diff options
Diffstat (limited to 'ext/drampower/src/CmdHandlers.cc')
-rw-r--r-- | ext/drampower/src/CmdHandlers.cc | 625 |
1 files changed, 625 insertions, 0 deletions
diff --git a/ext/drampower/src/CmdHandlers.cc b/ext/drampower/src/CmdHandlers.cc new file mode 100644 index 000000000..f99917d21 --- /dev/null +++ b/ext/drampower/src/CmdHandlers.cc @@ -0,0 +1,625 @@ +/* + * Copyright (c) 2012-2014, TU Delft + * Copyright (c) 2012-2014, TU Eindhoven + * Copyright (c) 2012-2014, TU Kaiserslautern + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are + * met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS + * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A + * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED + * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + */ + +#include "CommandAnalysis.h" + +using std::cerr; +using std::endl; +using std::max; + +using namespace Data; + + +int64_t zero_guard(int64_t cycles_in, const char* warning) +{ + // Calculate max(0, cycles_in) + int64_t zero = 0; + if (warning != nullptr && cycles_in < 0) { + // This line is commented out for now, we will attempt to remove the situations where + // these warnings trigger later. + // cerr << "WARNING: " << warning << endl; + } + return max(zero, cycles_in); +} + +void CommandAnalysis::handleAct(unsigned bank, int64_t timestamp) +{ + printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::ACT, timestamp, bank); + // If command is ACT - update number of acts, bank state of the + // target bank, first and latest activation cycle and the memory + // state. Update the number of precharged/idle-precharged cycles. + // If the bank is already active ignore the command and generate a + // warning. + if (isPrecharged(bank)) { + numberofactsBanks[bank]++; + + if (nActiveBanks() == 0) { + // Here a memory state transition to ACT is happening. Save the + // number of cycles in precharge state (increment the counter). + first_act_cycle = timestamp; + precycles += zero_guard(timestamp - last_pre_cycle, "1 last_pre_cycle is in the future."); + idle_pre_update(timestamp, latest_pre_cycle); + } + + bank_state[bank] = BANK_ACTIVE; + latest_act_cycle = timestamp; + } else { + printWarning("Bank is already active!", MemCommand::ACT, timestamp, bank); + } +} + +void CommandAnalysis::handleRd(unsigned bank, int64_t timestamp) +{ + printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::RD, timestamp, bank); + // If command is RD - update number of reads and read cycle. Check + // for active idle cycles (if any). + if (isPrecharged(bank)) { + printWarning("Bank is not active!", MemCommand::RD, timestamp, bank); + } + numberofreadsBanks[bank]++; + idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); + latest_read_cycle = timestamp; +} + +void CommandAnalysis::handleWr(unsigned bank, int64_t timestamp) +{ + printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::WR, timestamp, bank); + // If command is WR - update number of writes and write cycle. Check + // for active idle cycles (if any). + if (isPrecharged(bank)) { + printWarning("Bank is not active!", MemCommand::WR, timestamp, bank); + } + numberofwritesBanks[bank]++; + idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); + latest_write_cycle = timestamp; +} + +void CommandAnalysis::handleRef(unsigned bank, int64_t timestamp) +{ + printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::REF, timestamp, bank); + // If command is REF - update number of refreshes, set bank state of + // all banks to ACT, set the last PRE cycles at RFC-RP cycles from + // timestamp, set the number of active cycles to RFC-RP and check + // for active and precharged cycles and idle active and idle + // precharged cycles before refresh. Change memory state to 0. + printWarningIfActive("One or more banks are active! REF requires all banks to be precharged.", MemCommand::REF, timestamp, bank); + numberofrefs++; + idle_pre_update(timestamp, latest_pre_cycle); + first_act_cycle = timestamp; + std::fill(first_act_cycle_banks.begin(), first_act_cycle_banks.end(), timestamp); + precycles += zero_guard(timestamp - last_pre_cycle, "2 last_pre_cycle is in the future."); + last_pre_cycle = timestamp + memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP; + latest_pre_cycle = last_pre_cycle; + actcycles += memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP; + for (auto &e : actcyclesBanks) { + e += memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP; + } + for (auto& bs : bank_state) { + bs = BANK_PRECHARGED; + } +} + +void CommandAnalysis::handleRefB(unsigned bank, int64_t timestamp) +{ + // A REFB command requires a previous PRE command. + if (isPrecharged(bank)) { + // This previous PRE command handler is also responsible for keeping the + // memory state updated. + // Here we consider that the memory state is not changed in order to keep + // things simple, since the transition from PRE to ACT state takes time. + numberofrefbBanks[bank]++; + // Length of the refresh: here we have an approximation, we consider tRP + // also as act cycles because the bank will be precharged (stable) after + // tRP. + actcyclesBanks[bank] += memSpec.memTimingSpec.RAS + memSpec.memTimingSpec.RP; + } else { + printWarning("Bank must be precharged for REFB!", MemCommand::REFB, timestamp, bank); + } +} + +void CommandAnalysis::handlePre(unsigned bank, int64_t timestamp) +{ + printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::PRE, timestamp, bank); + // If command is explicit PRE - update number of precharges, bank + // state of the target bank and last and latest precharge cycle. + // Calculate the number of active cycles if the memory was in the + // active state before, but there is a state transition to PRE now + // (i.e., this is the last active bank). + // If the bank is already precharged ignore the command and generate a + // warning. + + // Precharge only if the target bank is active + if (bank_state[bank] == BANK_ACTIVE) { + numberofpresBanks[bank]++; + actcyclesBanks[bank] += zero_guard(timestamp - first_act_cycle_banks[bank], "first_act_cycle is in the future (bank)."); + // Since we got here, at least one bank is active + assert(nActiveBanks() != 0); + + if (nActiveBanks() == 1) { + // This is the last active bank. Therefore, here a memory state + // transition to PRE is happening. Let's increment the active cycle + // counter. + actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future."); + last_pre_cycle = timestamp; + idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); + } + + bank_state[bank] = BANK_PRECHARGED; + latest_pre_cycle = timestamp; + } else { + printWarning("Bank is already precharged!", MemCommand::PRE, timestamp, bank); + } +} + +void CommandAnalysis::handlePreA(unsigned bank, int64_t timestamp) +{ + printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::PREA, timestamp, bank); + // If command is explicit PREA (precharge all banks) - update + // number of precharges by the number of active banks, update the bank + // state of all banks to PRE and set the precharge cycle (the cycle in + // which the memory state changes from ACT to PRE, aka last_pre_cycle). + // Calculate the number of active cycles if the memory was in the + // active state before, but there is a state transition to PRE now. + + if (nActiveBanks() > 0) { + // Active banks are being precharged + // At least one bank was active, therefore the current memory state is + // ACT. Since all banks are being precharged a memory state transition + // to PRE is happening. Add to the counter the amount of cycles the + // memory remained in the ACT state. + + actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future."); + last_pre_cycle = timestamp; + + for (unsigned b = 0; b < num_banks; b++) { + if (bank_state[b] == BANK_ACTIVE) { + // Active banks are being precharged + numberofpresBanks[b] += 1; + actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank)."); + } + } + + idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); + + latest_pre_cycle = timestamp; + // Reset the state for all banks to precharged. + for (auto& bs : bank_state) { + bs = BANK_PRECHARGED; + } + } else { + printWarning("All banks are already precharged!", MemCommand::PREA, timestamp, bank); + } +} + +void CommandAnalysis::handlePdnFAct(unsigned bank, int64_t timestamp) +{ + // If command is fast-exit active power-down - update number of + // power-downs, set the power-down cycle and the memory mode to + // fast-exit active power-down. Save states of all the banks from + // the cycle before entering active power-down, to be returned to + // after powering-up. Update active and active idle cycles. + printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", MemCommand::PDN_F_ACT, timestamp, bank); + f_act_pdns++; + last_bank_state = bank_state; + pdn_cycle = timestamp; + actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future."); + for (unsigned b = 0; b < num_banks; b++) { + if (bank_state[b] == BANK_ACTIVE) { + actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank)."); + } + } + idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); + mem_state = CommandAnalysis::MS_PDN_F_ACT; +} + +void CommandAnalysis::handlePdnSAct(unsigned bank, int64_t timestamp) +{ + // If command is slow-exit active power-down - update number of + // power-downs, set the power-down cycle and the memory mode to + // slow-exit active power-down. Save states of all the banks from + // the cycle before entering active power-down, to be returned to + // after powering-up. Update active and active idle cycles. + printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", MemCommand::PDN_S_ACT, timestamp, bank); + s_act_pdns++; + last_bank_state = bank_state; + pdn_cycle = timestamp; + actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future."); + for (unsigned b = 0; b < num_banks; b++) { + if (bank_state[b] == BANK_ACTIVE) { + actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank)."); + } + } + idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); + mem_state = CommandAnalysis::MS_PDN_S_ACT; +} + +void CommandAnalysis::handlePdnFPre(unsigned bank, int64_t timestamp) +{ + // If command is fast-exit precharged power-down - update number of + // power-downs, set the power-down cycle and the memory mode to + // fast-exit precahrged power-down. Update precharged and precharged + // idle cycles. + printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.", MemCommand::PDN_F_PRE, timestamp, bank); + f_pre_pdns++; + pdn_cycle = timestamp; + precycles += zero_guard(timestamp - last_pre_cycle, "3 last_pre_cycle is in the future."); + idle_pre_update(timestamp, latest_pre_cycle); + mem_state = CommandAnalysis::MS_PDN_F_PRE; +} + +void CommandAnalysis::handlePdnSPre(unsigned bank, int64_t timestamp) +{ + // If command is slow-exit precharged power-down - update number of + // power-downs, set the power-down cycle and the memory mode to + // slow-exit precahrged power-down. Update precharged and precharged + // idle cycles. + printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.", MemCommand::PDN_S_PRE, timestamp, bank); + s_pre_pdns++; + pdn_cycle = timestamp; + precycles += zero_guard(timestamp - last_pre_cycle, "4 last_pre_cycle is in the future."); + idle_pre_update(timestamp, latest_pre_cycle); + mem_state = CommandAnalysis::MS_PDN_S_PRE; +} + +void CommandAnalysis::handlePupAct(int64_t timestamp) +{ + // If command is power-up in the active mode - check the power-down + // exit-mode employed (fast or slow), update the number of power-down + // and power-up cycles and the latest and first act cycle. Also, reset + // all the individual bank states to the respective saved states + // before entering power-down. + const MemTimingSpec& t = memSpec.memTimingSpec; + + if (mem_state == CommandAnalysis::MS_PDN_F_ACT) { + f_act_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future."); + pup_act_cycles += t.XP; + latest_act_cycle = timestamp; + } else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) { + s_act_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future."); + if (memSpec.memArchSpec.dll == false) { + pup_act_cycles += t.XP; + latest_act_cycle = timestamp; + } else { + pup_act_cycles += t.XPDLL - t.RCD; + latest_act_cycle = timestamp + zero_guard(t.XPDLL - (2 * t.RCD), "t.XPDLL - (2 * t.RCD) < 0"); + } + } else { + cerr << "Incorrect use of Active Power-Up!" << endl; + } + mem_state = MS_NOT_IN_PD; + bank_state = last_bank_state; + first_act_cycle = timestamp; + std::fill(first_act_cycle_banks.begin(), first_act_cycle_banks.end(), timestamp); +} + +void CommandAnalysis::handlePupPre(int64_t timestamp) +{ + // If command is power-up in the precharged mode - check the power-down + // exit-mode employed (fast or slow), update the number of power-down + // and power-up cycles and the latest and last pre cycle. + const MemTimingSpec& t = memSpec.memTimingSpec; + if (mem_state == CommandAnalysis::MS_PDN_F_PRE) { + f_pre_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future."); + pup_pre_cycles += t.XP; + latest_pre_cycle = timestamp; + } else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) { + s_pre_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future."); + if (memSpec.memArchSpec.dll == false) { + pup_pre_cycles += t.XP; + latest_pre_cycle = timestamp; + } else { + pup_pre_cycles += t.XPDLL - t.RCD; + latest_pre_cycle = timestamp + zero_guard(t.XPDLL - t.RCD - t.RP, "t.XPDLL - t.RCD - t.RP"); + } + } else { + cerr << "Incorrect use of Precharged Power-Up!" << endl; + } + mem_state = MS_NOT_IN_PD; + last_pre_cycle = timestamp; +} + +void CommandAnalysis::handleSREn(unsigned bank, int64_t timestamp) +{ + // If command is self-refresh - update number of self-refreshes, + // set memory state to SREF, update precharge and idle precharge + // cycles and set the self-refresh cycle. + printWarningIfActive("One or more banks are active! SREF requires all banks to be precharged.", MemCommand::SREN, timestamp, bank); + numberofsrefs++; + sref_cycle = timestamp; + sref_cycle_window = timestamp; + sref_ref_pre_cycles_window = 0; + sref_ref_act_cycles_window = 0; + precycles += zero_guard(timestamp - last_pre_cycle, "5 last_pre_cycle is in the future."); + idle_pre_update(timestamp, latest_pre_cycle); + mem_state = CommandAnalysis::MS_SREF; +} + +void CommandAnalysis::handleSREx(unsigned bank, int64_t timestamp) +{ + // If command is self-refresh exit - update the number of self-refresh + // clock cycles, number of active and precharged auto-refresh clock + // cycles during self-refresh and self-refresh exit based on the number + // of cycles in the self-refresh mode and auto-refresh duration (RFC). + // Set the last and latest precharge cycle accordingly and set the + // memory state to 0. + const MemTimingSpec& t = memSpec.memTimingSpec; + if (mem_state != CommandAnalysis::MS_SREF) { + cerr << "Incorrect use of Self-Refresh Power-Up!" << endl; + } + // The total duration of self-refresh is given by the difference between + // the current clock cycle and the clock cycle of entering self-refresh. + int64_t sref_duration = timestamp - sref_cycle; + + // Negative or zero duration should never happen. + if (sref_duration <= 0) { + printWarning("Invalid Self-Refresh duration!", MemCommand::SREX, timestamp, bank); + sref_duration = 0; + } + + // The minimum time that the DRAM must remain in Self-Refresh is CKESR. + if (sref_duration < t.CKESR) { + printWarning("Self-Refresh duration < CKESR!", MemCommand::SREX, timestamp, bank); + } + + if (sref_duration >= t.RFC) { + /* + * Self-refresh Exit Context 1 (tSREF >= tRFC): + * The memory remained in self-refresh for a certain number of clock + * cycles greater than a refresh cycle time (RFC). Consequently, the + * initial auto-refresh accomplished. + * + * + * SREN # SREX + * | # ^ + * | # | + * |<------------------------- tSREF ----------...