summaryrefslogtreecommitdiff
path: root/ext/dsent/model/std_cells/NAND2.cc
diff options
context:
space:
mode:
Diffstat (limited to 'ext/dsent/model/std_cells/NAND2.cc')
-rw-r--r--ext/dsent/model/std_cells/NAND2.cc267
1 files changed, 267 insertions, 0 deletions
diff --git a/ext/dsent/model/std_cells/NAND2.cc b/ext/dsent/model/std_cells/NAND2.cc
new file mode 100644
index 000000000..2599f8527
--- /dev/null
+++ b/ext/dsent/model/std_cells/NAND2.cc
@@ -0,0 +1,267 @@
+#include "model/std_cells/NAND2.h"
+
+#include <cmath>
+
+#include "model/PortInfo.h"
+#include "model/TransitionInfo.h"
+#include "model/EventInfo.h"
+#include "model/std_cells/StdCellLib.h"
+#include "model/std_cells/CellMacros.h"
+#include "model/timing_graph/ElectricalNet.h"
+#include "model/timing_graph/ElectricalDriver.h"
+#include "model/timing_graph/ElectricalLoad.h"
+#include "model/timing_graph/ElectricalDelay.h"
+
+namespace DSENT
+{
+ using std::ceil;
+ using std::max;
+
+ NAND2::NAND2(const String& instance_name_, const TechModel* tech_model_)
+ : StdCell(instance_name_, tech_model_)
+ {
+ initProperties();
+ }
+
+ NAND2::~NAND2()
+ {}
+
+ void NAND2::initProperties()
+ {
+ return;
+ }
+
+ void NAND2::constructModel()
+ {
+ // All constructModel should do is create Area/NDDPower/Energy Results as
+ // well as instantiate any sub-instances using only the hard parameters
+
+ createInputPort("A");
+ createInputPort("B");
+ createOutputPort("Y");
+
+ createLoad("A_Cap");
+ createLoad("B_Cap");
+ createDelay("A_to_Y_delay");
+ createDelay("B_to_Y_delay");
+ createDriver("Y_Ron", true);
+
+ ElectricalLoad* a_cap = getLoad("A_Cap");
+ ElectricalLoad* b_cap = getLoad("A_Cap");
+ ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay");
+ ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay");
+ ElectricalDriver* y_ron = getDriver("Y_Ron");
+
+ getNet("A")->addDownstreamNode(a_cap);
+ getNet("B")->addDownstreamNode(b_cap);
+ a_cap->addDownstreamNode(a_to_y_delay);
+ b_cap->addDownstreamNode(b_to_y_delay);
+ a_to_y_delay->addDownstreamNode(y_ron);
+ b_to_y_delay->addDownstreamNode(y_ron);
+ y_ron->addDownstreamNode(getNet("Y"));
+
+ // Create Area result
+ // Create NDD Power result
+ createElectricalAtomicResults();
+ // Create NAND Event Energy Result
+ createElectricalEventAtomicResult("NAND2");
+
+ getEventInfo("Idle")->setStaticTransitionInfos();
+
+ return;
+ }
+
+ void NAND2::updateModel()
+ {
+ // All updateModel should do is calculate numbers for the Area/NDDPower/Energy
+ // Results as anything else that needs to be done using either soft or hard parameters
+
+ // Get parameters
+ double drive_strength = getDrivingStrength();
+ Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
+
+ // Standard cell cache string
+ String cell_name = "NAND2_X" + (String) drive_strength;
+
+ // Get timing parameters
+ getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
+ getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B"));
+ getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y"));
+ getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y"));
+ getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y"));
+
+ // Set the cell area
+ getAreaResult("Active")->setValue(cache->get(cell_name + "->Area->Active"));
+ getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->Area->Active"));
+
+ return;
+ }
+
+ void NAND2::useModel()
+ {
+ // Get parameters
+ double drive_strength = getDrivingStrength();
+ Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
+
+ // Standard cell cache string
+ String cell_name = "NAND2_X" + (String) drive_strength;
+
+ // Propagate the transition info and get the 0->1 transtion count
+ propagateTransitionInfo();
+ double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
+ double P_B = getInputPort("B")->getTransitionInfo().getProbability1();
+ double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01();
+
+ // Calculate leakage
+ double leakage = 0;
+ leakage += cache->get(cell_name + "->Leakage->!A!B") * (1 - P_A) * (1 - P_B);
+ leakage += cache->get(cell_name + "->Leakage->!AB") * (1 - P_A) * P_B;
+ leakage += cache->get(cell_name + "->Leakage->A!B") * P_A * (1 - P_B);
+ leakage += cache->get(cell_name + "->Leakage->AB") * P_A * P_B;
+ getNddPowerResult("Leakage")->setValue(leakage);
+
+ // Get capacitances
+ double y_cap = cache->get(cell_name + "->Cap->Y");
+ double y_load_cap = getNet("Y")->getTotalDownstreamCap();
+
+ // Get VDD
+ double vdd = getTechModel()->get("Vdd");
+
+ // Calculate NAND2Event energy
+ double energy_per_trans_01 = (y_cap + y_load_cap) * vdd * vdd;
+ getEventResult("NAND2")->setValue(energy_per_trans_01 * Y_num_trans_01);
+
+ return;
+ }
+
+ void NAND2::propagateTransitionInfo()
+ {
+ // Get input signal transition info
+ const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
+ const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo();
+
+ double max_freq_mult = max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier());
+ const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult);
+ const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult);
+
+ double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult;
+ double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult;
+ double A_prob_10 = A_prob_01;
+ double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult;
