new file mode 100644
index 000000000..306398ac2
--- /dev/null
+++ b/cpu/simple/cpu.cc
@@ -0,0 +1,911 @@
+/*
+ * Copyright (c) 2002-2004 The Regents of The University of Michigan
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <cmath>
+#include <cstdio>
+#include <cstdlib>
+#include <iostream>
+#include <iomanip>
+#include <list>
+#include <sstream>
+#include <string>
+
+#include "base/cprintf.hh"
+#include "base/inifile.hh"
+#include "base/loader/symtab.hh"
+#include "base/misc.hh"
+#include "base/pollevent.hh"
+#include "base/range.hh"
+#include "base/stats/events.hh"
+#include "base/trace.hh"
+#include "cpu/base.hh"
+#include "cpu/exec_context.hh"
+#include "cpu/exetrace.hh"
+#include "cpu/sampler/sampler.hh"
+#include "cpu/simple/cpu.hh"
+#include "cpu/smt.hh"
+#include "cpu/static_inst.hh"
+#include "mem/base_mem.hh"
+#include "mem/mem_interface.hh"
+#include "sim/builder.hh"
+#include "sim/debug.hh"
+#include "sim/host.hh"
+#include "sim/sim_events.hh"
+#include "sim/sim_object.hh"
+#include "sim/stats.hh"
+
+#ifdef FULL_SYSTEM
+#include "base/remote_gdb.hh"
+#include "mem/functional/memory_control.hh"
+#include "mem/functional/physical.hh"
+#include "sim/system.hh"
+#include "targetarch/alpha_memory.hh"
+#include "targetarch/vtophys.hh"
+#else // !FULL_SYSTEM
+#include "eio/eio.hh"
+#include "mem/functional/functional.hh"
+#endif // FULL_SYSTEM
+
+using namespace std;
+
+
+SimpleCPU::TickEvent::TickEvent(SimpleCPU *c, int w)
+ : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c), width(w)
+{
+}
+
+void
+SimpleCPU::TickEvent::process()
+{
+ int count = width;
+ do {
+ cpu->tick();
+ } while (--count > 0 && cpu->status() == Running);
+}
+
+const char *
+SimpleCPU::TickEvent::description()
+{
+ return "SimpleCPU tick event";
+}
+
+
+SimpleCPU::CacheCompletionEvent::CacheCompletionEvent(SimpleCPU *_cpu)
+ : Event(&mainEventQueue), cpu(_cpu)
+{
+}
+
+void SimpleCPU::CacheCompletionEvent::process()
+{
+ cpu->processCacheCompletion();
+}
+
+const char *
+SimpleCPU::CacheCompletionEvent::description()
+{
+ return "SimpleCPU cache completion event";
+}
+
+SimpleCPU::SimpleCPU(Params *p)
+ : BaseCPU(p), tickEvent(this, p->width), xc(NULL),
+ cacheCompletionEvent(this)
+{
+ _status = Idle;
+#ifdef FULL_SYSTEM
+ xc = new ExecContext(this, 0, p->system, p->itb, p->dtb, p->mem);
+
+ // initialize CPU, including PC
+ TheISA::initCPU(&xc->regs);
+#else
+ xc = new ExecContext(this, /* thread_num */ 0, p->process, /* asid */ 0);
+#endif // !FULL_SYSTEM
+
+ icacheInterface = p->icache_interface;
+ dcacheInterface = p->dcache_interface;
+
+ memReq = new MemReq();
+ memReq->xc = xc;
+ memReq->asid = 0;
+ memReq->data = new uint8_t[64];
+
+ numInst = 0;
+ startNumInst = 0;
+ numLoad = 0;
+ startNumLoad = 0;
+ lastIcacheStall = 0;
+ lastDcacheStall = 0;
+
+ execContexts.push_back(xc);
+}
+
+SimpleCPU::~SimpleCPU()
+{
+}
+
+void
+SimpleCPU::switchOut(SamplingCPU *s)
+{
+ sampler = s;
+ if (status() == DcacheMissStall) {
+ DPRINTF(Sampler,"Outstanding dcache access, waiting for completion\n");
+ _status = DcacheMissSwitch;
+ }
+ else {
+ _status = SwitchedOut;
+
+ if (tickEvent.scheduled())
+ tickEvent.squash();
+
+ sampler->signalSwitched();
+ }
+}
+
+
+void
+SimpleCPU::takeOverFrom(BaseCPU *oldCPU)
+{
+ BaseCPU::takeOverFrom(oldCPU);
+
+ assert(!tickEvent.scheduled());
+
+ // if any of this CPU's ExecContexts are active, mark the CPU as
+ // running and schedule its tick event.
