diff options
Diffstat (limited to 'ext/drampower/src/CommandAnalysis.cc')
-rw-r--r-- | ext/drampower/src/CommandAnalysis.cc | 666 |
1 files changed, 666 insertions, 0 deletions
diff --git a/ext/drampower/src/CommandAnalysis.cc b/ext/drampower/src/CommandAnalysis.cc new file mode 100644 index 000000000..4dea5c101 --- /dev/null +++ b/ext/drampower/src/CommandAnalysis.cc @@ -0,0 +1,666 @@ +/* + * Copyright (c) 2012-2014, TU Delft + * Copyright (c) 2012-2014, TU Eindhoven + * Copyright (c) 2012-2014, TU Kaiserslautern + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are + * met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS + * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A + * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED + * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * Authors: Karthik Chandrasekar, Matthias Jung, Omar Naji, Sven Goossens + * + */ + +#include <fstream> +#include <algorithm> +#include <sstream> + +#include "CommandAnalysis.h" +#include "CmdScheduler.h" + +using namespace Data; +using namespace std; + +CommandAnalysis::CommandAnalysis() +{ +} + +CommandAnalysis::CommandAnalysis(const int nbrofBanks) +{ + // Initializing all counters and variables + + numberofacts = 0; + numberofpres = 0; + numberofreads = 0; + numberofwrites = 0; + numberofrefs = 0; + f_act_pdns = 0; + s_act_pdns = 0; + f_pre_pdns = 0; + s_pre_pdns = 0; + numberofsrefs = 0; + + pop = 0; + init = 0; + zero = 0; + + actcycles = 0; + precycles = 0; + f_act_pdcycles = 0; + s_act_pdcycles = 0; + f_pre_pdcycles = 0; + s_pre_pdcycles = 0; + pup_act_cycles = 0; + pup_pre_cycles = 0; + sref_cycles = 0; + spup_cycles = 0; + sref_ref_act_cycles = 0; + sref_ref_pre_cycles = 0; + spup_ref_act_cycles = 0; + spup_ref_pre_cycles = 0; + idlecycles_act = 0; + idlecycles_pre = 0; + + latest_act_cycle = -1; + latest_pre_cycle = -1; + latest_read_cycle = -1; + latest_write_cycle = -1; + end_read_op = 0; + end_write_op = 0; + end_act_op = 0; + + first_act_cycle = 0; + last_pre_cycle = 0; + + bankstate.resize(nbrofBanks, 0); + last_states.resize(nbrofBanks); + mem_state = 0; + + sref_cycle = 0; + pdn_cycle = 0; + + cmd_list.clear(); + full_cmd_list.resize(1, MemCommand::PRE); + cached_cmd.clear(); + activation_cycle.resize(nbrofBanks, 0); +} + +// function to clear all arrays +void CommandAnalysis::clear() +{ + cached_cmd.clear(); + cmd_list.clear(); + full_cmd_list.clear(); + last_states.clear(); + bankstate.clear(); +} + +// Reads through the trace file, identifies the timestamp, command and bank +// If the issued command includes an auto-precharge, adds an explicit +// precharge to a cached command list and computes the precharge offset from the +// issued command timestamp, when the auto-precharge would kick in + +void CommandAnalysis::getCommands(const Data::MemorySpecification& memSpec, + const int nbrofBanks, std::vector<MemCommand>& list, bool lastupdate) +{ + for (vector<MemCommand>::const_iterator i = list.begin(); i != list.end(); ++i) { + const MemCommand& cmd = *i; + cmd_list.push_back(cmd); + + MemCommand::cmds cmdType = cmd.getType(); + if (cmdType == MemCommand::ACT) { + activation_cycle[cmd.getBank()] = cmd.getTimeInt64(); + } else if (cmdType == MemCommand::RDA || cmdType == MemCommand::WRA) { + // Remove auto-precharge flag from command + cmd_list.back().setType(cmd.typeWithoutAutoPrechargeFlag()); + + // Add the auto precharge to the list of cached_cmds + int64_t preTime = max(cmd.getTimeInt64() + cmd.getPrechargeOffset(memSpec, cmdType), + activation_cycle[cmd.getBank()] + memSpec.memTimingSpec.RAS); + cached_cmd.push_back(MemCommand(MemCommand::PRE, cmd.getBank(), static_cast<double>(preTime))); + } + } + pop = 0; + // Note: the extra pre-cmds at the end of the lists, and the cast to double + // of the size vector is probably not desirable. + cmd_list.push_back(MemCommand::PRE); + cached_cmd.push_back(MemCommand::PRE); + analyse_commands(nbrofBanks, memSpec, cmd_list.size()-1, + cached_cmd.size()-1, lastupdate); + cmd_list.clear(); + cached_cmd.clear(); +} // CommandAnalysis::getCommands + +// Checks the auto-precharge cached command list and inserts the explicit +// precharges with the appropriate timestamp in the original command list +// (by merging) based on their offset from the issuing command. Calls the +// evaluate function to analyse this expanded list of commands. + +void CommandAnalysis::analyse_commands(const int nbrofBanks, + Data::MemorySpecification memSpec, int64_t nCommands, int64_t nCached, bool lastupdate) +{ + full_cmd_list.resize(1, MemCommand::PRE); + unsigned mCommands = 0; + unsigned mCached = 0; + for (unsigned i = 0; i < nCommands + nCached + 1; i++) { + if (cached_cmd.size() > 1) { + if ((cmd_list[mCommands].getTime() > 1) && (init == 0)) { + full_cmd_list[i].setType(MemCommand::PREA); + init = 1; + pop = 1; + } else { + init = 1; + if ((cached_cmd[mCached].getTime() > 0) && (cmd_list. + at(mCommands).getTime() < cached_cmd[mCached]. + getTime()) && ((cmd_list[mCommands].getTime() > 0) || + ((cmd_list[mCommands].getTime() == 0) && (cmd_list[mCommands]. + getType() != MemCommand::PRE)))) { + full_cmd_list[i] = cmd_list[mCommands]; + mCommands++; + } else if ((cached_cmd[mCached].getTime() > 0) && (cmd_list[mCommands]. + getTime() >= cached_cmd[mCached].getTime())) { + full_cmd_list[i] = cached_cmd[mCached]; + mCached++; + } else if (cached_cmd[mCached].getTime() == 0) { + if ((cmd_list[mCommands].getTime() > 0) || ((cmd_list[mCommands]. + getTime() == 0) && (cmd_list[mCommands]. + getType() != MemCommand::PRE))) { + full_cmd_list[i] = cmd_list[mCommands]; + mCommands++; + } + } else if (cmd_list[mCommands].getTime() == 0) { + full_cmd_list[i] = cached_cmd[mCached]; + mCached++; + } + } + } else { + if ((cmd_list[mCommands].getTime() > 1) && (init == 0)) { + full_cmd_list[i].setType(MemCommand::PREA); + init = 1; + pop = 1; + } else { + init = 1; + if ((cmd_list[mCommands].getTime() > 0) || ((cmd_list. + at(mCommands).getTime() == 0) && (cmd_list[mCommands]. + getType() != MemCommand::PRE))) { + full_cmd_list[i] = cmd_list[mCommands]; + mCommands++; + } + } + } + full_cmd_list.resize(full_cmd_list.size() + 1, MemCommand::PRE); + } + + full_cmd_list.pop_back(); + if (pop == 0) { + full_cmd_list.pop_back(); + } + if (lastupdate) { + full_cmd_list.resize(full_cmd_list.size() + 1, MemCommand::NOP); + full_cmd_list[full_cmd_list.size() - 1].setTime(full_cmd_list + [full_cmd_list.size() - 2].getTime() + timeToCompletion(memSpec, + full_cmd_list[full_cmd_list.size() - 2].getType()) - 1); + } + + evaluate(memSpec, full_cmd_list, nbrofBanks); +} // CommandAnalysis::analyse_commands + +// To get the time of completion of the issued command +// Derived based on JEDEC specifications + +int CommandAnalysis::timeToCompletion(const MemorySpecification& + memSpec, MemCommand::cmds type) +{ + int offset = 0; + const MemTimingSpec& memTimingSpec = memSpec.memTimingSpec; + const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec; + + if (type == MemCommand::RD) { + offset = static_cast<int>(memTimingSpec.RL + + memTimingSpec.DQSCK + 1 + (memArchSpec.burstLength / + memArchSpec.dataRate)); + } else if (type == MemCommand::WR) { + offset = static_cast<int>(memTimingSpec.WL + + (memArchSpec.burstLength / memArchSpec.dataRate) + + memTimingSpec.WR); + } else if (type == MemCommand::ACT) { + offset = static_cast<int>(memTimingSpec.RCD); + } else if ((type == MemCommand::PRE) || (type == MemCommand::PREA)) { + offset = static_cast<int>(memTimingSpec.RP); + } + return offset; +} // CommandAnalysis::timeToCompletion + +// Used to analyse a given list of commands and identify command timings +// and memory state transitions +void CommandAnalysis::evaluate(const MemorySpecification& memSpec, + vector<MemCommand>& cmd_list, int nbrofBanks) +{ + // for each command identify timestamp, type and bank + for (unsigned cmd_list_counter = 0; cmd_list_counter < cmd_list.size(); + cmd_list_counter++) { + // For command type + int type = cmd_list[cmd_list_counter].getType(); + // For command bank + int bank = cmd_list[cmd_list_counter].getBank(); + // Command Issue timestamp in clock cycles (cc) + int64_t timestamp = cmd_list[cmd_list_counter].getTimeInt64(); + + if (type == MemCommand::ACT) { + // If command is ACT - update number of acts, bank state of the + // target bank, first and latest activation cycle and the memory + // state. Update the number of precharged/idle-precharged cycles. + numberofacts++; + if (bankstate[bank] == 1) { + printWarning("Bank is already active!", type, timestamp, bank); + } + bankstate[bank] = 1; + if (mem_state == 0) { + first_act_cycle = timestamp; + precycles += max(zero, timestamp - last_pre_cycle); + idle_pre_update(memSpec, timestamp, latest_pre_cycle); + } + latest_act_cycle = timestamp; + mem_state++; + } else if (type == MemCommand::RD) { + // If command is RD - update number of reads and read cycle. Check + // for active idle cycles (if any). + if (bankstate[bank] == 0) { + printWarning("Bank is not active!", type, timestamp, bank); + } + numberofreads++; + idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, + latest_act_cycle, timestamp); + latest_read_cycle = timestamp; + } else if (type == MemCommand::WR) { + // If command is WR - update number of writes and write cycle. Check + // for active idle cycles (if any). + if (bankstate[bank] == 0) { + printWarning("Bank is not active!", type, timestamp, bank); + } + numberofwrites++; + idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, + latest_act_cycle, timestamp); + latest_write_cycle = timestamp; + } else if (type == MemCommand::REF) { + // If command is REF - update number of refreshes, set bank state of + // all banks to ACT, set the last PRE cycles at RFC-RP cycles from + // timestamp, set the number of active cycles to RFC-RP and check + // for active and precharged cycles and idle active and idle + // precharged cycles before refresh. Change memory state to 0. + printWarningIfActive("One or more banks are active! REF requires all banks to be precharged.", type, timestamp, bank); + numberofrefs++; + idle_pre_update(memSpec, timestamp, latest_pre_cycle); + first_act_cycle = timestamp; + precycles += max(zero, timestamp - last_pre_cycle); + last_pre_cycle = timestamp + memSpec.memTimingSpec.RFC - + memSpec.memTimingSpec.RP; + latest_pre_cycle = last_pre_cycle; + actcycles += memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP; + mem_state = 0; + for (int j = 0; j < nbrofBanks; j++) { + bankstate[j] = 0; + } + } else if (type == MemCommand::PRE) { + // If command is explicit PRE - update number of precharges, bank + // state of the target bank and last and latest precharge cycle. + // Calculate the number of active cycles if the memory was in the + // active state before, but there is a state transition to PRE now. + // If not, update the number of precharged cycles and idle cycles. + // Update memory state if needed. + if (bankstate[bank] == 1) { + numberofpres++; + } + bankstate[bank] = 0; + + if (mem_state == 1) { + actcycles += max(zero, timestamp - first_act_cycle); + last_pre_cycle = timestamp; + idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, + latest_act_cycle, timestamp); + } else if (mem_state == 0) { + precycles += max(zero, timestamp - last_pre_cycle); + idle_pre_update(memSpec, timestamp, latest_pre_cycle); + last_pre_cycle = timestamp; + } + latest_pre_cycle = timestamp; + if (mem_state > 0) { + mem_state--; + } else { + mem_state = 0; + } + } else if (type == MemCommand::PREA) { + // If command is explicit PREA (precharge all banks) - update + // number of precharges by the number of banks, update the bank + // state of all banks to PRE and set the precharge cycle. + // Calculate the number of active cycles if the memory was in the + // active state before, but there is a state transition to PRE now. + // If not, update the number of precharged cycles and idle cycles. + if (timestamp == 0) { + numberofpres += 0; + } else { + numberofpres += mem_state; + } + + if (mem_state > 0) { + actcycles += max(zero, timestamp - first_act_cycle); + idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, + latest_act_cycle, timestamp); + } else if (mem_state == 