diff options
Diffstat (limited to 'ext/dsent/tech')
-rw-r--r-- | ext/dsent/tech/TechModel.cc | 320 | ||||
-rw-r--r-- | ext/dsent/tech/TechModel.h | 71 | ||||
-rw-r--r-- | ext/dsent/tech/tech_models/Bulk22LVT.model | 179 | ||||
-rw-r--r-- | ext/dsent/tech/tech_models/Bulk32LVT.model | 168 | ||||
-rw-r--r-- | ext/dsent/tech/tech_models/Bulk45LVT.model | 168 | ||||
-rw-r--r-- | ext/dsent/tech/tech_models/Photonics.model | 89 | ||||
-rw-r--r-- | ext/dsent/tech/tech_models/TG11LVT.model | 181 |
7 files changed, 1176 insertions, 0 deletions
diff --git a/ext/dsent/tech/TechModel.cc b/ext/dsent/tech/TechModel.cc new file mode 100644 index 000000000..5922177ad --- /dev/null +++ b/ext/dsent/tech/TechModel.cc @@ -0,0 +1,320 @@ +#include "tech/TechModel.h" + +#include <cmath> + +#include "model/std_cells/StdCellLib.h" + +namespace DSENT +{ + TechModel::TechModel() + : Config(), m_std_cell_lib_(NULL), m_available_wire_layers_(NULL) + {} + + TechModel::~TechModel() + {} + + void TechModel::setStdCellLib(const StdCellLib* std_cell_lib_) + { + m_std_cell_lib_ = std_cell_lib_; + return; + } + + const StdCellLib* TechModel::getStdCellLib() const + { + return m_std_cell_lib_; + } + + TechModel* TechModel::clone() const + { + return new TechModel(*this); + } + + void TechModel::readFile(const String& filename_) + { + // Read the main technology file + LibUtil::Config::readFile(filename_); + + // Search for "INCLUDE" to include more technology files + StringMap::ConstIterator it; + for(it = begin(); it != end(); ++it) + { + const String& key = it->first; + if(key.compare(0, 8, "INCLUDE_") == 0) + { + const String& include_filename = it->second; + LibUtil::Config::readFile(include_filename); + } + } + + // Set the available wire layers + const vector<String>& available_wire_layer_vector = get("Wire->AvailableLayers").split("[,]"); + m_available_wire_layers_ = new std::set<String>; + for(unsigned int i = 0; i < available_wire_layer_vector.size(); ++i) + { + m_available_wire_layers_->insert(available_wire_layer_vector[i]); + } + return; + } + + //------------------------------------------------------------------------- + // Transistor Related Functions + //------------------------------------------------------------------------- + //Returns the leakage current of NMOS transistors, given the transistor stakcing, transistor widths, and input combination + double TechModel::calculateNmosLeakageCurrent(unsigned int num_stacks_, double uni_stacked_mos_width_, unsigned int input_vector_) const + { + vector<double> stacked_mos_widths_(num_stacks_, uni_stacked_mos_width_); + return calculateNmosLeakageCurrent(num_stacks_, stacked_mos_widths_, input_vector_); + } + + //Returns the leakage current of NMOS transistors, given the transistor stakcing, transistor widths, and input combination + double TechModel::calculateNmosLeakageCurrent(unsigned int num_stacks_, const vector<double>& stacked_mos_widths_, unsigned int input_vector_) const + { + // Get technology parameters + double vdd = get("Vdd"); + double temp = get("Temperature"); + double char_temp = get("Nmos->CharacterizedTemperature"); + double min_off_current = get("Nmos->MinOffCurrent"); + double off_current = get("Nmos->OffCurrent"); + double subthreshold_swing = get("Nmos->SubthresholdSwing"); + double dibl = get("Nmos->DIBL"); + double temp_swing = get("Nmos->SubthresholdTempSwing"); + + // Map dibl to a swing value for easier calculation + double dibl_swing = subthreshold_swing / dibl; + + //Calculate the leakage current factor + double leakage_current_factor = calculateLeakageCurrentFactor(num_stacks_, stacked_mos_widths_, input_vector_, vdd, subthreshold_swing, dibl_swing); + + // Calcualte actual leakage current at characterized temperature + double leakage_current_char_tmp = stacked_mos_widths_[0] * off_current * std::pow(10.0, leakage_current_factor); + leakage_current_char_tmp = std::max(min_off_current, leakage_current_char_tmp); + + // Calculate actual leakage current at temp + double leakage_current = leakage_current_char_tmp * std::pow(10.0, (temp - char_temp) / temp_swing); + + return leakage_current; + } + + double TechModel::calculatePmosLeakageCurrent(unsigned int num_stacks_, double uni_stacked_mos_width_, unsigned int input_vector_) const + { + vector<double> stacked_mos_widths_(num_stacks_, uni_stacked_mos_width_); + return calculatePmosLeakageCurrent(num_stacks_, stacked_mos_widths_, input_vector_); + } + + //Returns the leakage current of PMOS transistors, given the transistor stakcing, transistor widths, and input combination + double TechModel::calculatePmosLeakageCurrent(unsigned int num_stacks_, const vector<double>& stacked_mos_widths_, unsigned int input_vector_) const + { + // Get technology parameters + double vdd = get("Vdd"); + double temp = get("Temperature"); + double