----->| + * | # | + * | Initial Auto-Refresh # | + * v # | + * ------------------------------------#-------...-----------------> t + * # + * <------------- tRFC --------------># + * <---- (tRFC - tRP) ----><-- tRP --># + * | | + * v v + * sref_ref_act_cycles sref_ref_pre_cycles + * + * + * Summary: + * sref_cycles += tSREF – tRFC + * sref_ref_act_cycles += tRFC - tRP + * sref_ref_pre_cycles += tRP + * spup_ref_act_cycles += 0 + * spup_ref_pre_cycles += 0 + * + */ + + // The initial auto-refresh consumes (IDD5 − IDD3N) over one refresh + // period (RFC) from the start of the self-refresh. + sref_ref_act_cycles += t.RFC - + t.RP - sref_ref_act_cycles_window; + sref_ref_pre_cycles += t.RP - sref_ref_pre_cycles_window; + last_pre_cycle = timestamp; + + // The IDD6 current is consumed for the time period spent in the + // self-refresh mode, which excludes the time spent in finishing the + // initial auto-refresh. + if (sref_cycle_window > sref_cycle + t.RFC) { + sref_cycles += zero_guard(timestamp - sref_cycle_window, "sref_cycle_window is in the future."); + } else { + sref_cycles += zero_guard(timestamp - sref_cycle - t.RFC, "sref_cycle - t.RFC < 0"); + } + + // IDD2N current is consumed when exiting the self-refresh state. + if (memSpec.memArchSpec.dll == false) { + spup_cycles += t.XS; + latest_pre_cycle = timestamp + zero_guard(t.XS - t.RP, "t.XS - t.RP < 0"); + } else { + spup_cycles += t.XSDLL - t.RCD; + latest_pre_cycle = timestamp + zero_guard(t.XSDLL - t.RCD - t.RP, "t.XSDLL - t.RCD - t.RP < 0"); + } + + } else { + // Self-refresh Exit Context 2 (tSREF < tRFC): + // Exit self-refresh before the completion of the initial + // auto-refresh. + + // Number of active cycles needed by an auto-refresh. + int64_t ref_act_cycles = t.RFC - t.RP; + + if (sref_duration >= ref_act_cycles) { + /* + * Self-refresh Exit Context 2A (tSREF < tRFC && tSREF >= tRFC - tRP): + * The duration of self-refresh is equal or greater than the number + * of active cycles needed by the initial auto-refresh. + * + * + * SREN SREX + * | ^ # + * | | # + * |<------------------ tSREF --------------------->| # + * | | # + * | Initial Auto-Refresh # + * v | # + * -----------------------------------------------------------#--> t + * # + * <------------------------ tRFC --------------------------># + * <------------- (tRFC - tRP)--------------><----- tRP ----># + * | <-----><-------> + * v | | + * sref_ref_act_cycles v v + * sref_ref_pre_cycles spup_ref_pre_cycles + * + * + * Summary: + * sref_cycles += 0 + * sref_ref_act_cycles += tRFC - tRP + * sref_ref_pre_cycles += tSREF – (tRFC – tRP) + * spup_ref_act_cycles += 0 + * spup_ref_pre_cycles += tRP – sref_ref_pre_cycles + * + */ + + // Number of precharged cycles (zero <= pre_cycles < RP) + int64_t pre_cycles = sref_duration - ref_act_cycles - sref_ref_pre_cycles_window; + + sref_ref_act_cycles += ref_act_cycles - sref_ref_act_cycles_window; + sref_ref_pre_cycles += pre_cycles; + + // Number of precharged cycles during the self-refresh power-up. It + // is at maximum tRP (if pre_cycles is zero). + int64_t spup_pre = t.RP - pre_cycles; + + spup_ref_pre_cycles += spup_pre; + + last_pre_cycle = timestamp + spup_pre; + + if (memSpec.memArchSpec.dll == false) { + spup_cycles += t.XS - spup_pre; + latest_pre_cycle = timestamp + zero_guard(t.XS - spup_pre - t.RP, "t.XS - spup_pre - t.RP < 0"); + } else { + spup_cycles += t.XSDLL - t.RCD - spup_pre; + latest_pre_cycle = timestamp + zero_guard(t.XSDLL - t.RCD - spup_pre - t.RP, "t.XSDLL - t.RCD - spup_pre - t.RP"); + } + } else { + /* + * Self-refresh Exit Context 2B (tSREF < tRFC - tRP): + * self-refresh duration is shorter than the number of active cycles + * needed by the