summaryrefslogtreecommitdiff
path: root/ext/dsent/model/std_cells/ADDF.cc
diff options
context:
space:
mode:
Diffstat (limited to 'ext/dsent/model/std_cells/ADDF.cc')
-rw-r--r--ext/dsent/model/std_cells/ADDF.cc671
1 files changed, 671 insertions, 0 deletions
diff --git a/ext/dsent/model/std_cells/ADDF.cc b/ext/dsent/model/std_cells/ADDF.cc
new file mode 100644
index 000000000..99ebcdb6b
--- /dev/null
+++ b/ext/dsent/model/std_cells/ADDF.cc
@@ -0,0 +1,671 @@
+#include "model/std_cells/ADDF.h"
+
+#include <cmath>
+
+#include "model/PortInfo.h"
+#include "model/EventInfo.h"
+#include "model/TransitionInfo.h"
+#include "model/std_cells/StdCellLib.h"
+#include "model/std_cells/CellMacros.h"
+#include "model/timing_graph/ElectricalNet.h"
+#include "model/timing_graph/ElectricalDriver.h"
+#include "model/timing_graph/ElectricalLoad.h"
+#include "model/timing_graph/ElectricalDelay.h"
+
+namespace DSENT
+{
+ using std::ceil;
+ using std::max;
+
+ ADDF::ADDF(const String& instance_name_, const TechModel* tech_model_)
+ : StdCell(instance_name_, tech_model_)
+ {
+ initParameters();
+ initProperties();
+ }
+
+ ADDF::~ADDF()
+ {}
+
+ void ADDF::initProperties()
+ {
+ return;
+ }
+
+ void ADDF::constructModel()
+ {
+ // All constructModel should do is create Area/NDDPower/Energy Results as
+ // well as instantiate any sub-instances using only the hard parameters
+
+ createInputPort("A");
+ createInputPort("B");
+ createInputPort("CI");
+ createOutputPort("S");
+ createOutputPort("CO");
+
+ createLoad("A_Cap");
+ createLoad("B_Cap");
+ createLoad("CI_Cap");
+ createDelay("A_to_S_delay");
+ createDelay("B_to_S_delay");
+ createDelay("CI_to_S_delay");
+ createDelay("A_to_CO_delay");
+ createDelay("B_to_CO_delay");
+ createDelay("CI_to_CO_delay");
+ createDriver("S_Ron", true);
+ createDriver("CO_Ron", true);
+
+ ElectricalLoad* a_cap = getLoad("A_Cap");
+ ElectricalLoad* b_cap = getLoad("B_Cap");
+ ElectricalLoad* ci_cap = getLoad("CI_Cap");
+ ElectricalDelay* a_to_s_delay = getDelay("A_to_S_delay");
+ ElectricalDelay* b_to_s_delay = getDelay("B_to_S_delay");
+ ElectricalDelay* ci_to_s_delay = getDelay("CI_to_S_delay");
+ ElectricalDelay* a_to_co_delay = getDelay("A_to_CO_delay");
+ ElectricalDelay* b_to_co_delay = getDelay("B_to_CO_delay");
+ ElectricalDelay* ci_to_co_delay = getDelay("CI_to_CO_delay");
+ ElectricalDriver* s_ron = getDriver("S_Ron");
+ ElectricalDriver* co_ron = getDriver("CO_Ron");
+
+ getNet("A")->addDownstreamNode(a_cap);
+ getNet("B")->addDownstreamNode(b_cap);
+ getNet("CI")->addDownstreamNode(ci_cap);
+ a_cap->addDownstreamNode(a_to_s_delay);
+ b_cap->addDownstreamNode(b_to_s_delay);
+ ci_cap->addDownstreamNode(ci_to_s_delay);
+ a_cap->addDownstreamNode(a_to_co_delay);
+ b_cap->addDownstreamNode(b_to_co_delay);
+ ci_cap->addDownstreamNode(ci_to_co_delay);
+
+ a_to_s_delay->addDownstreamNode(s_ron);
+ b_to_s_delay->addDownstreamNode(s_ron);
+ ci_to_s_delay->addDownstreamNode(s_ron);
+ a_to_co_delay->addDownstreamNode(co_ron);
+ b_to_co_delay->addDownstreamNode(co_ron);
+ ci_to_co_delay->addDownstreamNode(co_ron);
+
+ s_ron->addDownstreamNode(getNet("S"));
+ co_ron->addDownstreamNode(getNet("CO"));
+
+ // Create Area result
+ // Create NDD Power result
+ createElectricalAtomicResults();
+ // Create ADDF Event Energy Result
+ createElectricalEventAtomicResult("ADDF");
+
+ getEventInfo("Idle")->setStaticTransitionInfos();
+
+ return;
+ }
+
+ void ADDF::updateModel()
+ {
+ // Get parameters
+ double drive_strength = getDrivingStrength();
+ Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
+
+ // Standard cell cache string
+ String cell_name = "ADDF_X" + (String) drive_strength;
+
+ // Get timing parameters
+ getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
+ getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B"));
+ getLoad("CI_Cap")->setLoadCap(cache->get(cell_name + "->Cap->CI"));
+
+ getDelay("A_to_S_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_S"));
+ getDelay("B_to_S_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_S"));
+ getDelay("CI_to_S_delay")->setDelay(cache->get(cell_name + "->Delay->CI_to_S"));
+ getDelay("A_to_CO_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_CO"));