+ for (int i = 0; i < execContexts.size(); ++i) {
+ ExecContext *xc = execContexts[i];
+ if (xc->status() == ExecContext::Active && _status != Running) {
+ _status = Running;
+ tickEvent.schedule(curTick);
+ }
+ }
+}
+
+
+void
+SimpleCPU::activateContext(int thread_num, int delay)
+{
+ assert(thread_num == 0);
+ assert(xc);
+
+ assert(_status == Idle);
+ notIdleFraction++;
+ scheduleTickEvent(delay);
+ _status = Running;
+}
+
+
+void
+SimpleCPU::suspendContext(int thread_num)
+{
+ assert(thread_num == 0);
+ assert(xc);
+
+ assert(_status == Running);
+ notIdleFraction--;
+ unscheduleTickEvent();
+ _status = Idle;
+}
+
+
+void
+SimpleCPU::deallocateContext(int thread_num)
+{
+ // for now, these are equivalent
+ suspendContext(thread_num);
+}
+
+
+void
+SimpleCPU::haltContext(int thread_num)
+{
+ // for now, these are equivalent
+ suspendContext(thread_num);
+}
+
+
+void
+SimpleCPU::regStats()
+{
+ using namespace Stats;
+
+ BaseCPU::regStats();
+
+ numInsts
+ .name(name() + ".num_insts")
+ .desc("Number of instructions executed")
+ ;
+
+ numMemRefs
+ .name(name() + ".num_refs")
+ .desc("Number of memory references")
+ ;
+
+ notIdleFraction
+ .name(name() + ".not_idle_fraction")
+ .desc("Percentage of non-idle cycles")
+ ;
+
+ idleFraction
+ .name(name() + ".idle_fraction")
+ .desc("Percentage of idle cycles")
+ ;
+
+ icacheStallCycles
+ .name(name() + ".icache_stall_cycles")
+ .desc("ICache total stall cycles")
+ .prereq(icacheStallCycles)
+ ;
+
+ dcacheStallCycles
+ .name(name() + ".dcache_stall_cycles")
+ .desc("DCache total stall cycles")
+ .prereq(dcacheStallCycles)
+ ;
+
+ idleFraction = constant(1.0) - notIdleFraction;
+}
+
+void
+SimpleCPU::resetStats()
+{
+ startNumInst = numInst;
+ notIdleFraction = (_status != Idle);
+}
+
+void
+SimpleCPU::serialize(ostream &os)
+{
+ BaseCPU::serialize(os);
+ SERIALIZE_ENUM(_status);
+ SERIALIZE_SCALAR(inst);
+ nameOut(os, csprintf("%s.xc", name()));
+ xc->serialize(os);
+ nameOut(os, csprintf("%s.tickEvent", name()));
+ tickEvent.serialize(os);
+ nameOut(os, csprintf("%s.cacheCompletionEvent", name()));
+ cacheCompletionEvent.serialize(os);
+}
+
+void
+SimpleCPU::unserialize(Checkpoint *cp, const string &section)
+{
+ BaseCPU::unserialize(cp, section);
+ UNSERIALIZE_ENUM(_status);
+ UNSERIALIZE_SCALAR(inst);
+ xc->unserialize(cp, csprintf("%s.xc", section));
+ tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
+ cacheCompletionEvent
+ .unserialize(cp, csprintf("%s.cacheCompletionEvent", section));
+}
+
+void
+change_thread_state(int thread_number, int activate, int priority)
+{
+}
+
+Fault
+SimpleCPU::copySrcTranslate(Addr src)
+{
+ static bool no_warn = true;
+ int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
+ // Only support block sizes of 64 atm.
+ assert(blk_size == 64);
+ int offset = src & (blk_size - 1);
+
+ // Make sure block doesn't span page
+ if (no_warn &&
+ (src & TheISA::PageMask) != ((src + blk_size) & TheISA::PageMask) &&
+ (src >> 40) != 0xfffffc) {
+ warn("Copied block source spans pages %x.", src);
+ no_warn = false;
+ }
+
+ memReq->reset(src & ~(blk_size - 1), blk_size);
+
+ // translate to physical address
+ Fault fault = xc->translateDataReadReq(memReq);
+
+ assert(fault != Alignment_Fault);
+
+ if (fault == No_Fault) {
+ xc->copySrcAddr = src;
+ xc->copySrcPhysAddr = memReq->paddr + offset;
+ } else {
+ xc->copySrcAddr = 0;
+ xc->copySrcPhysAddr = 0;
+ }
+ return fault;
+}
+
+Fault
+SimpleCPU::copy(Addr dest)
+{
+ static bool no_warn = true;
+ int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
+ // Only support block sizes of 64 atm.