char_temp = get("Pmos->CharacterizedTemperature"); + double min_off_current = get("Pmos->MinOffCurrent"); + double off_current = get("Pmos->OffCurrent"); + double dibl = get("Pmos->DIBL"); + double subthreshold_swing = get("Pmos->SubthresholdSwing"); + double temp_swing = get("Nmos->SubthresholdTempSwing"); + + // Map dibl to a swing value for easier calculation + double dibl_swing = subthreshold_swing / dibl; + + //Calculate the leakage current factor + double leakage_current_factor = calculateLeakageCurrentFactor(num_stacks_, stacked_mos_widths_, input_vector_, vdd, subthreshold_swing, dibl_swing); + + // Calcualte actual leakage current at characterized temperature + double leakage_current_char_tmp = stacked_mos_widths_[0] * off_current * std::pow(10.0, leakage_current_factor); + leakage_current_char_tmp = std::max(min_off_current, leakage_current_char_tmp); + + // Calculate actual leakage current at temp + double leakage_current = leakage_current_char_tmp * std::pow(10.0, (temp - char_temp) / temp_swing); + + return leakage_current; + } + + //Returns the leakage current, given the transistor stakcing, transistor widths, input combination, + //and technology information (vdd, subthreshold swing, subthreshold dibl swing) + double TechModel::calculateLeakageCurrentFactor(unsigned int num_stacks_, const vector<double>& stacked_mos_widths_, unsigned int input_vector_, double vdd_, double subthreshold_swing_, double dibl_swing_) const + { + // check everything is valid + ASSERT(num_stacks_ >= 1, "[Error] Number of stacks must be >= 1!"); + ASSERT(stacked_mos_widths_.size() == num_stacks_, "[Error] Mismatch in number of stacks and the widths specified!"); + + //Use short name in this method + const double s1 = subthreshold_swing_; + const double s2 = dibl_swing_; + + // Decode input combinations from input_vector_ + std::vector<double> vs(num_stacks_, 0.0); + for(int i = 0; i < (int)num_stacks_; ++i) + { + double current_input = (double(input_vector_ & 0x1))*vdd_; + vs[i] = (current_input); + input_vector_ >>= 1; + } + // If the widths pointer is NULL, width is set to 1 by default + vector<double> ws = stacked_mos_widths_; + + //Solve voltages at internal nodes of stacked transistors + // v[0] = 0 + // v[num_stacks_] = vdd_ + // v[i] = (1.0/(2*s1 + s2))*((s1 + s2)*v[i - 1] + s1*v[i + 1] + // + s2*(vs[i + 1] - vs[i]) + s1*s2*log10(ws[i + 1]/ws[i])) + //Use tri-matrix solver to solve the above linear system + + double A = -(s1 + s2); + double B = 2*s1 + s2; + double C = -s1; + std::vector<double> a(num_stacks_ - 1, 0); + std::vector<double> b(num_stacks_ - 1, 0); + std::vector<double> c(num_stacks_ - 1, 0); + std::vector<double> d(num_stacks_ - 1, 0); + std::vector<double> v(num_stacks_ + 1, 0); + unsigned int eff_num_stacks = num_stacks_; + bool is_found_valid_v = false; + do + { + //Set boundary condition + v[0] = 0; + v[eff_num_stacks] = vdd_; + + //If the effective number of stacks is 1, no matrix needs to be solved + if(eff_num_stacks == 1) + { + break; + } + + //---------------------------------------------------------------------- + //Setup the tri-matrix + //---------------------------------------------------------------------- + for(int i = 0; i < (int)eff_num_stacks-2; ++i) + { + a[i + 1] = A; + c[i] = C; + } + for(int i = 0; i < (int)eff_num_stacks-1; ++i) + { + b[i] = B; + d[i] = s2*(vs[i + 1] - vs[i]) + s1*s2*std::log10(ws[i + 1]/ws[i]); + if(i == ((int)eff_num_stacks - 2)) + { + d[i] -= C*vdd_; + } + } + //---------------------------------------------------------------------- + + //---------------------------------------------------------------------- + //Solve the tri-matrix + //---------------------------------------------------------------------- + for(int i = 1; i < (int)eff_num_stacks-1; ++i) + { + double m = a[i]/b[i - 1]; + b[i] -= m*c[i - 1]; + d[i] -= m*d[i - 1]; + } + + v[eff_num_stacks - 1] = d[eff_num_stacks - 2]/b[eff_num_stacks - 2]; + for(int i = eff_num_stacks - 3; i >= 0; --i) + { + v[i + 1] = (d[i] - c[i]*v[i + 2])/b[i]; + } + //---------------------------------------------------------------------- + + //Check if the internal voltages are in increasing order + is_found_valid_v = true; + for(int i = 1; i <= (int)eff_num_stacks; ++i) + { + //If the ith internal voltage is not in increasing order + //(i-1)th transistor is in triode region + //Remove the transistors in triode region as it does not exist + if(v[i] < v[i - 1]) + { + is_found_valid_v = false; + eff_num_stacks--; + vs.erase(vs.begin() + i - 1); + ws.erase(ws.begin() + i - 1); + break; + } + } + } while(!is_found_valid_v); + + //Calculate the leakage current of the bottom transistor (first not in triode region) + double vgs = vs[0] - v[0]; + double vds = v[1] - v[0]; + double leakage_current_factor = vgs/s1 + (vds - vdd_)/s2; + //TODO - Check if the leakage current calculate for other transistors is identical + + return leakage_current_factor; + } + //------------------------------------------------------------------------- + + //------------------------------------------------------------------------- + // Wire Related Functions + //------------------------------------------------------------------------- + bool TechModel::isWireLayerExist(const String& layer_name_) const + { + std::set<String>::const_iterator it; + it = m_available_wire_layers_->find(layer_name_); + return (it != m_available_wire_layers_->end()); + } + + const std::set<String>* TechModel::getAvailableWireLayers() const + { + return m_available_wire_layers_; + } + + double TechModel::calculateWireCapacitance(const String& layer_name_, double width_, double spacing_, double length_) const + { + // Get technology parameter + double min_width = get("Wire->" + layer_name_ + "->MinWidth").toDouble(); + double min_spacing = get("Wire->" + layer_name_ + "->MinSpacing").toDouble(); + double metal_thickness = get("Wire->" + layer_name_ + "->MetalThickness").toDouble(); + double dielec_thickness = get("Wire->" + layer_name_ + "->DielectricThickness").toDouble(); + double dielec_const = get("Wire->" + layer_name_ + "->DielectricConstant").toDouble(); + + ASSERT(width_ >= min_width, "[Error] Wire width must be >= " + (String) min_width + "!"); + ASSERT(spacing_ >= min_spacing, "[Error] Wire spacing must be >= " + (String) min_spacing + "!"); + ASSERT(length_ >= 0, "[Error] Wire length must be >= 0!"); + + double A, B, C; + // Calculate ground capacitance + A = width_ / dielec_thickness; + B = 2.04*std::pow((spacing_ / (spacing_ + 0.54 * dielec_thickness)), 1.77); + C = std::pow((metal_thickness / (metal_thickness + 4.53 * dielec_thickness)), 0.07); + double unit_gnd_cap = dielec_const * 8.85e-12 * (A + B * C); + + A = 1.14 * (metal_thickness / spacing_) * std::exp(-4.0 * spacing_ / (spacing_ + 8.01 * dielec_thickness)); + B = 2.37 * std::pow((width_ / (width_ + 0.31 * spacing_)), 0.28); + C = std::pow((dielec_thickness / (dielec_thickness + 8.96 * spacing_)), 0.76) * + std::exp(-2.0 * spacing_ / (spacing_ + 6.0 * dielec_thickness)); + double unit_coupling_cap = dielec_const * 8.85e-12 * (A + B * C); + + double total_cap = 2 * (unit_gnd_cap + unit_coupling_cap) * length_; + return total_cap; + } + + double TechModel::calculateWireResistance(const String& layer_name_, double width_, double length_) const + { + // Get technology parameter + double min_width = get("Wire->" + layer_name_ + "->MinWidth"); + //double barrier_thickness = get("Wire->" + layer_name_ + "->BarrierThickness"); + double resistivity = get("Wire->" + layer_name_ + "->Resistivity"); + double metal_thickness = get("Wire->" + layer_name_ + "->MetalThickness"); + + ASSERT(width_ >= min_width, "[Error] Wire width must be >= " + (String) min_width + "!"); + ASSERT(length_ >= 0, "[Error] Wire length must be >= 0!"); + + // Calculate Rho + // double rho = 2.202e-8 + (1.030e-15 / (width_ - 2.0 * barrier_thickness)); + + double unit_res = resistivity / (width_ * metal_thickness); + //double unit_res = rho / ((width_ - 2.0 * barrier_thickness) * (metal_thickness - barrier_thickness)); + + double total_res = unit_res * length_; + return total_res; + } + //------------------------------------------------------------------------- + + TechModel::TechModel(const TechModel& tech_model_) + : Config(tech_model_), m_std_cell_lib_(tech_model_.m_std_cell_lib_) + {} +} // namespace DSENT + diff --git a/ext/dsent/tech/TechModel.h b/ext/dsent/tech/TechModel.h new file mode 100644 index 000000000..92e5a30ac --- /dev/null +++ b/ext/dsent/tech/TechModel.h @@ -0,0 +1,71 @@ +#ifndef __DSENT_TECH_TECH_MODEL_H__ +#define __DSENT_TECH_TECH_MODEL_H__ + +#include <vector> +#include <set> + +#include "libutil/Config.h" +#include "libutil/String.h" + +namespace DSENT +{ + class StdCellLib; + + using std::set; + using std::vector; + using LibUtil::String; + + class TechModel : public LibUtil::Config + { + public: + typedef std::set<String>::const_iterator ConstWireLayerIterator; + + public: + TechModel(); + virtual ~TechModel(); + + public: + // Set the pointer to a standard cell library + void setStdCellLib(const StdCellLib* std_cell_lib_); + // Get the pointer to the standard cell library + const StdCellLib* getStdCellLib() const; + + // Return a cloned copy of this instance + virtual TechModel* clone() const; + // Override readFile function to include multiple technology files + virtual void readFile(const String& filename_); + + // Transistor + // Returns the leakage current of NMOS transistors, given the transistor stakcing, transistor widths, and input combination + double calculateNmosLeakageCurrent(unsigned int num_stacks_, double uni_stacked_mos_width_, unsigned