+ getDelay("B_to_CO_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_CO"));
+ getDelay("CI_to_CO_delay")->setDelay(cache->get(cell_name + "->Delay->CI_to_CO"));
+
+ getDriver("S_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->S"));
+ getDriver("CO_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->CO"));
+
+ // Set the cell area
+ getAreaResult("Active")->setValue(cache->get(cell_name + "->Area->Active"));
+ getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->Area->Metal1Wire"));
+
+ return;
+ }
+
+ void ADDF::evaluateModel()
+ {
+ return;
+ }
+
+ void ADDF::useModel()
+ {
+ // Get parameters
+ double drive_strength = getDrivingStrength();
+ Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
+
+ // Standard cell cache string
+ String cell_name = "ADDF_X" + (String) drive_strength;
+
+ // Propagate the transition info and get the 0->1 transition count
+ propagateTransitionInfo();
+ double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
+ double P_B = getInputPort("B")->getTransitionInfo().getProbability1();
+ double P_CI = getInputPort("CI")->getTransitionInfo().getProbability1();
+ double A_num_trans_01 = getInputPort("A")->getTransitionInfo().getNumberTransitions01();
+ double B_num_trans_01 = getInputPort("B")->getTransitionInfo().getNumberTransitions01();
+ double CI_num_trans_01 = getInputPort("CI")->getTransitionInfo().getNumberTransitions01();
+ double P_num_trans_01 = m_trans_P_.getNumberTransitions01();
+ double G_num_trans_01 = m_trans_G_.getNumberTransitions01();
+ double CP_num_trans_01 = m_trans_CP_.getNumberTransitions01();
+ double S_num_trans_01 = getOutputPort("S")->getTransitionInfo().getNumberTransitions01();
+ double CO_num_trans_01 = getOutputPort("CO")->getTransitionInfo().getNumberTransitions01();
+
+ // Calculate leakage
+ double leakage = 0;
+ leakage += cache->get(cell_name + "->Leakage->!A!B!CI") * (1 - P_A) * (1 - P_B) * (1 - P_CI);
+ leakage += cache->get(cell_name + "->Leakage->!A!BCI") * (1 - P_A) * (1 - P_B) * P_CI;
+ leakage += cache->get(cell_name + "->Leakage->!AB!CI") * (1 - P_A) * P_B * (1 - P_CI);
+ leakage += cache->get(cell_name + "->Leakage->!ABCI") * (1 - P_A) * P_B * P_CI;
+ leakage += cache->get(cell_name + "->Leakage->A!B!CI") * P_A * (1 - P_B) * (1 - P_CI);
+ leakage += cache->get(cell_name + "->Leakage->A!BCI") * P_A * (1 - P_B) * P_CI;
+ leakage += cache->get(cell_name + "->Leakage->AB!CI") * P_A * P_B * (1 - P_CI);
+ leakage += cache->get(cell_name + "->Leakage->ABCI") * P_A * P_B * P_CI;
+ getNddPowerResult("Leakage")->setValue(leakage);
+
+ // Get VDD
+ double vdd = getTechModel()->get("Vdd");
+
+ // Get capacitances
+ double a_b_cap = cache->get(cell_name + "->Cap->A_b");
+ double b_b_cap = cache->get(cell_name + "->Cap->B_b");
+ double ci_b_cap = cache->get(cell_name + "->Cap->CI_b");
+ double p_cap = cache->get(cell_name + "->Cap->P");
+ double p_b_cap = cache->get(cell_name + "->Cap->P_b");
+ double s_cap = cache->get(cell_name + "->Cap->S");
+ double cp_cap = cache->get(cell_name + "->Cap->CP");
+ double g_cap = cache->get(cell_name + "->Cap->G");
+ double co_cap = cache->get(cell_name + "->Cap->CO");
+ double s_load_cap = getNet("S")->getTotalDownstreamCap();
+ double co_load_cap = getNet("CO")->getTotalDownstreamCap();
+
+ // Calculate ADDF Event energy
+ double addf_event_energy = 0.0;
+ addf_event_energy += a_b_cap * A_num_trans_01;
+ addf_event_energy += b_b_cap * B_num_trans_01;
+ addf_event_energy += ci_b_cap * CI_num_trans_01;
+ addf_event_energy += (p_cap + p_b_cap) * P_num_trans_01;
+ addf_event_energy += (s_cap + s_load_cap) * S_num_trans_01;
+ addf_event_energy += cp_cap * CP_num_trans_01;
+ addf_event_energy += g_cap * G_num_trans_01;
+ addf_event_energy += (co_cap + co_load_cap) * CO_num_trans_01;
+ addf_event_energy *= vdd * vdd;
+ getEventResult("ADDF")->setValue(addf_event_energy);
+
+ return;
+ }
+
+ void ADDF::propagateTransitionInfo()
+ {
+ const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
+ const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo();
+ const TransitionInfo& trans_CI = getInputPort("CI")->getTransitionInfo();
+
+ double max_freq_mult = max(max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier()), trans_CI.getFrequencyMultiplier());