+ assert(blk_size == 64);
+ uint8_t data[blk_size];
+ //assert(xc->copySrcAddr);
+ int offset = dest & (blk_size - 1);
+
+ // Make sure block doesn't span page
+ if (no_warn &&
+ (dest & TheISA::PageMask) != ((dest + blk_size) & TheISA::PageMask) &&
+ (dest >> 40) != 0xfffffc) {
+ no_warn = false;
+ warn("Copied block destination spans pages %x. ", dest);
+ }
+
+ memReq->reset(dest & ~(blk_size -1), blk_size);
+ // translate to physical address
+ Fault fault = xc->translateDataWriteReq(memReq);
+
+ assert(fault != Alignment_Fault);
+
+ if (fault == No_Fault) {
+ Addr dest_addr = memReq->paddr + offset;
+ // Need to read straight from memory since we have more than 8 bytes.
+ memReq->paddr = xc->copySrcPhysAddr;
+ xc->mem->read(memReq, data);
+ memReq->paddr = dest_addr;
+ xc->mem->write(memReq, data);
+ if (dcacheInterface) {
+ memReq->cmd = Copy;
+ memReq->completionEvent = NULL;
+ memReq->paddr = xc->copySrcPhysAddr;
+ memReq->dest = dest_addr;
+ memReq->size = 64;
+ memReq->time = curTick;
+ dcacheInterface->access(memReq);
+ }
+ }
+ return fault;
+}
+
+// precise architected memory state accessor macros
+template <class T>
+Fault
+SimpleCPU::read(Addr addr, T &data, unsigned flags)
+{
+ if (status() == DcacheMissStall || status() == DcacheMissSwitch) {
+ Fault fault = xc->read(memReq,data);
+
+ if (traceData) {
+ traceData->setAddr(addr);
+ }
+ return fault;
+ }
+
+ memReq->reset(addr, sizeof(T), flags);
+
+ // translate to physical address
+ Fault fault = xc->translateDataReadReq(memReq);
+
+ // if we have a cache, do cache access too
+ if (fault == No_Fault && dcacheInterface) {
+ memReq->cmd = Read;
+ memReq->completionEvent = NULL;
+ memReq->time = curTick;
+ MemAccessResult result = dcacheInterface->access(memReq);
+
+ // Ugly hack to get an event scheduled *only* if the access is
+ // a miss. We really should add first-class support for this
+ // at some point.
+ if (result != MA_HIT && dcacheInterface->doEvents()) {
+ memReq->completionEvent = &cacheCompletionEvent;
+ lastDcacheStall = curTick;
+ unscheduleTickEvent();
+ _status = DcacheMissStall;
+ } else {
+ // do functional access
+ fault = xc->read(memReq, data);
+
+ }
+ } else if(fault == No_Fault) {
+ // do functional access
+ fault = xc->read(memReq, data);
+
+ }
+
+ if (!dcacheInterface && (memReq->flags & UNCACHEABLE))
+ recordEvent("Uncached Read");
+
+ return fault;
+}
+
+#ifndef DOXYGEN_SHOULD_SKIP_THIS
+
+template
+Fault
+SimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
+
+template
+Fault
+SimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
+
+template
+Fault
+SimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
+
+template
+Fault
+SimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
+
+#endif //DOXYGEN_SHOULD_SKIP_THIS
+
+template<>
+Fault
+SimpleCPU::read(Addr addr, double &data, unsigned flags)
+{
+ return read(addr, *(uint64_t*)&data, flags);
+}
+
+template<>
+Fault
+SimpleCPU::read(Addr addr, float &data, unsigned flags)
+{
+ return read(addr, *(uint32_t*)&data, flags);
+}
+
+
+template<>
+Fault
+SimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
+{
+ return read(addr, (uint32_t&)data, flags);
+}
+
+
+template <class T>
+Fault
+SimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
+{
+ memReq->reset(addr, sizeof(T), flags);
+
+ // translate to physical address
+ Fault fault = xc->translateDataWriteReq(memReq);
+
+ // do functional access
+ if (fault == No_Fault)
+ fault = xc->write(memReq, data);
+
+ if (fault == No_Fault && dcacheInterface) {
+ memReq->cmd = Write;
+ memcpy(memReq->data,(uint8_t *)&data,memReq->size);
+ memReq->completionEvent = NULL;
+ memReq->time = curTick;
+ MemAccessResult result = dcacheInterface->access(memReq);
+
+ // Ugly hack to get an event scheduled *only* if the access is
+ // a miss. We really should add first-class support for this
+ // at some point.