int input_vector_) const; + double calculateNmosLeakageCurrent(unsigned int num_stacks_, const vector<double>& stacked_mos_widths_, unsigned int input_vector_) const; + // Returns the leakage current of PMOS transistors, given the transistor stakcing, transistor widths, and input combination + double calculatePmosLeakageCurrent(unsigned int num_stacks_, double uni_stacked_mos_width_, unsigned int input_vector_) const; + double calculatePmosLeakageCurrent(unsigned int num_stacks_, const vector<double>& stacked_mos_widths_, unsigned int input_vector_) const; + // Returns the leakage current, given the transistor stakcing, transistor widths, input combination, + // and technology information (vdd, subthreshold swing, subthreshold dibl swing) + double calculateLeakageCurrentFactor(unsigned int num_stacks_, const vector<double>& stacked_mos_widths_, unsigned int input_vector_, double vdd_, double subthreshold_swing_, double dibl_swing_) const; + + // Wire + // Check if the wire layer exist + bool isWireLayerExist(const String& layer_name_) const; + const std::set<String>* getAvailableWireLayers() const; + // Return wire capacitance for given wire layer, wire width, wire spacing, and wire length + double calculateWireCapacitance(const String& layer_name_, double width_, double spacing_, double length_) const; + // Return wire resistance for given wire layer, wire width, and wire length + double calculateWireResistance(const String& layer_name_, double width_, double length_) const; + + private: + // Private copy constructor. Use clone to perform copy operation + TechModel(const TechModel& tech_model_); + + private: + // A pointer to a standard cell library + const StdCellLib* m_std_cell_lib_; + // A set of available wire layers + std::set<String>* m_available_wire_layers_; + }; // class TechModel +} // namespace DSENT + +#endif // __DSENT_TECH_TECH_MODEL_H__ + diff --git a/ext/dsent/tech/tech_models/Bulk22LVT.model b/ext/dsent/tech/tech_models/Bulk22LVT.model new file mode 100644 index 000000000..e2087a12d --- /dev/null +++ b/ext/dsent/tech/tech_models/Bulk22LVT.model @@ -0,0 +1,179 @@ +# WARNING: Most commercial fabs will not be happy if you release their exact +# process information! If you derive these numbers through SPICE models, +# the process design kit, or any other confidential material, please round-off +# the values and leave the process name unidentifiable by fab (i.e. call it +# Bulk90LVT instead of TSMC90LVT) if you release parameters publicly. This +# rule may not apply for open processes, but you may want to check. + +# All units are in SI, (volts, meters, kelvin, farads, ohms, amps, etc.) + +# This file contains the model for a bulk 22nm LVT process +Name = Bulk22LVT + +# Supply voltage used in the circuit and for characterizations (V) +Vdd = 0.8 +# Temperature (K) +Temperature = 340 + +# ============================================================================= +# Parameters for transistors +# ============================================================================= + +# Contacted gate pitch (m) +Gate->PitchContacted = 0.120e-6 + +# Min gate width (m) +Gate->MinWidth = 0.100e-6 + +# Gate cap per unit width (F/m) +Gate->CapPerWidth = 0.900e-9 +# Source/Drain cap per unit width (F/m) +Drain->CapPerWidth = 0.620e-9 + +# Parameters characterization temperature (K) +Nmos->CharacterizedTemperature = 300.0 +Pmos->CharacterizedTemperature = 300.0 + +#------------------------------------------------------------------------------ +# I_Eff definition in Na, IEDM 2002 +# I_EFF = (I(VG = 0.5, VD = 1.0) + I(VG = 1.0, VD = 0.5))/2 +# R_EFF = VDD / I_EFF * 1 / (2 ln(2)) +# This is generally accurate for when input and output transition times +# are similar, which is a reasonable case after timing optimization +#------------------------------------------------------------------------------ +# Effective resistance (Ohm-m) +Nmos->EffResWidth = 0.700e-3 +Pmos->EffResWidth = 0.930e-3 + +#------------------------------------------------------------------------------ +# The ratio of extra effective resistance with each additional stacked +# transistor +# EffResStackRatio = (R_EFF_NAND2 - R_EFF_INV) / R_EFF_INV) +# For example, inverter has an normalized effective drive resistance of 1.0. +# A NAND2 (2-stack) will have an effective drive of 1.0 + 0.7, a NAND3 (3-stack) +# will have an effective drive of 1.0 + 2 * 0.7. Use NORs for Pmos. This fit +# works relatively well up to 4 stacks. This value will change depending on the +# VDD used. +#------------------------------------------------------------------------------ +# Effective resistance stack ratio +Nmos->EffResStackRatio = 0.800 +Pmos->EffResStackRatio = 0.680 + +#------------------------------------------------------------------------------ +# I_OFF defined as |I_DS| for |V_DS| = V_DD and |V_GS| = 0.0 +# Minimum off current is used in technologies where I_OFF stops scaling +# with transistor width below some threshold +#------------------------------------------------------------------------------ +# Off current per width (A/m) +Nmos->OffCurrent = 100.0e-3 +Pmos->OffCurrent = 100.0e-3 +# Minimum off current (A) +Nmos->MinOffCurrent = 60e-9 +Pmos->MinOffCurrent = 60e-9 + +# Subthreshold swing (V/dec) +Nmos->SubthresholdSwing = 0.100 +Pmos->SubthresholdSwing = 0.100 +# DIBL factor (V/V) +Nmos->DIBL = 0.150 +Pmos->DIBL = 0.150 +# Subthreshold temperature swing (K/dec) +Nmos->SubthresholdTempSwing = 100.0 +Pmos->SubthresholdTempSwing = 100.0 +#------------------------------------------------------------------------------ + +# ============================================================================= +# Parameters for interconnect +# ============================================================================= + +Wire->AvailableLayers = [Metal1,Local,Intermediate,Semiglobal,Global] + +# Metal 1 Wire (used for std cell routing only) +# Min width (m) +Wire->Metal1->MinWidth = 32e-9 +# Min spacing (m) +Wire->Metal1->MinSpacing = 32e-9 +# Resistivity (Ohm-m) +Wire->Metal1->Resistivity = 5.00e-8 +# Metal thickness (m) +Wire->Metal1->MetalThickness = 60.0e-9 +# Dielectric thickness (m) +Wire->Metal1->DielectricThickness = 60.0e-9 +# Dielectric constant +Wire->Metal1->DielectricConstant = 3.00 + +# Local wire, 1.0X of the M1 pitch +# Min width (m) +Wire->Local->MinWidth = 32e-9 +# Min spacing (m) +Wire->Local->MinSpacing = 32e-9 +# Resistivity (Ohm-m) +Wire->Local->Resistivity = 5.00e-8 +# Metal thickness (m) +Wire->Local->MetalThickness = 60.0e-9 +# Dielectric thickness (m) +Wire->Local->DielectricThickness = 60.0e-9 +# Dielectric constant +Wire->Local->DielectricConstant = 3.00 + +# Intermediate wire, 2.0X the M1 pitch +# Min width (m) +Wire->Intermediate->MinWidth = 55e-9 +# Min spacing (m) +Wire->Intermediate->MinSpacing = 55e-9 +# Resistivity (Ohm-m) +Wire->Intermediate->Resistivity = 4.00e-8 +# Metal thickness (m) +Wire->Intermediate->MetalThickness = 100.0e-9 +# Dielectric thickness (m) +Wire->Intermediate->DielectricThickness = 100.0e-9 +# Dielectric constant +Wire->Intermediate->DielectricConstant = 2.8 + +# Semiglobal wire, 4.0X the M1 pitch +# Min width (m) +Wire->Semiglobal->MinWidth = 110e-9 +# Min spacing (m) +Wire->Semiglobal->MinSpacing = 110e-9 +# Resistivity (Ohm-m) +Wire->Semiglobal->Resistivity = 2.60e-8 +# Metal thickness (m) +Wire->Semiglobal->MetalThickness = 200e-9 +# Dielectric thickness (m) +Wire->Semiglobal->DielectricThickness = 170e-9 +# Dielectric constant +Wire->Semiglobal->DielectricConstant = 2.80 + +# Global wire, 6.0X the M1 pitch +# Min width (m) +Wire->Global->MinWidth = 160e-9 +# Min spacing (m) +Wire->Global->MinSpacing = 160e-9 +# Resistivity (Ohm-m) +Wire->Global->Resistivity = 2.30e-8 +# Metal thickness (m) +Wire->Global->MetalThickness = 280e-9 +# Dielectric thickness (m) +Wire->Global->DielectricThickness = 250e-9 +# Dielectric constant +Wire->Global->DielectricConstant = 2.60 + +# ============================================================================= +# Parameters for Standard Cells +# ============================================================================= + +# The height of the standard cell is usually a multiple of the vertical +# M1 pitch (tracks). By definition, an X1 size cell has transistors +# that fit exactly in the given cell height without folding, or leaving +# any wasted vertical area + +# Reasonable values for the number of M1 tracks that we have seen are 8-14 +StdCell->Tracks = 11 +# Height overhead due to supply rails, well spacing, etc. Note that this will grow +# if the height of the standard cell decreases! +StdCell->HeightOverheadFactor = 1.400 + +# Sets the available sizes of each standard cell. Keep in mind that +# 1.0 is the biggest cell without any transistor folding +StdCell->AvailableSizes = [1.0, 1.4, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0, 12.0, 16.0] + diff --git a/ext/dsent/tech/tech_models/Bulk32LVT.model b/ext/dsent/tech/tech_models/Bulk32LVT.model new file mode 100644 index 000000000..9a90bdaf9 --- /dev/null +++ b/ext/dsent/tech/tech_models/Bulk32LVT.model @@ -0,0 +1,168 @@ +# WARNING: Most commercial fabs will not be happy if you release their exact
+# process information! If you derive these numbers through SPICE models,
+# the process design kit, or any other confidential material, please round-off
+# the values and leave the process name unidentifiable by fab (i.e. call it
+# Bulk90LVT instead of TSMC90LVT) if you release parameters publicly. This
+# rule may not apply for open processes, but you may want to check.
+
+# All units are in SI, (volts, meters, kelvin, farads, ohms, amps, etc.)