+ const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult);
+ const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult);
+ const TransitionInfo& scaled_trans_CI = trans_CI.scaleFrequencyMultiplier(max_freq_mult);
+
+ double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult;
+ double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult;
+ double A_prob_10 = A_prob_01;
+ double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult;
+ double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult;
+ double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult;
+ double B_prob_10 = B_prob_01;
+ double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult;
+ double CI_prob_00 = scaled_trans_CI.getNumberTransitions00() / max_freq_mult;
+ double CI_prob_01 = scaled_trans_CI.getNumberTransitions01() / max_freq_mult;
+ double CI_prob_10 = CI_prob_01;
+ double CI_prob_11 = scaled_trans_CI.getNumberTransitions11() / max_freq_mult;
+
+ // Set P transition info
+ double P_prob_00 = A_prob_00 * B_prob_00 +
+ A_prob_01 * B_prob_01 +
+ A_prob_10 * B_prob_10 +
+ A_prob_11 * B_prob_11;
+ double P_prob_01 = A_prob_00 * B_prob_01 +
+ A_prob_01 * B_prob_00 +
+ A_prob_10 * B_prob_11 +
+ A_prob_11 * B_prob_10;
+ double P_prob_10 = P_prob_01;
+ double P_prob_11 = A_prob_00 * B_prob_11 +
+ A_prob_01 * B_prob_10 +
+ A_prob_10 * B_prob_01 +
+ A_prob_11 * B_prob_00;
+
+ // Set G transition info
+ double G_prob_00 = A_prob_11 * B_prob_11;
+ double G_prob_01 = A_prob_11 * B_prob_10 +
+ A_prob_10 * (B_prob_11 + B_prob_10);
+ double G_prob_10 = G_prob_01;
+ double G_prob_11 = A_prob_00 +
+ A_prob_01 * (B_prob_00 + B_prob_10) +
+ A_prob_10 * (B_prob_00 + B_prob_01) +
+ A_prob_11 * B_prob_00;
+
+ // Set CP transition info
+ double CP_prob_00 = P_prob_11 * CI_prob_11;
+ double CP_prob_01 = P_prob_11 * CI_prob_10 +
+ P_prob_10 * (CI_prob_11 + CI_prob_10);
+ double CP_prob_10 = CP_prob_01;
+ double CP_prob_11 = P_prob_00 +
+ P_prob_01 * (CI_prob_00 + CI_prob_10) +
+ P_prob_10 * (CI_prob_00 + CI_prob_01) +
+ P_prob_11 * CI_prob_00;
+
+ // Set S transition info
+ double S_prob_00 = P_prob_00 * CI_prob_00 +
+ P_prob_01 * CI_prob_01 +
+ P_prob_10 * CI_prob_10 +
+ P_prob_11 * CI_prob_11;
+ double S_prob_01 = P_prob_00 * CI_prob_01 +
+ P_prob_01 * CI_prob_00 +
+ P_prob_10 * CI_prob_11 +
+ P_prob_11 * CI_prob_10;
+ double S_prob_11 = P_prob_00 * CI_prob_11 +
+ P_prob_01 * CI_prob_10 +
+ P_prob_10 * CI_prob_01 +
+ P_prob_11 * CI_prob_00;
+
+ // Set CO transition info
+ double CO_prob_00 = G_prob_11 * CP_prob_11;
+ double CO_prob_01 = G_prob_11 * CP_prob_10 +
+ G_prob_10 * (CP_prob_11 + CP_prob_10);
+ double CO_prob_11 = G_prob_00 +
+ G_prob_01 * (CP_prob_00 + CP_prob_10) +
+ G_prob_10 * (CP_prob_00 + CP_prob_01) +
+ G_prob_11 * CP_prob_00;
+
+ m_trans_P_ = TransitionInfo(P_prob_00 * max_freq_mult, P_prob_01 * max_freq_mult, P_prob_11 * max_freq_mult);
+ m_trans_G_ = TransitionInfo(G_prob_00 * max_freq_mult, G_prob_01 * max_freq_mult, G_prob_11 * max_freq_mult);
+ m_trans_CP_ = TransitionInfo(CP_prob_00 * max_freq_mult, CP_prob_01 * max_freq_mult, CP_prob_11 * max_freq_mult);
+
+ // Check that probabilities add up to 1.0 with some finite tolerance
+ ASSERT(LibUtil::Math::isEqual((S_prob_00 + S_prob_01 + S_prob_01 + S_prob_11), 1.0),
+ "[Error] " + getInstanceName() + "Output S transition probabilities must add up to 1 (" +
+ (String) S_prob_00 + ", " + (String) S_prob_01 + ", " + (String) S_prob_11 + ")!");
+
+ // Check that probabilities add up to 1.0 with some finite tolerance
+ ASSERT(LibUtil::Math::isEqual((CO_prob_00 + CO_prob_01 + CO_prob_01 + CO_prob_11), 1.0),
+ "[Error] " + getInstanceName() + "Output S transition probabilities must add up to 1 (" +
+ (String) CO_prob_00 + ", " + (String) CO_prob_01 + ", " + (String) CO_prob_11 + ")!");
+
+ // Turn probability of transitions per cycle into number of transitions per time unit
+ TransitionInfo trans_S(S_prob_00 * max_freq_mult, S_prob_01 * max_freq_mult, S_prob_11 * max_freq_mult);
+ getOutputPort("S")->setTransitionInfo(trans_S);
+ TransitionInfo trans_CO(CO_prob_00 * max_freq_mult, CO_prob_01 * max_freq_mult, CO_prob_11 * max_freq_mult);
+ getOutputPort("CO")->setTransitionInfo(trans_CO);
+ return;
+ }
+
+ // Creates the standard cell, characterizes and abstracts away the details