+ if (result != MA_HIT && dcacheInterface->doEvents()) {
+ memReq->completionEvent = &cacheCompletionEvent;
+ lastDcacheStall = curTick;
+ unscheduleTickEvent();
+ _status = DcacheMissStall;
+ }
+ }
+
+ if (res && (fault == No_Fault))
+ *res = memReq->result;
+
+ if (!dcacheInterface && (memReq->flags & UNCACHEABLE))
+ recordEvent("Uncached Write");
+
+ return fault;
+}
+
+
+#ifndef DOXYGEN_SHOULD_SKIP_THIS
+template
+Fault
+SimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
+
+template
+Fault
+SimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
+
+template
+Fault
+SimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
+
+template
+Fault
+SimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
+
+#endif //DOXYGEN_SHOULD_SKIP_THIS
+
+template<>
+Fault
+SimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
+{
+ return write(*(uint64_t*)&data, addr, flags, res);
+}
+
+template<>
+Fault
+SimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
+{
+ return write(*(uint32_t*)&data, addr, flags, res);
+}
+
+
+template<>
+Fault
+SimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
+{
+ return write((uint32_t)data, addr, flags, res);
+}
+
+
+#ifdef FULL_SYSTEM
+Addr
+SimpleCPU::dbg_vtophys(Addr addr)
+{
+ return vtophys(xc, addr);
+}
+#endif // FULL_SYSTEM
+
+void
+SimpleCPU::processCacheCompletion()
+{
+ switch (status()) {
+ case IcacheMissStall:
+ icacheStallCycles += curTick - lastIcacheStall;
+ _status = IcacheMissComplete;
+ scheduleTickEvent(1);
+ break;
+ case DcacheMissStall:
+ if (memReq->cmd.isRead()) {
+ curStaticInst->execute(this,traceData);
+ if (traceData)
+ traceData->finalize();
+ }
+ dcacheStallCycles += curTick - lastDcacheStall;
+ _status = Running;
+ scheduleTickEvent(1);
+ break;
+ case DcacheMissSwitch:
+ if (memReq->cmd.isRead()) {
+ curStaticInst->execute(this,traceData);
+ if (traceData)
+ traceData->finalize();
+ }
+ _status = SwitchedOut;
+ sampler->signalSwitched();
+ case SwitchedOut:
+ // If this CPU has been switched out due to sampling/warm-up,
+ // ignore any further status changes (e.g., due to cache
+ // misses outstanding at the time of the switch).
+ return;
+ default:
+ panic("SimpleCPU::processCacheCompletion: bad state");
+ break;
+ }
+}
+
+#ifdef FULL_SYSTEM
+void
+SimpleCPU::post_interrupt(int int_num, int index)
+{
+ BaseCPU::post_interrupt(int_num, index);
+
+ if (xc->status() == ExecContext::Suspended) {
+ DPRINTF(IPI,"Suspended Processor awoke\n");
+ xc->activate();
+ }
+}
+#endif // FULL_SYSTEM
+
+/* start simulation, program loaded, processor precise state initialized */
+void
+SimpleCPU::tick()
+{
+ numCycles++;
+
+ traceData = NULL;
+
+ Fault fault = No_Fault;
+
+#ifdef FULL_SYSTEM
+ if (checkInterrupts && check_interrupts() && !xc->inPalMode() &&
+ status() != IcacheMissComplete) {
+ int ipl = 0;
+ int summary = 0;
+ checkInterrupts = false;
+ IntReg *ipr = xc->regs.ipr;
+
+ if (xc->regs.ipr[TheISA::IPR_SIRR]) {
+ for (int i = TheISA::INTLEVEL_SOFTWARE_MIN;
+ i < TheISA::INTLEVEL_SOFTWARE_MAX; i++) {
+ if (ipr[TheISA::IPR_SIRR] & (ULL(1) << i)) {
+ // See table 4-19 of 21164 hardware reference
+ ipl = (i - TheISA::INTLEVEL_SOFTWARE_MIN) + 1;
+ summary |= (ULL(1) << i);
+ }
+ }
+ }
+
+ uint64_t interrupts = xc->cpu->intr_status();
+ for (int i = TheISA::INTLEVEL_EXTERNAL_MIN;
+ i < TheISA::INTLEVEL_EXTERNAL_MAX; i++) {
+ if (interrupts & (ULL(1) << i)) {
+ // See table 4-19 of 21164 hardware reference
+ ipl = i;
+ summary |= (ULL(1) << i);
+ }
+ }
+
+ if (ipr[TheISA::IPR_ASTRR])
+ panic("asynchronous traps not implemented\n");
+
+ if (ipl && ipl > xc->regs.ipr[TheISA::IPR_IPLR]) {
+ ipr[TheISA::IPR_ISR] = summary;
+ ipr[TheISA::IPR_INTID] = ipl;
+ xc->ev5_trap(Interrupt_Fault);
+
+ DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
+ ipr[TheISA::IPR_IPLR], ipl, summary);
+ }
+ }
+#endif
+
+ // maintain $r0 semantics
+ xc->regs.intRegFile[ZeroReg] = 0;
+#ifdef TARGET_ALPHA
+ xc->regs.floatRegFile.d[ZeroReg] = 0.0;
+#endif // TARGET_ALPHA
+
+ if (status() == IcacheMissComplete) {
+ // We've already fetched an instruction and were stalled on an
+ // I-cache miss. No need to fetch it again.