+
+# This file contains the model for a bulk 32nm LVT process
+Name = Bulk32LVT
+
+# Supply voltage used in the circuit and for characterizations (V)
+Vdd = 0.9
+# Temperature (K)
+Temperature = 340
+
+# =============================================================================
+# Parameters for transistors
+# =============================================================================
+
+# Contacted gate pitch (m)
+Gate->PitchContacted = 0.160e-6
+
+# Min gate width (m)
+Gate->MinWidth = 0.120e-6
+
+# Gate cap per unit width (F/m)
+Gate->CapPerWidth = 0.950e-9
+# Source/Drain cap per unit width (F/m)
+Drain->CapPerWidth = 0.640e-9
+
+# Parameters characterization temperature (K)
+Nmos->CharacterizedTemperature = 300.0
+Pmos->CharacterizedTemperature = 300.0
+
+#------------------------------------------------------------------------------
+# I_Eff definition in Na, IEDM 2002
+# I_EFF = (I(VG = 0.5, VD = 1.0) + I(VG = 1.0, VD = 0.5))/2
+# R_EFF = VDD / I_EFF * 1 / (2 ln(2))
+# This is generally accurate for when input and output transition times
+# are similar, which is a reasonable case after timing optimization
+#------------------------------------------------------------------------------
+# Effective resistance (Ohm-m)
+Nmos->EffResWidth = 0.890e-3
+Pmos->EffResWidth = 1.270e-3
+
+#------------------------------------------------------------------------------
+# The ratio of extra effective resistance with each additional stacked
+# transistor
+# EffResStackRatio = (R_EFF_NAND2 - R_EFF_INV) / R_EFF_INV)
+# For example, inverter has an normalized effective drive resistance of 1.0.
+# A NAND2 (2-stack) will have an effective drive of 1.0 + 0.7, a NAND3 (3-stack)
+# will have an effective drive of 1.0 + 2 * 0.7. Use NORs for Pmos. This fit
+# works relatively well up to 4 stacks. This value will change depending on the
+# VDD used.
+#------------------------------------------------------------------------------
+# Effective resistance stack ratio
+Nmos->EffResStackRatio = 0.78
+Pmos->EffResStackRatio = 0.66
+
+#------------------------------------------------------------------------------
+# I_OFF defined as |I_DS| for |V_DS| = V_DD and |V_GS| = 0.0
+# Minimum off current is used as a second fit point, since I_OFF often
+# stops scaling with transistor width below some threshold
+#------------------------------------------------------------------------------
+# Off current per width (A/m)
+Nmos->OffCurrent = 100e-3
+Pmos->OffCurrent = 100e-3
+
+# Minimum off current (A)
+Nmos->MinOffCurrent = 100e-9
+Pmos->MinOffCurrent = 20e-9
+
+# Subthreshold swing (V/dec)
+Nmos->SubthresholdSwing = 0.100
+Pmos->SubthresholdSwing = 0.100
+
+# DIBL factor (V/V)
+Nmos->DIBL = 0.150
+Pmos->DIBL = 0.150
+
+# Subthreshold leakage temperature swing (K/dec)
+Nmos->SubthresholdTempSwing = 100
+Pmos->SubthresholdTempSwing = 100
+#------------------------------------------------------------------------------
+
+# =============================================================================
+# Parameters for interconnect
+# =============================================================================
+
+Wire->AvailableLayers = [Metal1,Local,Intermediate,Global]
+
+# Metal 1 Wire (used for std cell routing only)
+# Min width (m)
+Wire->Metal1->MinWidth = 55e-9
+# Min spacing (m)
+Wire->Metal1->MinSpacing = 55e-9
+# Resistivity (Ohm-m)
+Wire->Metal1->Resistivity = 4.00e-8
+# Metal thickness (m)
+Wire->Metal1->MetalThickness = 100.0e-9
+# Dielectric thickness (m)
+Wire->Metal1->DielectricThickness = 100.0e-9
+# Dielectric constant
+Wire->Metal1->DielectricConstant = 3.2
+
+# Local wire, 1.0X of the M1 pitch
+# Min width (m)
+Wire->Local->MinWidth = 55e-9
+# Min spacing (m)
+Wire->Local->MinSpacing = 55e-9
+# Resistivity (Ohm-m)
+Wire->Local->Resistivity = 4.00e-8
+# Metal thickness (m)
+Wire->Local->MetalThickness = 100.0e-9
+# Dielectric thickness (m)
+Wire->Local->DielectricThickness = 100.0e-9
+# Dielectric constant
+Wire->Local->DielectricConstant = 3.2
+
+# Intermediate wire, 2.0X the M1 pitch
+# Min width (m)
+Wire->Intermediate->MinWidth = 110e-9
+# Min spacing (m)
+Wire->Intermediate->MinSpacing = 110e-9
+# Resistivity (Ohm-m)
+Wire->Intermediate->Resistivity = 2.60e-8
+# Metal thickness (m)
+Wire->Intermediate->MetalThickness = 200e-9
+# Dielectric thickness (m)
+Wire->Intermediate->DielectricThickness = 170e-9
+# Dielectric constant
+Wire->Intermediate->DielectricConstant = 3.00
+
+# Global wire, 3.0X the M1 pitch
+# Min width (m)
+Wire->Global->MinWidth = 160e-9
+# Min spacing (m)
+Wire->Global->MinSpacing = 160e-9
+# Resistivity (Ohm-m)
+Wire->Global->Resistivity = 2.30e-8
+# Metal thickness (m)
+Wire->Global->MetalThickness = 280e-9
+# Dielectric thickness (m)
+Wire->Global->DielectricThickness = 250e-9
+# Dielectric constant
+Wire->Global->DielectricConstant = 2.80
+
+# =============================================================================
+# Parameters for Standard Cells
+# =============================================================================
+
+# The height of the standard cell is usually a multiple of the vertical
+# M1 pitch (tracks). By definition, an X1 size cell has transistors
+# that fit exactly in the given cell height without folding, or leaving
+# any wasted vertical area
+
+# Reasonable values for the number of M1 tracks that we have seen are 8-14
+StdCell->Tracks = 11
+# Height overhead due to supply rails, well spacing, etc. Note that this will grow
+# if the height of the standard cell decreases!