+ void ADDF::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
+ {
+ // Get parameters
+ double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
+ Map<double>* cache = cell_lib_->getStdCellCache();
+
+ // Standard cell cache string
+ String cell_name = "ADDF_X" + (String) drive_strength_;
+
+ Log::printLine("=== " + cell_name + " ===");
+
+ // Now actually build the full standard cell model
+ createInputPort("A");
+ createInputPort("B");
+ createInputPort("CI");
+ createOutputPort("S");
+ createOutputPort("CO");
+
+ createNet("A_b");
+ createNet("B_b");
+ createNet("CI_b");
+ createNet("P");
+ createNet("P_b");
+ createNet("G"); //actually G_b since it is NAND'ed
+ createNet("CP"); //actually (CP)_b since it is NAND'ed
+
+ // Adds macros
+ CellMacros::addInverter(this, "INV1", false, true, "A", "A_b");
+ CellMacros::addInverter(this, "INV2", false, true, "B", "B_b");
+ CellMacros::addInverter(this, "INV3", false, true, "CI", "CI_b");
+ CellMacros::addInverter(this, "INV4", false, true, "P", "P_b");
+ CellMacros::addTristate(this, "INVZ1", false, true, true, true, "B", "A", "A_b", "P");
+ CellMacros::addTristate(this, "INVZ2", false, true, true, true, "B_b", "A_b", "A", "P");
+ CellMacros::addTristate(this, "INVZ3", true, true, true, true, "P", "CI", "CI_b", "S");
+ CellMacros::addTristate(this, "INVZ4", true, true, true, true, "P_b", "CI_b", "CI", "S");
+ CellMacros::addNand2(this, "NAND1", false, true, true, "CI", "P", "CP");
+ CellMacros::addNand2(this, "NAND2", false, true, true, "A", "B", "G");
+ CellMacros::addNand2(this, "NAND3", true, true, true, "CP", "G", "CO");
+
+ // I have no idea how to size each of the parts haha
+ CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.250);
+ CellMacros::updateInverter(this, "INV2", drive_strength_ * 0.250);
+ CellMacros::updateInverter(this, "INV3", drive_strength_ * 0.250);
+ CellMacros::updateInverter(this, "INV4", drive_strength_ * 0.500);
+ CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 0.250);
+ CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 0.250);
+ CellMacros::updateTristate(this, "INVZ3", drive_strength_ * 0.500);
+ CellMacros::updateTristate(this, "INVZ4", drive_strength_ * 0.500);
+ CellMacros::updateNand2(this, "NAND1", drive_strength_ * 0.500);
+ CellMacros::updateNand2(this, "NAND2", drive_strength_ * 0.500);
+ CellMacros::updateNand2(this, "NAND3", drive_strength_ * 1.000);
+
+ // Cache area result
+ double area = 0.0;
+ area += gate_pitch * getTotalHeight() * 1;
+ area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble();
+ area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble();
+ area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV3_GatePitches").toDouble();
+ area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV4_GatePitches").toDouble();
+ area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble();
+ area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble();
+ area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ3_GatePitches").toDouble();
+ area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ4_GatePitches").toDouble();
+ area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND1_GatePitches").toDouble();
+ area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND2_GatePitches").toDouble();
+ area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND3_GatePitches").toDouble();
+ cache->set(cell_name + "->Area->Active", area);
+ cache->set(cell_name + "->Area->Metal1Wire", area);
+ Log::printLine(cell_name + "->Area->Active=" + (String) area);
+ Log::printLine(cell_name + "->Area->Metal1Wire=" + (String) area);
+
+ // --------------------------------------------------------------------
+ // Leakage Model Calculation
+ // --------------------------------------------------------------------
+ // Cache leakage power results (for every single signal combination)
+ double leakage_000 = 0; //!A, !B, !CI
+ double leakage_001 = 0; //!A, !B, CI
+ double leakage_010 = 0; //!A, B, !CI
+ double leakage_011 = 0; //!A, B, CI
+ double leakage_100 = 0; //A, !B, !CI
+ double leakage_101 = 0; //A, !B, CI
+ double leakage_110 = 0; //A, B, !CI
+ double leakage_111 = 0; //A, B, CI
+
+ //This is so painful...