+
+ // Set status to running; tick event will get rescheduled if
+ // necessary at end of tick() function.
+ _status = Running;
+ }
+ else {
+ // Try to fetch an instruction
+
+ // set up memory request for instruction fetch
+#ifdef FULL_SYSTEM
+#define IFETCH_FLAGS(pc) ((pc) & 1) ? PHYSICAL : 0
+#else
+#define IFETCH_FLAGS(pc) 0
+#endif
+
+ memReq->cmd = Read;
+ memReq->reset(xc->regs.pc & ~3, sizeof(uint32_t),
+ IFETCH_FLAGS(xc->regs.pc));
+
+ fault = xc->translateInstReq(memReq);
+
+ if (fault == No_Fault)
+ fault = xc->mem->read(memReq, inst);
+
+ if (icacheInterface && fault == No_Fault) {
+ memReq->completionEvent = NULL;
+
+ memReq->time = curTick;
+ MemAccessResult result = icacheInterface->access(memReq);
+
+ // Ugly hack to get an event scheduled *only* if the access is
+ // a miss. We really should add first-class support for this
+ // at some point.
+ if (result != MA_HIT && icacheInterface->doEvents()) {
+ memReq->completionEvent = &cacheCompletionEvent;
+ lastIcacheStall = curTick;
+ unscheduleTickEvent();
+ _status = IcacheMissStall;
+ return;
+ }
+ }
+ }
+
+ // If we've got a valid instruction (i.e., no fault on instruction
+ // fetch), then execute it.
+ if (fault == No_Fault) {
+
+ // keep an instruction count
+ numInst++;
+ numInsts++;
+
+ // check for instruction-count-based events
+ comInstEventQueue[0]->serviceEvents(numInst);
+
+ // decode the instruction
+ inst = htoa(inst);
+ curStaticInst = StaticInst<TheISA>::decode(inst);
+
+ traceData = Trace::getInstRecord(curTick, xc, this, curStaticInst,
+ xc->regs.pc);
+
+#ifdef FULL_SYSTEM
+ xc->setInst(inst);
+#endif // FULL_SYSTEM
+
+ xc->func_exe_inst++;
+
+ fault = curStaticInst->execute(this, traceData);
+
+#ifdef FULL_SYSTEM
+ if (xc->fnbin)
+ xc->execute(curStaticInst.get());
+#endif
+
+ if (curStaticInst->isMemRef()) {
+ numMemRefs++;
+ }
+
+ if (curStaticInst->isLoad()) {
+ ++numLoad;
+ comLoadEventQueue[0]->serviceEvents(numLoad);
+ }
+
+ // If we have a dcache miss, then we can't finialize the instruction
+ // trace yet because we want to populate it with the data later
+ if (traceData &&
+ !(status() == DcacheMissStall && memReq->cmd.isRead())) {
+ traceData->finalize();
+ }
+
+ traceFunctions(xc->regs.pc);
+
+ } // if (fault == No_Fault)
+
+ if (fault != No_Fault) {
+#ifdef FULL_SYSTEM
+ xc->ev5_trap(fault);
+#else // !FULL_SYSTEM
+ fatal("fault (%d) detected @ PC 0x%08p", fault, xc->regs.pc);
+#endif // FULL_SYSTEM
+ }
+ else {
+ // go to the next instruction
+ xc->regs.pc = xc->regs.npc;
+ xc->regs.npc += sizeof(MachInst);
+ }
+
+#ifdef FULL_SYSTEM
+ Addr oldpc;
+ do {
+ oldpc = xc->regs.pc;
+ system->pcEventQueue.service(xc);
+ } while (oldpc != xc->regs.pc);
+#endif
+
+ assert(status() == Running ||
+ status() == Idle ||
+ status() == DcacheMissStall);
+
+ if (status() == Running && !tickEvent.scheduled())
+ tickEvent.schedule(curTick + cycles(1));
+}
+
+
+////////////////////////////////////////////////////////////////////////
+//
+// SimpleCPU Simulation Object
+//
+BEGIN_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
+
+ Param<Counter> max_insts_any_thread;
+ Param<Counter> max_insts_all_threads;
+ Param<Counter> max_loads_any_thread;
+ Param<Counter> max_loads_all_threads;
+
+#ifdef FULL_SYSTEM
+ SimObjectParam<AlphaITB *> itb;
+ SimObjectParam<AlphaDTB *> dtb;
+ SimObjectParam<FunctionalMemory *> mem;
+ SimObjectParam<System *> system;
+ Param<int> mult;
+#else
+ SimObjectParam<Process *> workload;
+#endif // FULL_SYSTEM
+
+ Param<int> clock;
+ SimObjectParam<BaseMem *> icache;
+ SimObjectParam<BaseMem *> dcache;
+
+ Param<bool> defer_registration;