0) { + precycles += max(zero, timestamp - last_pre_cycle); + idle_pre_update(memSpec, timestamp, latest_pre_cycle); + } + + latest_pre_cycle = timestamp; + last_pre_cycle = timestamp; + + mem_state = 0; + + for (int j = 0; j < nbrofBanks; j++) { + bankstate[j] = 0; + } + } else if (type == MemCommand::PDN_F_ACT) { + // If command is fast-exit active power-down - update number of + // power-downs, set the power-down cycle and the memory mode to + // fast-exit active power-down. Save states of all the banks from + // the cycle before entering active power-down, to be returned to + // after powering-up. Update active and active idle cycles. + printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", type, timestamp, bank); + f_act_pdns++; + for (int j = 0; j < nbrofBanks; j++) { + last_states[j] = bankstate[j]; + } + pdn_cycle = timestamp; + actcycles += max(zero, timestamp - first_act_cycle); + idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, + latest_act_cycle, timestamp); + mem_state = CommandAnalysis::MS_PDN_F_ACT; + } else if (type == MemCommand::PDN_S_ACT) { + // If command is slow-exit active power-down - update number of + // power-downs, set the power-down cycle and the memory mode to + // slow-exit active power-down. Save states of all the banks from + // the cycle before entering active power-down, to be returned to + // after powering-up. Update active and active idle cycles. + printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", type, timestamp, bank); + s_act_pdns++; + for (int j = 0; j < nbrofBanks; j++) { + last_states[j] = bankstate[j]; + } + pdn_cycle = timestamp; + actcycles += max(zero, timestamp - first_act_cycle); + idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, + latest_act_cycle, timestamp); + mem_state = CommandAnalysis::MS_PDN_S_ACT; + } else if (type == MemCommand::PDN_F_PRE) { + // If command is fast-exit precharged power-down - update number of + // power-downs, set the power-down cycle and the memory mode to + // fast-exit precahrged power-down. Update precharged and precharged + // idle cycles. + printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.", type, timestamp, bank); + f_pre_pdns++; + pdn_cycle = timestamp; + precycles += max(zero, timestamp - last_pre_cycle); + idle_pre_update(memSpec, timestamp, latest_pre_cycle); + mem_state = CommandAnalysis::MS_PDN_F_PRE; + } else if (type == MemCommand::PDN_S_PRE) { + // If command is slow-exit precharged power-down - update number of + // power-downs, set the power-down cycle and the memory mode to + // slow-exit precahrged power-down. Update precharged and precharged + // idle cycles. + printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.", type, timestamp, bank); + s_pre_pdns++; + pdn_cycle = timestamp; + precycles += max(zero, timestamp - last_pre_cycle); + idle_pre_update(memSpec, timestamp, latest_pre_cycle); + mem_state = CommandAnalysis::MS_PDN_S_PRE; + } else if (type == MemCommand::PUP_ACT) { + // If command is power-up in the active mode - check the power-down + // exit-mode employed (fast or slow), update the number of power-down + // and power-up cycles and the latest and first act cycle. Also, reset + // all the individual bank states to the respective saved states + // before entering power-down. + if (mem_state == CommandAnalysis::MS_PDN_F_ACT) { + f_act_pdcycles += max(zero, timestamp - pdn_cycle); + pup_act_cycles += memSpec.memTimingSpec.XP; + latest_act_cycle = max(timestamp, timestamp + + memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RCD); + } else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) { + s_act_pdcycles += max(zero, timestamp - pdn_cycle); + if (memSpec.memArchSpec.dll == false) { + pup_act_cycles += memSpec.memTimingSpec.XP; + latest_act_cycle = max(timestamp, timestamp + + memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RCD); + } else { + pup_act_cycles += memSpec.memTimingSpec.XPDLL - + memSpec.memTimingSpec.RCD; + latest_act_cycle = max(timestamp, timestamp + + memSpec.memTimingSpec.XPDLL - + (2 * memSpec.memTimingSpec.RCD)); + } + } else