+ leakage_000 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
+ leakage_000 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
+ leakage_000 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
+ leakage_000 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
+ leakage_000 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble();
+ leakage_000 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
+ leakage_000 += getGenProperties()->get("INVZ3_LeakagePower_010_0").toDouble();
+ leakage_000 += getGenProperties()->get("INVZ4_LeakagePower_101_0").toDouble();
+ leakage_000 += getGenProperties()->get("NAND1_LeakagePower_00").toDouble();
+ leakage_000 += getGenProperties()->get("NAND2_LeakagePower_00").toDouble();
+ leakage_000 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble();
+
+ leakage_001 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
+ leakage_001 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
+ leakage_001 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
+ leakage_001 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
+ leakage_001 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble();
+ leakage_001 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
+ leakage_001 += getGenProperties()->get("INVZ3_LeakagePower_100_1").toDouble();
+ leakage_001 += getGenProperties()->get("INVZ4_LeakagePower_011_1").toDouble();
+ leakage_001 += getGenProperties()->get("NAND1_LeakagePower_10").toDouble();
+ leakage_001 += getGenProperties()->get("NAND2_LeakagePower_00").toDouble();
+ leakage_001 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble();
+
+ leakage_010 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
+ leakage_010 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
+ leakage_010 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
+ leakage_010 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
+ leakage_010 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble();
+ leakage_010 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
+ leakage_010 += getGenProperties()->get("INVZ3_LeakagePower_011_1").toDouble();
+ leakage_010 += getGenProperties()->get("INVZ4_LeakagePower_100_1").toDouble();
+ leakage_010 += getGenProperties()->get("NAND1_LeakagePower_01").toDouble();
+ leakage_010 += getGenProperties()->get("NAND2_LeakagePower_01").toDouble();
+ leakage_010 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble();
+
+ leakage_011 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
+ leakage_011 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
+ leakage_011 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
+ leakage_011 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
+ leakage_011 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble();
+ leakage_011 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
+ leakage_011 += getGenProperties()->get("INVZ3_LeakagePower_101_0").toDouble();
+ leakage_011 += getGenProperties()->get("INVZ4_LeakagePower_010_0").toDouble();
+ leakage_011 += getGenProperties()->get("NAND1_LeakagePower_11").toDouble();
+ leakage_011 += getGenProperties()->get("NAND2_LeakagePower_01").toDouble();
+ leakage_011 += getGenProperties()->get("NAND3_LeakagePower_01").toDouble();
+
+ leakage_100 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
+ leakage_100 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
+ leakage_100 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
+ leakage_100 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
+ leakage_100 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
+ leakage_100 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble();
+ leakage_100 += getGenProperties()->get("INVZ3_LeakagePower_011_1").toDouble();
+ leakage_100 += getGenProperties()->get("INVZ4_LeakagePower_100_1").toDouble();
+ leakage_100 += getGenProperties()->get("NAND1_LeakagePower_01").toDouble();
+ leakage_100 += getGenProperties()->get("NAND2_LeakagePower_10").toDouble();
+ leakage_100 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble();
+
+ leakage_101 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
+ leakage_101 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