+ Param<int> width;
+ Param<bool> function_trace;
+ Param<Tick> function_trace_start;
+
+END_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
+
+BEGIN_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
+
+ INIT_PARAM(max_insts_any_thread,
+ "terminate when any thread reaches this inst count"),
+ INIT_PARAM(max_insts_all_threads,
+ "terminate when all threads have reached this inst count"),
+ INIT_PARAM(max_loads_any_thread,
+ "terminate when any thread reaches this load count"),
+ INIT_PARAM(max_loads_all_threads,
+ "terminate when all threads have reached this load count"),
+
+#ifdef FULL_SYSTEM
+ INIT_PARAM(itb, "Instruction TLB"),
+ INIT_PARAM(dtb, "Data TLB"),
+ INIT_PARAM(mem, "memory"),
+ INIT_PARAM(system, "system object"),
+ INIT_PARAM(mult, "system clock multiplier"),
+#else
+ INIT_PARAM(workload, "processes to run"),
+#endif // FULL_SYSTEM
+
+ INIT_PARAM(clock, "clock speed"),
+ INIT_PARAM(icache, "L1 instruction cache object"),
+ INIT_PARAM(dcache, "L1 data cache object"),
+ INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
+ INIT_PARAM(width, "cpu width"),
+ INIT_PARAM(function_trace, "Enable function trace"),
+ INIT_PARAM(function_trace_start, "Cycle to start function trace")
+
+END_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
+
+
+CREATE_SIM_OBJECT(SimpleCPU)
+{
+#ifdef FULL_SYSTEM
+ if (mult != 1)
+ panic("processor clock multiplier must be 1\n");
+#endif
+
+ SimpleCPU::Params *params = new SimpleCPU::Params();
+ params->name = getInstanceName();
+ params->numberOfThreads = 1;
+ params->max_insts_any_thread = max_insts_any_thread;
+ params->max_insts_all_threads = max_insts_all_threads;
+ params->max_loads_any_thread = max_loads_any_thread;
+ params->max_loads_all_threads = max_loads_all_threads;
+ params->deferRegistration = defer_registration;
+ params->clock = clock;
+ params->functionTrace = function_trace;
+ params->functionTraceStart = function_trace_start;
+ params->icache_interface = (icache) ? icache->getInterface() : NULL;
+ params->dcache_interface = (dcache) ? dcache->getInterface() : NULL;
+ params->width = width;
+
+#ifdef FULL_SYSTEM
+ params->itb = itb;
+ params->dtb = dtb;
+ params->mem = mem;
+ params->system = system;
+#else
+ params->process = workload;
+#endif
+
+ SimpleCPU *cpu = new SimpleCPU(params);
+ return cpu;
+}
+
+REGISTER_SIM_OBJECT("SimpleCPU", SimpleCPU)
+
diff --git a/cpu/simple/cpu.hh b/cpu/simple/cpu.hh
new file mode 100644
index 000000000..9a0c2952a
--- /dev/null
+++ b/cpu/simple/cpu.hh
@@ -0,0 +1,343 @@
+/*
+ * Copyright (c) 2002-2004 The Regents of The University of Michigan
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
+#define __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
+
+#include "base/statistics.hh"
+#include "cpu/base.hh"
+#include "cpu/exec_context.hh"
+#include "cpu/pc_event.hh"
+#include "cpu/sampler/sampler.hh"
+#include "cpu/static_inst.hh"
+#include "sim/eventq.hh"
+
+// forward declarations
+#ifdef FULL_SYSTEM
+class Processor;
+class AlphaITB;
+class AlphaDTB;
+class PhysicalMemory;
+
+class RemoteGDB;
+class GDBListener;
+
+#else
+
+class Process;
+
+#endif // FULL_SYSTEM
+
+class MemInterface;
+class Checkpoint;
+
+namespace Trace {
+ class InstRecord;
+}
+
+class SimpleCPU : public BaseCPU
+{
+ public:
+ // main simulation loop (one cycle)
+ void tick();
+
+ private:
+ struct TickEvent : public Event
+ {
+ SimpleCPU *cpu;
+ int width;
+
+ TickEvent(SimpleCPU *c, int w);
+ void process();
+ const char *description();
+ };
+
+ TickEvent tickEvent;
+
+ /// Schedule tick event, regardless of its current state.