initial auto-refresh. + * + * + * SREN SREX + * | ^ # + * | | # + * |<-------------- tSREF ----------->| # + * | | # + * | Initial Auto-Refresh # + * v | # + * ------------------------------------------------------------#--> t + * # + * <------------------------ tRFC ---------------------------># + * <-------------- (tRFC - tRP)-------------><------ tRP ----># + * <--------------------------------><------><---------------> + * | | | + * v v v + * sref_ref_act_cycles spup_ref_act_cycles spup_ref_pre_cycles + * + * + * Summary: + * sref_cycles += 0 + * sref_ref_act_cycles += tSREF + * sref_ref_pre_cycles += 0 + * spup_ref_act_cycles += (tRFC – tRP) - tSREF + * spup_ref_pre_cycles += tRP + * + */ + + sref_ref_act_cycles += sref_duration - sref_ref_act_cycles_window; + + int64_t spup_act = (t.RFC - t.RP) - sref_duration; + + spup_ref_act_cycles += spup_act; + spup_ref_pre_cycles += t.RP; + + last_pre_cycle = timestamp + spup_act + t.RP; + if (memSpec.memArchSpec.dll == false) { + spup_cycles += t.XS - spup_act - t.RP; + latest_pre_cycle = timestamp + zero_guard(t.XS - spup_act - (2 * t.RP), "t.XS - spup_act - (2 * t.RP) < 0"); + } else { + spup_cycles += t.XSDLL - t.RCD - spup_act - t.RP; + latest_pre_cycle = timestamp + zero_guard(t.XSDLL - t.RCD - spup_act - (2 * t.RP), "t.XSDLL - t.RCD - spup_act - (2 * t.RP) < 0"); + } + } + } + mem_state = MS_NOT_IN_PD; +} + + +void CommandAnalysis::handleNopEnd(int64_t timestamp) +{ + // May be optionally used at the end of memory trace for better accuracy + // Update all counters based on completion of operations. + const MemTimingSpec& t = memSpec.memTimingSpec; + for (unsigned b = 0; b < num_banks; b++) { + if (bank_state[b] == BANK_ACTIVE) { + actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank)"); + } + } + + if (nActiveBanks() > 0 && mem_state == MS_NOT_IN_PD) { + actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future"); + idle_act_update(latest_read_cycle, latest_write_cycle, + latest_act_cycle, timestamp); + } else if (nActiveBanks() == 0 && mem_state == MS_NOT_IN_PD) { + precycles += zero_guard(timestamp - last_pre_cycle, "6 last_pre_cycle is in the future"); + idle_pre_update(timestamp, latest_pre_cycle); + } else if (mem_state == CommandAnalysis::MS_PDN_F_ACT) { + f_act_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future"); + } else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) { + s_act_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future"); + } else if (mem_state == CommandAnalysis::MS_PDN_F_PRE) { + f_pre_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future"); + } else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) { + s_pre_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future"); + } else if (mem_state == CommandAnalysis::MS_SREF) { + auto rfc_minus_rp = (t.RFC - t.RP); + + if (timestamp > sref_cycle + t.RFC) { + if (sref_cycle_window <= sref_cycle + rfc_minus_rp) { + sref_ref_act_cycles += rfc_minus_rp - sref_ref_act_cycles_window; + sref_ref_act_cycles_window = rfc_minus_rp; + sref_cycle_window = sref_cycle + rfc_minus_rp; + } + if (sref_cycle_window <= sref_cycle + t.RFC) { + sref_ref_pre_cycles += t.RP - sref_ref_pre_cycles_window; + sref_ref_pre_cycles_window = t.RP; + sref_cycle_window = sref_cycle + t.RFC; + } + sref_cycles += zero_guard(timestamp - sref_cycle_window, "sref_cycle_window is in the future"); + } else if (timestamp > sref_cycle + rfc_minus_rp) { + + if (sref_cycle_window <= sref_cycle + rfc_minus_rp) { + sref_ref_act_cycles += rfc_minus_rp - sref_ref_act_cycles_window; + sref_ref_act_cycles_window = rfc_minus_rp; + sref_cycle_window = sref_cycle + rfc_minus_rp; + } + sref_ref_pre_cycles_window += timestamp - sref_cycle_window; + sref_ref_pre_cycles += timestamp - sref_cycle_window; + } else { + sref_ref_act_cycles_window += timestamp - sref_cycle_window; + sref_ref_act_cycles += timestamp - sref_cycle_window; + } + } +} |