+ leakage_101 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
+ leakage_101 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
+ leakage_101 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
+ leakage_101 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble();
+ leakage_101 += getGenProperties()->get("INVZ3_LeakagePower_101_0").toDouble();
+ leakage_101 += getGenProperties()->get("INVZ4_LeakagePower_010_0").toDouble();
+ leakage_101 += getGenProperties()->get("NAND1_LeakagePower_11").toDouble();
+ leakage_101 += getGenProperties()->get("NAND2_LeakagePower_10").toDouble();
+ leakage_101 += getGenProperties()->get("NAND3_LeakagePower_01").toDouble();
+
+ leakage_110 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
+ leakage_110 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
+ leakage_110 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
+ leakage_110 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
+ leakage_110 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
+ leakage_110 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble();
+ leakage_110 += getGenProperties()->get("INVZ3_LeakagePower_010_0").toDouble();
+ leakage_110 += getGenProperties()->get("INVZ4_LeakagePower_101_0").toDouble();
+ leakage_110 += getGenProperties()->get("NAND1_LeakagePower_00").toDouble();
+ leakage_110 += getGenProperties()->get("NAND2_LeakagePower_11").toDouble();
+ leakage_110 += getGenProperties()->get("NAND3_LeakagePower_10").toDouble();
+
+ leakage_111 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
+ leakage_111 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
+ leakage_111 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
+ leakage_111 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
+ leakage_111 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
+ leakage_111 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble();
+ leakage_111 += getGenProperties()->get("INVZ3_LeakagePower_100_1").toDouble();
+ leakage_111 += getGenProperties()->get("INVZ4_LeakagePower_011_1").toDouble();
+ leakage_111 += getGenProperties()->get("NAND1_LeakagePower_10").toDouble();
+ leakage_111 += getGenProperties()->get("NAND2_LeakagePower_11").toDouble();
+ leakage_111 += getGenProperties()->get("NAND3_LeakagePower_10").toDouble();
+
+ cache->set(cell_name + "->Leakage->!A!B!CI", leakage_000);
+ cache->set(cell_name + "->Leakage->!A!BCI", leakage_001);
+ cache->set(cell_name + "->Leakage->!AB!CI", leakage_010);
+ cache->set(cell_name + "->Leakage->!ABCI", leakage_011);
+ cache->set(cell_name + "->Leakage->A!B!CI", leakage_100);
+ cache->set(cell_name + "->Leakage->A!BCI", leakage_101);
+ cache->set(cell_name + "->Leakage->AB!CI", leakage_110);
+ cache->set(cell_name + "->Leakage->ABCI", leakage_111);
+ Log::printLine(cell_name + "->Leakage->!A!B!CI=" + (String) leakage_000);
+ Log::printLine(cell_name + "->Leakage->!A!BCI=" + (String) leakage_001);
+ Log::printLine(cell_name + "->Leakage->!AB!CI=" + (String) leakage_010);
+ Log::printLine(cell_name + "->Leakage->!ABCI=" + (String) leakage_011);
+ Log::printLine(cell_name + "->Leakage->A!B!CI=" + (String) leakage_100);
+ Log::printLine(cell_name + "->Leakage->A!BCI=" + (String) leakage_101);
+ Log::printLine(cell_name + "->Leakage->AB!CI=" + (String) leakage_110);
+ Log::printLine(cell_name + "->Leakage->ABCI=" + (String) leakage_111);
+ // --------------------------------------------------------------------
+
+ /*
+ // Cache event energy results
+ double event_a_flip = 0.0;
+ event_a_flip += getGenProperties()->get("INV1_A_Flip").toDouble() + getGenProperties()->get("INV1_ZN_Flip").toDouble();
+ event_a_flip += getGenProperties()->get("INVZ1_OE_Flip").toDouble() + getGenProperties()->get("INVZ1_OEN_Flip").toDouble();
+ event_a_flip += getGenProperties()->get("INVZ2_OE_Flip").toDouble() + getGenProperties()->get("INVZ2_OEN_Flip").toDouble();
+ event_a_flip += getGenProperties()->get("NAND2_A1_Flip").toDouble();
+ cache->set(cell_name + "->Event_A_Flip", event_a_flip);
+ Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip);
+
+ double event_b_flip = 0.0;