+ void scheduleTickEvent(int numCycles)
+ {
+ if (tickEvent.squashed())
+ tickEvent.reschedule(curTick + cycles(numCycles));
+ else if (!tickEvent.scheduled())
+ tickEvent.schedule(curTick + cycles(numCycles));
+ }
+
+ /// Unschedule tick event, regardless of its current state.
+ void unscheduleTickEvent()
+ {
+ if (tickEvent.scheduled())
+ tickEvent.squash();
+ }
+
+ private:
+ Trace::InstRecord *traceData;
+
+ public:
+ //
+ enum Status {
+ Running,
+ Idle,
+ IcacheMissStall,
+ IcacheMissComplete,
+ DcacheMissStall,
+ DcacheMissSwitch,
+ SwitchedOut
+ };
+
+ private:
+ Status _status;
+
+ public:
+ void post_interrupt(int int_num, int index);
+
+ void zero_fill_64(Addr addr) {
+ static int warned = 0;
+ if (!warned) {
+ warn ("WH64 is not implemented");
+ warned = 1;
+ }
+ };
+
+ public:
+ struct Params : public BaseCPU::Params
+ {
+ MemInterface *icache_interface;
+ MemInterface *dcache_interface;
+ int width;
+#ifdef FULL_SYSTEM
+ AlphaITB *itb;
+ AlphaDTB *dtb;
+ FunctionalMemory *mem;
+#else
+ Process *process;
+#endif
+ };
+ SimpleCPU(Params *params);
+ virtual ~SimpleCPU();
+
+ public:
+ // execution context
+ ExecContext *xc;
+
+ void switchOut(SamplingCPU *s);
+ void takeOverFrom(BaseCPU *oldCPU);
+
+#ifdef FULL_SYSTEM
+ Addr dbg_vtophys(Addr addr);
+
+ bool interval_stats;
+#endif
+
+ // L1 instruction cache
+ MemInterface *icacheInterface;
+
+ // L1 data cache
+ MemInterface *dcacheInterface;
+
+ // current instruction
+ MachInst inst;
+
+ // Refcounted pointer to the one memory request.
+ MemReqPtr memReq;
+
+ // Pointer to the sampler that is telling us to switchover.
+ // Used to signal the completion of the pipe drain and schedule
+ // the next switchover
+ SamplingCPU *sampler;
+
+ StaticInstPtr<TheISA> curStaticInst;
+
+ class CacheCompletionEvent : public Event
+ {
+ private:
+ SimpleCPU *cpu;
+
+ public:
+ CacheCompletionEvent(SimpleCPU *_cpu);
+
+ virtual void process();
+ virtual const char *description();
+ };
+
+ CacheCompletionEvent cacheCompletionEvent;
+
+ Status status() const { return _status; }
+
+ virtual void activateContext(int thread_num, int delay);
+ virtual void suspendContext(int thread_num);
+ virtual void deallocateContext(int thread_num);
+ virtual void haltContext(int thread_num);
+
+ // statistics
+ virtual void regStats();
+ virtual void resetStats();
+
+ // number of simulated instructions
+ Counter numInst;
+ Counter startNumInst;
+ Stats::Scalar<> numInsts;
+
+ virtual Counter totalInstructions() const
+ {
+ return numInst - startNumInst;
+ }
+
+ // number of simulated memory references
+ Stats::Scalar<> numMemRefs;
+
+ // number of simulated loads
+ Counter numLoad;
+ Counter startNumLoad;
+
+ // number of idle cycles
+ Stats::Average<> notIdleFraction;
+ Stats::Formula idleFraction;
+
+ // number of cycles stalled for I-cache misses
+ Stats::Scalar<> icacheStallCycles;
+ Counter lastIcacheStall;
+
+ // number of cycles stalled for D-cache misses
+ Stats::Scalar<> dcacheStallCycles;
+ Counter lastDcacheStall;
+
+ void processCacheCompletion();
+
+ virtual void serialize(std::ostream &os);
+ virtual void unserialize(Checkpoint *cp, const std::string &section);
+
+ template <class T>
+ Fault read(Addr addr, T &data, unsigned flags);
+
+ template <class T>
+ Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
+
+ // These functions are only used in CPU models that split
+ // effective address computation from the actual memory access.