if ((mem_state != CommandAnalysis::MS_PDN_S_ACT) || (mem_state != + CommandAnalysis::MS_PDN_F_ACT)) { + cerr << "Incorrect use of Active Power-Up!" << endl; + } + mem_state = 0; + for (int j = 0; j < nbrofBanks; j++) { + bankstate[j] = last_states[j]; + mem_state += last_states[j]; + } + first_act_cycle = timestamp; + } else if (type == MemCommand::PUP_PRE) { + // If command is power-up in the precharged mode - check the power-down + // exit-mode employed (fast or slow), update the number of power-down + // and power-up cycles and the latest and last pre cycle. + if (mem_state == CommandAnalysis::MS_PDN_F_PRE) { + f_pre_pdcycles += max(zero, timestamp - pdn_cycle); + pup_pre_cycles += memSpec.memTimingSpec.XP; + latest_pre_cycle = max(timestamp, timestamp + + memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RP); + } else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) { + s_pre_pdcycles += max(zero, timestamp - pdn_cycle); + if (memSpec.memArchSpec.dll == false) { + pup_pre_cycles += memSpec.memTimingSpec.XP; + latest_pre_cycle = max(timestamp, timestamp + + memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RP); + } else { + pup_pre_cycles += memSpec.memTimingSpec.XPDLL - + memSpec.memTimingSpec.RCD; + latest_pre_cycle = max(timestamp, timestamp + + memSpec.memTimingSpec.XPDLL - memSpec.memTimingSpec.RCD - + memSpec.memTimingSpec.RP); + } + } else if ((mem_state != CommandAnalysis::MS_PDN_S_PRE) || (mem_state != + CommandAnalysis::MS_PDN_F_PRE)) { + cerr << "Incorrect use of Precharged Power-Up!" << endl; + } + mem_state = 0; + last_pre_cycle = timestamp; + } else if (type == MemCommand::SREN) { + // If command is self-refresh - update number of self-refreshes, + // set memory state to SREF, update precharge and idle precharge + // cycles and set the self-refresh cycle. + printWarningIfActive("One or more banks are active! SREF requires all banks to be precharged.", type, timestamp, bank); + numberofsrefs++; + sref_cycle = timestamp; + precycles += max(zero, timestamp - last_pre_cycle); + idle_pre_update(memSpec, timestamp, latest_pre_cycle); + mem_state = CommandAnalysis::MS_SREF; + } else if (type == MemCommand::SREX) { + // If command is self-refresh exit - update the number of self-refresh + // clock cycles, number of active and precharged auto-refresh clock + // cycles during self-refresh and self-refresh exit based on the number + // of cycles in the self-refresh mode and auto-refresh duration (RFC). + // Set the last and latest precharge cycle accordingly and set the + // memory state to 0. + if (mem_state != CommandAnalysis::MS_SREF) { + cerr << "Incorrect use of Self-Refresh Power-Up!" << endl; + } + if (max(zero, timestamp - sref_cycle) >= memSpec.memTimingSpec.RFC) { + sref_cycles += max(zero, timestamp - sref_cycle + - memSpec.memTimingSpec.RFC); + sref_ref_act_cycles += memSpec.memTimingSpec.RFC - + memSpec.memTimingSpec.RP; + sref_ref_pre_cycles += memSpec.memTimingSpec.RP; + last_pre_cycle = timestamp; + if (memSpec.memArchSpec.dll == false) { + spup_cycles += memSpec.memTimingSpec.XS; + latest_pre_cycle = max(timestamp, timestamp + + memSpec.memTimingSpec.XS - memSpec.memTimingSpec.RP); + } else { + spup_cycles += memSpec.memTimingSpec.XSDLL - + memSpec.memTimingSpec.RCD; + latest_pre_cycle = max(timestamp, timestamp + + memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD + - memSpec.memTimingSpec.RP); + } + } else { + int64_t sref_diff = memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP; + int64_t sref_pre = max(zero, timestamp - sref_cycle - sref_diff); + int64_t spup_pre = memSpec.memTimingSpec.RP - sref_pre; + int64_t sref_act = max(zero, timestamp - sref_cycle); + int64_t spup_act = memSpec.memTimingSpec.RFC - sref_act; + + if (max(zero, timestamp - sref_cycle) >= sref_diff) { + sref_ref_act_cycles += sref_diff; + sref_ref_pre_cycles += sref_pre; + spup_ref_pre_cycles += spup_pre; + last_pre_cycle = timestamp + spup_pre; + if (memSpec.memArchSpec.dll == false) { + spup_cycles += memSpec.memTimingSpec.XS - spup_pre; + latest_pre_cycle = max(timestamp, timestamp + + memSpec.memTimingSpec.XS - spup_pre - + memSpec.memTimingSpec.RP); + } else { + spup_cycles += memSpec.memTimingSpec.XSDLL - + memSpec.memTimingSpec.RCD - spup_pre; + latest_pre_cycle = max(timestamp, timestamp + + memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD - + spup_pre - memSpec.memTimingSpec.RP); + } + } else { + sref_ref_act_cycles += sref_act; + spup_ref_act_cycles += spup_act; + spup_ref_pre_cycles += memSpec.memTimingSpec.RP; + last_pre_cycle = timestamp + spup_act + memSpec.memTimingSpec.RP; + if (memSpec.memArchSpec.dll == false) { + spup_cycles += memSpec.memTimingSpec.XS - spup_act - + memSpec.memTimingSpec.RP; + latest_pre_cycle = max(timestamp, timestamp + + memSpec.memTimingSpec.XS - spup_act - + (2 * memSpec.memTimingSpec.RP)); + } else { + spup_cycles += memSpec.memTimingSpec.XSDLL - + memSpec.memTimingSpec.RCD - spup_act - + memSpec.memTimingSpec.RP; + latest_pre_cycle = max(timestamp, timestamp + + memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD - + spup_act - (2 * memSpec.memTimingSpec.RP)); + } + } + } + mem_state = 0; + } else if ((type == MemCommand::END) || (type == MemCommand::NOP)) { + // May be optionally used at the end of memory trace for better accuracy + // Update all counters based on completion of operations. + if ((mem_state > 0) && (mem_state < 9)) { + actcycles += max(zero, timestamp - first_act_cycle); + idle_act_update(memSpec, latest_read_cycle, latest_write_cycle, + latest_act_cycle, timestamp); + } else if (mem_state == 0) { + precycles += max(zero, timestamp - last_pre_cycle); + idle_pre_update(memSpec, timestamp, latest_pre_cycle); + } else if (mem_state == CommandAnalysis::MS_PDN_F_ACT) { + f_act_pdcycles += max(zero, timestamp - pdn_cycle); + } else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) { + s_act_pdcycles += max(zero, timestamp - pdn_cycle); + } else if (mem_state == CommandAnalysis::MS_PDN_F_PRE) { + f_pre_pdcycles += max(zero, timestamp - pdn_cycle); + } else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) { + s_pre_pdcycles += max(zero, timestamp - pdn_cycle); + } else if (mem_state == CommandAnalysis::MS_SREF) { + sref_cycles += max(zero, timestamp - sref_cycle); + } + } + } +} // CommandAnalysis::evaluate + +// To update idle period information whenever active cycles may be idle +void CommandAnalysis::idle_act_update(const MemorySpecification& memSpec, + int64_t latest_read_cycle, int64_t latest_write_cycle, + int64_t latest_act_cycle, int64_t timestamp) +{ + if (latest_read_cycle >= 0) { + end_read_op = latest_read_cycle + timeToCompletion(memSpec, + MemCommand::RD) - 1; + } + + if (latest_write_cycle >= 0) { + end_write_op = latest_write_cycle + timeToCompletion(memSpec, + MemCommand::WR) - 1; + } + + if (latest_act_cycle >= 0) { + end_act_op = latest_act_cycle + timeToCompletion(memSpec, + MemCommand::ACT) - 1; + } + + idlecycles_act += max(zero, timestamp - max(max(end_read_op, end_write_op), + end_act_op)); +} // CommandAnalysis::idle_act_update + +// To update idle period information whenever precharged cycles may be idle +void CommandAnalysis::idle_pre_update(const MemorySpecification& memSpec, + int64_t timestamp, int64_t latest_pre_cycle) +{ + if (latest_pre_cycle > 0) { + idlecycles_pre += max(zero, timestamp - latest_pre_cycle - + memSpec.memTimingSpec.RP); + } else if (latest_pre_cycle == 0) { + idlecycles_pre += max(zero, timestamp - latest_pre_cycle); + } +} + +void CommandAnalysis::printWarningIfActive(const string& warning, int type, int64_t timestamp, int bank) +{ + if (mem_state != 0) { + printWarning(warning, type, timestamp, bank); + } +} + +void CommandAnalysis::printWarningIfNotActive(const string& warning, int type, int64_t timestamp, int bank) +{ + if (mem_state == 0) { + printWarning(warning, type, timestamp, bank); + } +} + +void CommandAnalysis::printWarning(const string& warning, int type, int64_t timestamp, int bank) +{ + cerr << "WARNING: " << warning << endl; + cerr << "Command: " << type << ", Timestamp: " << timestamp << + ", Bank: " << bank << endl; +} |