+ event_b_flip += getGenProperties()->get("INV2_A_Flip").toDouble() + getGenProperties()->get("INV2_ZN_Flip").toDouble();
+ event_b_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble();
+ event_b_flip += getGenProperties()->get("INVZ2_A_Flip").toDouble();
+ event_b_flip += getGenProperties()->get("NAND2_A1_Flip").toDouble();
+ cache->set(cell_name + "->Event_B_Flip", event_b_flip);
+ Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip);
+
+ double event_ci_flip = 0.0;
+ event_ci_flip += getGenProperties()->get("INV3_A_Flip").toDouble() + getGenProperties()->get("INV3_ZN_Flip").toDouble();
+ event_ci_flip += getGenProperties()->get("INVZ3_OE_Flip").toDouble() + getGenProperties()->get("INVZ3_OEN_Flip").toDouble();
+ event_ci_flip += getGenProperties()->get("INVZ4_OE_Flip").toDouble() + getGenProperties()->get("INVZ4_OEN_Flip").toDouble();
+ event_ci_flip += getGenProperties()->get("NAND1_A1_Flip").toDouble();
+ cache->set(cell_name + "->Event_CI_Flip", event_ci_flip);
+ Log::printLine(cell_name + "->Event_CI_Flip=" + (String) event_ci_flip);
+
+ double event_p_flip = 0.0;
+ event_p_flip += getGenProperties()->get("INV4_A_Flip").toDouble() + getGenProperties()->get("INV4_ZN_Flip").toDouble();
+ event_p_flip += getGenProperties()->get("INVZ1_ZN_Flip").toDouble();
+ event_p_flip += getGenProperties()->get("INVZ2_ZN_Flip").toDouble();
+ event_p_flip += getGenProperties()->get("NAND1_A2_Flip").toDouble();
+ cache->set(cell_name + "->Event_P_Flip", event_p_flip);
+ Log::printLine(cell_name + "->Event_P_Flip=" + (String) event_p_flip);
+
+ double event_s_flip = 0.0;
+ event_s_flip += getGenProperties()->get("INVZ3_ZN_Flip").toDouble();
+ event_s_flip += getGenProperties()->get("INVZ4_ZN_Flip").toDouble();
+ cache->set(cell_name + "->Event_S_Flip", event_s_flip);
+ Log::printLine(cell_name + "->Event_S_Flip=" + (String) event_s_flip);
+
+ double event_cp_flip = 0.0;
+ event_cp_flip += getGenProperties()->get("NAND1_ZN_Flip").toDouble();
+ event_cp_flip += getGenProperties()->get("NAND3_A2_Flip").toDouble();
+ cache->set(cell_name + "->Event_CP_Flip", event_cp_flip);
+ Log::printLine(cell_name + "->Event_CP_Flip=" + (String) event_cp_flip);
+
+ double event_g_flip = 0.0;
+ event_g_flip += getGenProperties()->get("NAND2_ZN_Flip").toDouble();
+ event_g_flip += getGenProperties()->get("NAND3_A2_Flip").toDouble();
+ cache->set(cell_name + "->Event_G_Flip", event_g_flip);
+ Log::printLine(cell_name + "->Event_G_Flip=" + (String) event_g_flip);
+
+ double event_co_flip = 0.0;
+ event_co_flip += getGenProperties()->get("NAND3_ZN_Flip").toDouble();
+ cache->set(cell_name + "->Event_CO_Flip", event_co_flip);
+ Log::printLine(cell_name + "->Event_CO_Flip=" + (String) event_co_flip);
+ */
+ // --------------------------------------------------------------------
+ // Get Node Capacitances
+ // --------------------------------------------------------------------
+ double a_cap = getNet("A")->getTotalDownstreamCap();
+ double b_cap = getNet("B")->getTotalDownstreamCap();
+ double ci_cap = getNet("CI")->getTotalDownstreamCap();
+ double a_b_cap = getNet("A_b")->getTotalDownstreamCap();
+ double b_b_cap = getNet("B_b")->getTotalDownstreamCap();
+ double ci_b_cap = getNet("CI_b")->getTotalDownstreamCap();
+ double p_cap = getNet("P")->getTotalDownstreamCap();
+ double p_b_cap = getNet("P_b")->getTotalDownstreamCap();
+ double s_cap = getNet("S")->getTotalDownstreamCap();
+ double cp_cap = getNet("CP")->getTotalDownstreamCap();
+ double g_cap = getNet("G")->getTotalDownstreamCap();
+ double co_cap = getNet("CO")->getTotalDownstreamCap();
+
+ cache->set(cell_name + "->Cap->A", a_cap);
+ cache->set(cell_name + "->Cap->B", b_cap);
+ cache->set(cell_name + "->Cap->CI", ci_cap);
+ cache->set(cell_name + "->Cap->A_b", a_b_cap);
+ cache->set(cell_name + "->Cap->B_b", b_b_cap);
+ cache->set(cell_name + "->Cap->CI_b", ci_b_cap);
+ cache->set(cell_name + "->Cap->P", p_cap);
+ cache->set(cell_name + "->Cap->P_b", p_b_cap);
+ cache->set(cell_name + "->Cap->S", s_cap);
+ cache->set(cell_name + "->Cap->CP", cp_cap);
+ cache->set(cell_name + "->Cap->G", g_cap);
+ cache->set(cell_name + "->Cap->CO", co_cap);
+