+ double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult;
+ double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult;
+ double B_prob_10 = B_prob_01;
+ double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult;
+
+ // Set output transition info
+ double Y_prob_00 = A_prob_11 * B_prob_11;
+ double Y_prob_01 = A_prob_11 * B_prob_10 +
+ A_prob_10 * (B_prob_11 + B_prob_10);
+ double Y_prob_11 = A_prob_00 +
+ A_prob_01 * (B_prob_00 + B_prob_10) +
+ A_prob_10 * (B_prob_00 + B_prob_01) +
+ A_prob_11 * B_prob_00;
+
+ // Check that probabilities add up to 1.0 with some finite tolerance
+ ASSERT(LibUtil::Math::isEqual((Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11), 1.0),
+ "[Error] " + getInstanceName() + "Output transition probabilities must add up to 1 (" +
+ (String) Y_prob_00 + ", " + (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!");
+
+ // Turn probability of transitions per cycle into number of transitions per time unit
+ TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult);
+ getOutputPort("Y")->setTransitionInfo(trans_Y);
+ return;
+ }
+
+ void NAND2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
+ {
+ // Standard cell cache string
+ String cell_name = "NAND2_X" + (String) drive_strength_;
+
+ Log::printLine("=== " + cell_name + " ===");
+
+ // Get parameters
+ double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
+ Map<double>* cache = cell_lib_->getStdCellCache();
+
+ // Now actually build the full standard cell model
+ // Create the two input ports
+ createInputPort("A");
+ createInputPort("B");
+ createOutputPort("Y");
+
+ // Adds macros
+ CellMacros::addNand2(this, "NAND", true, true, true, "A", "B", "Y");
+ CellMacros::updateNand2(this, "NAND", drive_strength_);
+
+ // Cache area result
+ double area = gate_pitch * getTotalHeight() * (1 + getGenProperties()->get("NAND_GatePitches").toDouble());
+ cache->set(cell_name + "->Area->Active", area);
+ Log::printLine(cell_name + "->Area->Active=" + (String) area);
+
+ // --------------------------------------------------------------------
+ // Leakage Model Calculation
+ // --------------------------------------------------------------------
+ double leakage_00 = getGenProperties()->get("NAND_LeakagePower_00").toDouble();
+ double leakage_01 = getGenProperties()->get("NAND_LeakagePower_01").toDouble();
+ double leakage_10 = getGenProperties()->get("NAND_LeakagePower_10").toDouble();
+ double leakage_11 = getGenProperties()->get("NAND_LeakagePower_11").toDouble();
+ cache->set(cell_name + "->Leakage->!A!B", leakage_00);
+ cache->set(cell_name + "->Leakage->!AB", leakage_01);
+ cache->set(cell_name + "->Leakage->A!B", leakage_10);
+ cache->set(cell_name + "->Leakage->AB", leakage_11);
+ Log::printLine(cell_name + "->Leakage->!A!B=" + (String) leakage_00);
+ Log::printLine(cell_name + "->Leakage->!AB=" + (String) leakage_01);
+ Log::printLine(cell_name + "->Leakage->A!B=" + (String) leakage_10);
+ Log::printLine(cell_name + "->Leakage->AB=" + (String) leakage_11);
+ // --------------------------------------------------------------------
+
+ // Cache event energy results
+ /*
+ double event_a_flip = getGenProperties()->get("NAND_A1_Flip").toDouble();
+ double event_b_flip = getGenProperties()->get("NAND_A2_Flip").toDouble();
+ double event_y_flip = getGenProperties()->get("NAND_ZN_Flip").toDouble();
+
+ cache->set(cell_name + "->Event_A_Flip", event_a_flip);
+ cache->set(cell_name + "->Event_B_Flip", event_b_flip);
+ cache->set(cell_name + "->Event_Y_Flip", event_y_flip);
+ Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip);
+ Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip);
+ Log::printLine(cell_name + "->Event_Y_Flip=" + (String) event_y_flip);
+ */
+ // --------------------------------------------------------------------
+ // Get Node Capacitances
+ // --------------------------------------------------------------------
+ double a_cap = getNet("A")->getTotalDownstreamCap();
+ double b_cap = getNet("B")->getTotalDownstreamCap();
+ double y_cap = getNet("Y")->getTotalDownstreamCap();
+
+ cache->set(cell_name + "->Cap->A", a_cap);
+ cache->set(cell_name + "->Cap->B", b_cap);
+ cache->set(cell_name + "->Cap->Y", y_cap);
+ Log::printLine(cell_name + "->Cap->A=" + (String) a_cap);
+ Log::printLine(cell_name + "->Cap->B=" + (String) b_cap);
+ Log::printLine(cell_name + "->Cap->Y=" + (String) y_cap);
+ // --------------------------------------------------------------------
+
+ // --------------------------------------------------------------------
+ // Build Internal Delay Model
+ // --------------------------------------------------------------------
+ double y_ron = getDriver("NAND_RonZN")->getOutputRes();
+ double a_to_y_delay = getDriver("NAND_RonZN")->calculateDelay();
+ double b_to_y_delay = getDriver("NAND_RonZN")->calculateDelay();
+
+ cache->set(cell_name + "->DriveRes->Y", y_ron);
+ cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay);
+ cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay);
+ Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron);
+ Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay);
+ Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay);
+ // --------------------------------------------------------------------
+
+ return;
+
+ }
+
+} // namespace DSENT
+