+ void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); }
+ Addr getEA() { panic("SimpleCPU::getEA() not implemented\n"); }
+
+ void prefetch(Addr addr, unsigned flags)
+ {
+ // need to do this...
+ }
+
+ void writeHint(Addr addr, int size, unsigned flags)
+ {
+ // need to do this...
+ }
+
+ Fault copySrcTranslate(Addr src);
+
+ Fault copy(Addr dest);
+
+ // The register accessor methods provide the index of the
+ // instruction's operand (e.g., 0 or 1), not the architectural
+ // register index, to simplify the implementation of register
+ // renaming. We find the architectural register index by indexing
+ // into the instruction's own operand index table. Note that a
+ // raw pointer to the StaticInst is provided instead of a
+ // ref-counted StaticInstPtr to redice overhead. This is fine as
+ // long as these methods don't copy the pointer into any long-term
+ // storage (which is pretty hard to imagine they would have reason
+ // to do).
+
+ uint64_t readIntReg(const StaticInst<TheISA> *si, int idx)
+ {
+ return xc->readIntReg(si->srcRegIdx(idx));
+ }
+
+ float readFloatRegSingle(const StaticInst<TheISA> *si, int idx)
+ {
+ int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
+ return xc->readFloatRegSingle(reg_idx);
+ }
+
+ double readFloatRegDouble(const StaticInst<TheISA> *si, int idx)
+ {
+ int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
+ return xc->readFloatRegDouble(reg_idx);
+ }
+
+ uint64_t readFloatRegInt(const StaticInst<TheISA> *si, int idx)
+ {
+ int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
+ return xc->readFloatRegInt(reg_idx);
+ }
+
+ void setIntReg(const StaticInst<TheISA> *si, int idx, uint64_t val)
+ {
+ xc->setIntReg(si->destRegIdx(idx), val);
+ }
+
+ void setFloatRegSingle(const StaticInst<TheISA> *si, int idx, float val)
+ {
+ int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
+ xc->setFloatRegSingle(reg_idx, val);
+ }
+
+ void setFloatRegDouble(const StaticInst<TheISA> *si, int idx, double val)
+ {
+ int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
+ xc->setFloatRegDouble(reg_idx, val);
+ }
+
+ void setFloatRegInt(const StaticInst<TheISA> *si, int idx, uint64_t val)
+ {
+ int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
+ xc->setFloatRegInt(reg_idx, val);
+ }
+
+ uint64_t readPC() { return xc->readPC(); }
+ void setNextPC(uint64_t val) { xc->setNextPC(val); }
+
+ uint64_t readUniq() { return xc->readUniq(); }
+ void setUniq(uint64_t val) { xc->setUniq(val); }
+
+ uint64_t readFpcr() { return xc->readFpcr(); }
+ void setFpcr(uint64_t val) { xc->setFpcr(val); }
+
+#ifdef FULL_SYSTEM
+ uint64_t readIpr(int idx, Fault &fault) { return xc->readIpr(idx, fault); }
+ Fault setIpr(int idx, uint64_t val) { return xc->setIpr(idx, val); }
+ Fault hwrei() { return xc->hwrei(); }
+ int readIntrFlag() { return xc->readIntrFlag(); }
+ void setIntrFlag(int val) { xc->setIntrFlag(val); }
+ bool inPalMode() { return xc->inPalMode(); }
+ void ev5_trap(Fault fault) { xc->ev5_trap(fault); }
+ bool simPalCheck(int palFunc) { return xc->simPalCheck(palFunc); }
+#else
+ void syscall() { xc->syscall(); }
+#endif
+
+ bool misspeculating() { return xc->misspeculating(); }
+ ExecContext *xcBase() { return xc; }
+};
+
+#endif // __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__