+ Log::printLine(cell_name + "->Cap->A=" + (String) a_cap);
+ Log::printLine(cell_name + "->Cap->B=" + (String) b_cap);
+ Log::printLine(cell_name + "->Cap->CI=" + (String) ci_cap);
+ Log::printLine(cell_name + "->Cap->A_b=" + (String) a_b_cap);
+ Log::printLine(cell_name + "->Cap->B_b=" + (String) b_b_cap);
+ Log::printLine(cell_name + "->Cap->CI_b=" + (String) ci_b_cap);
+ Log::printLine(cell_name + "->Cap->P=" + (String) p_cap);
+ Log::printLine(cell_name + "->Cap->P_b=" + (String) p_b_cap);
+ Log::printLine(cell_name + "->Cap->S=" + (String) s_cap);
+ Log::printLine(cell_name + "->Cap->CP=" + (String) cp_cap);
+ Log::printLine(cell_name + "->Cap->G=" + (String) g_cap);
+ Log::printLine(cell_name + "->Cap->CO=" + (String) co_cap);
+ // --------------------------------------------------------------------
+
+ // --------------------------------------------------------------------
+ // Build Internal Delay Model
+ // --------------------------------------------------------------------
+ // Build abstracted timing model
+ double s_ron = (getDriver("INVZ3_RonZN")->getOutputRes() + getDriver("INVZ4_RonZN")->getOutputRes()) / 2;
+ double co_ron = getDriver("NAND3_RonZN")->getOutputRes();
+
+ double a_to_s_delay = 0.0;
+ a_to_s_delay += getDriver("INV1_RonZN")->calculateDelay();
+ a_to_s_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ2_RonZN")->calculateDelay());
+ a_to_s_delay += max(getDriver("INVZ3_RonZN")->calculateDelay(), getDriver("INV4_RonZN")->calculateDelay() + getDriver("INVZ4_RonZN")->calculateDelay());
+
+ double b_to_s_delay = 0.0;
+ b_to_s_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INV2_RonZN")->calculateDelay() + getDriver("INVZ2_RonZN")->calculateDelay());
+ b_to_s_delay += max(getDriver("INVZ3_RonZN")->calculateDelay(), getDriver("INV4_RonZN")->calculateDelay() + getDriver("INVZ4_RonZN")->calculateDelay());
+
+ double ci_to_s_delay = 0.0;
+ ci_to_s_delay += getDriver("INV3_RonZN")->calculateDelay();
+ ci_to_s_delay += max(getDriver("INVZ3_RonZN")->calculateDelay(), getDriver("INVZ4_RonZN")->calculateDelay());
+
+ double a_to_co_delay = 0.0;
+ a_to_co_delay += max(getDriver("NAND2_RonZN")->calculateDelay(), //Generate path
+ getDriver("INV1_RonZN")->calculateDelay() + //Carry propagate path
+ max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ2_RonZN")->calculateDelay()) +
+ getDriver("NAND1_RonZN")->calculateDelay());
+ a_to_co_delay += getDriver("NAND3_RonZN")->calculateDelay();
+
+ double b_to_co_delay = 0.0;
+ b_to_co_delay += max(getDriver("NAND2_RonZN")->calculateDelay(), //Generate path
+ max(getDriver("INVZ1_RonZN")->calculateDelay(), //Carry propagate path
+ getDriver("INV2_RonZN")->calculateDelay() + getDriver("INVZ2_RonZN")->calculateDelay()) +
+ getDriver("NAND1_RonZN")->calculateDelay());
+ b_to_co_delay += getDriver("NAND3_RonZN")->calculateDelay();
+
+ double ci_to_co_delay = 0.0;
+ ci_to_co_delay += getDriver("NAND1_RonZN")->calculateDelay();
+ ci_to_co_delay += getDriver("NAND3_RonZN")->calculateDelay();
+
+ cache->set(cell_name + "->DriveRes->S", s_ron);
+ cache->set(cell_name + "->DriveRes->CO", co_ron);
+
+ cache->set(cell_name + "->Delay->A_to_S", a_to_s_delay);
+ cache->set(cell_name + "->Delay->B_to_S", b_to_s_delay);
+ cache->set(cell_name + "->Delay->CI_to_S", ci_to_s_delay);
+ cache->set(cell_name + "->Delay->A_to_CO", a_to_co_delay);
+ cache->set(cell_name + "->Delay->B_to_CO", b_to_co_delay);
+ cache->set(cell_name + "->Delay->CI_to_CO", ci_to_co_delay);
+
+ Log::printLine(cell_name + "->DriveRes->S=" + (String) s_ron);
+ Log::printLine(cell_name + "->DriveRes->CO=" + (String) co_ron);
+ Log::printLine(cell_name + "->Delay->A_to_S=" + (String) a_to_s_delay);
+ Log::printLine(cell_name + "->Delay->B_to_S=" + (String) b_to_s_delay);
+ Log::printLine(cell_name + "->Delay->CI_to_S=" + (String) ci_to_s_delay);
+ Log::printLine(cell_name + "->Delay->A_to_CO=" + (String) a_to_co_delay);
+ Log::printLine(cell_name + "->Delay->B_to_CO=" + (String) b_to_co_delay);
+ Log::printLine(cell_name + "->Delay->CI_to_CO=" + (String) ci_to_co_delay);
+ // --------------------------------------------------------------------
+
+ return;
+
+ }
+
+} // namespace DSENT
+