+StdCell->HeightOverheadFactor = 1.400
+
+# Sets the available sizes of each standard cell. Keep in mind that
+# 1.0 is the biggest cell without any transistor folding
+StdCell->AvailableSizes = [1.0, 1.4, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0, 12.0, 16.0]
+
diff --git a/ext/dsent/tech/tech_models/Bulk45LVT.model b/ext/dsent/tech/tech_models/Bulk45LVT.model new file mode 100644 index 000000000..d8015c522 --- /dev/null +++ b/ext/dsent/tech/tech_models/Bulk45LVT.model @@ -0,0 +1,168 @@ +# WARNING: Most commercial fabs will not be happy if you release their exact +# process information! If you derive these numbers through SPICE models, +# the process design kit, or any other confidential material, please round-off +# the values and leave the process name unidentifiable by fab (i.e. call it +# Bulk90LVT instead of TSMC90LVT) if you release parameters publicly. This +# rule may not apply for open processes, but you may want to check. + +# All units are in SI, (volts, meters, kelvin, farads, ohms, amps, etc.) + +# This file contains the model for a bulk 45nm LVT process +Name = Bulk45LVT + +# Supply voltage used in the circuit and for characterizations (V) +Vdd = 1.0 +# Temperature (K) +Temperature = 340 + +# ============================================================================= +# Parameters for transistors +# ============================================================================= + +# Contacted gate pitch (m) +Gate->PitchContacted = 0.200e-6 + +# Min gate width (m) +Gate->MinWidth = 0.160e-6 + +# Gate cap per unit width (F/m) +Gate->CapPerWidth = 1.000e-9 +# Source/Drain cap per unit width (F/m) +Drain->CapPerWidth = 0.600e-9 + +# Parameters characterization temperature (K) +Nmos->CharacterizedTemperature = 300.0 +Pmos->CharacterizedTemperature = 300.0 + +#------------------------------------------------------------------------------ +# I_Eff definition in Na, IEDM 2002 +# I_EFF = (I(VG = 0.5, VD = 1.0) + I(VG = 1.0, VD = 0.5))/2 +# R_EFF = VDD / I_EFF * 1 / (2 ln(2)) +# This is generally accurate for when input and output transition times +# are similar, which is a reasonable case after timing optimization +#------------------------------------------------------------------------------ +# Effective resistance (Ohm-m) +Nmos->EffResWidth = 1.100e-3 +Pmos->EffResWidth = 1.500e-3 + +#------------------------------------------------------------------------------ +# The ratio of extra effective resistance with each additional stacked +# transistor +# EffResStackRatio = (R_EFF_NAND2 - R_EFF_INV) / R_EFF_INV) +# For example, inverter has an normalized effective drive resistance of 1.0. +# A NAND2 (2-stack) will have an effective drive of 1.0 + 0.7, a NAND3 (3-stack) +# will have an effective drive of 1.0 + 2 * 0.7. Use NORs for Pmos. This fit +# works relatively well up to 4 stacks. This value will change depending on the +# VDD used. +#------------------------------------------------------------------------------ +# Effective resistance stack ratio +Nmos->EffResStackRatio = 0.7 +Pmos->EffResStackRatio = 0.6 + +#------------------------------------------------------------------------------ +# I_OFF defined as |I_DS| for |V_DS| = V_DD and |V_GS| = 0.0 +# Minimum off current is used as a second fit point, since I_OFF often +# stops scaling with transistor width below some threshold +#------------------------------------------------------------------------------ +# Off current per width (A/m) +Nmos->OffCurrent = 100e-3 +Pmos->OffCurrent = 100e-3 + +# Minimum off current (A) +Nmos->MinOffCurrent = 100e-9 +Pmos->MinOffCurrent = 20e-9 + +# Subthreshold swing (V/dec) +Nmos->SubthresholdSwing = 0.100 +Pmos->SubthresholdSwing = 0.100 + +# DIBL factor (V/V) +Nmos->DIBL = 0.150 +Pmos->DIBL = 0.150 + +# Subthreshold leakage temperature swing (K/dec) +Nmos->SubthresholdTempSwing = 100 +Pmos->SubthresholdTempSwing = 100 +#------------------------------------------------------------------------------ + +# ============================================================================= +# Parameters for interconnect +# ============================================================================= + +Wire->AvailableLayers = [Metal1,Local,Intermediate,Global] + +# Metal 1 Wire (used for std cell routing only) +# Min width (m) +Wire->Metal1->MinWidth = 80e-9 +# Min spacing (m) +Wire->Metal1->MinSpacing = 80e-9 +# Resistivity (Ohm-m) +Wire->Metal1->Resistivity = 3.00e-8 +# Metal thickness (m) +Wire->Metal1->MetalThickness = 140.0e-9 +# Dielectric thickness (m) +Wire->Metal1->DielectricThickness = 130.0e-9 +# Dielectric constant +Wire->Metal1->DielectricConstant = 3.2 + +# Local wire, 1.0X of the M1 pitch +# Min width (m) +Wire->Metal1->MinWidth = 80e-9 +# Min spacing (m) +Wire->Metal1->MinSpacing = 80e-9 +# Resistivity (Ohm-m) +Wire->Metal1->Resistivity = 3.00e-8 +# Metal thickness (m) +Wire->Metal1->MetalThickness = 140.0e-9 +# Dielectric thickness (m) +Wire->Metal1->DielectricThickness = 130.0e-9 +# Dielectric constant +Wire->Metal1->DielectricConstant = 3.2 + +# Intermediate wire, 1.4X the M1 pitch +# Min width (m) +Wire->Intermediate->MinWidth = 110e-9 +# Min spacing (m) +Wire->Intermediate->MinSpacing = 110e-9 +# Resistivity (Ohm-m) +Wire->Intermediate->Resistivity = 2.60e-8 +# Metal thickness (m) +Wire->Intermediate->MetalThickness = 200e-9 +# Dielectric thickness (m) +Wire->Intermediate->DielectricThickness = 170e-9 +# Dielectric constant +Wire->Intermediate->DielectricConstant = 3.00 + +# Global wire, 2.0X the M1 pitch +# Min width (m) +Wire->Global->MinWidth = 160e-9 +# Min spacing (m) +Wire->Global->MinSpacing = 160e-9 +# Resistivity (Ohm-m) +Wire->Global->Resistivity = 2.30e-8 +# Metal thickness (m) +Wire->Global->MetalThickness = 280e-9 +# Dielectric thickness (m) +Wire->Global->DielectricThickness = 250e-9 +# Dielectric constant +Wire->Global->DielectricConstant = 2.80 + +# ============================================================================= +# Parameters for Standard Cells +# ============================================================================= + +# The height of the standard cell is usually a multiple of the vertical +# M1 pitch (tracks). By definition, an X1 size cell has transistors +# that fit exactly in the given cell height without folding, or leaving +# any wasted vertical area + +# Reasonable values for the number of M1 tracks that we have seen are 8-14 +StdCell->Tracks = 11 +# Height overhead due to supply rails, well spacing, etc. Note that this will grow +# if the height of the standard cell decreases! +StdCell->HeightOverheadFactor = 1.400 + +# Sets the available sizes of each standard cell. Keep in mind that +# 1.0 is the biggest cell without any transistor folding +StdCell->AvailableSizes = [1.0, 1.4, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0, 12.0, 16.0] + diff --git a/ext/dsent/tech/tech_models/Photonics.model b/ext/dsent/tech/tech_models/Photonics.model new file mode 100644 index 000000000..335e1e832 --- /dev/null +++ b/ext/dsent/tech/tech_models/Photonics.model @@ -0,0 +1,89 @@ +# This file contains the model for photonic devices/circuits +PhotonicsName = Photonics + +# ALL PARAMETERS IN SI UNITS!!! (J, W, m, F, dB, A) + +# ----------------------------------------------------------------------------- +# Waveguide +# ----------------------------------------------------------------------------- +Waveguide->LossPerMeter = 100 # dB/m +Waveguide->Pitch = 4e-6 # m +Splitter->Loss = 1.00 # dB +Coupler->Loss = 1.00 # dB + +# ----------------------------------------------------------------------------- +# Laser +# ----------------------------------------------------------------------------- + +# Continuous wave off-chip (always on) laser +Laser->CW->Efficiency = 0.25 # P_Laser/P_Electrical +Laser->CW->LaserDiodeLoss = 1.00 # Laser diode loss +Laser->CW->Area = 0 + +# Gated on-chip (data-dependent) laser +Laser->GatedCW->Efficiency = 0.25 # P_Laser/P_Electrical +Laser->GatedCW->LaserDiodeLoss = 1.00 # Laser diode loss +Laser->GatedCW->Area = 200e-12 + +# ----------------------------------------------------------------------------- +# Modulators +# ----------------------------------------------------------------------------- +# Ring Modulator +Modulator->Ring->SupplyBoostRatio = 1.2 # Boost the supply voltage above required reverse bias voltage by this ratio +Modulator->Ring->ParasiticRes = 100 # ohm +Modulator->Ring->ParasiticCap = 5e-15 # F +Modulator->Ring->FCPDEffect = 3e-27 # Free carrier plasma dispersion effect, delta_n/delta_c (m^-3) +Modulator->Ring->Tn = 0.01 # Transmisivity at the bottom of the notch +Modulator->Ring->NA = 3e24 # m^3, p doping +Modulator->Ring->ND = 1e24 # m^3, n doping +Modulator->Ring->ni = 1e16 # m^3, intrinsic free carriers +Modulator->Ring->JunctionRatio = 0.8 # Junction ratio to total optical length +Modulator->Ring->Height = 500e-9 # Height of the junction (m) +Modulator->Ring->Width = 500e-9 # Modulator width (m) +Modulator->Ring->ConfinementFactor = 0.3 # Modulator confinement factor + +# ----------------------------------------------------------------------------- +# Ring Resonator +# ----------------------------------------------------------------------------- +Ring->Area = 100e-12 # m2 +Ring->Lambda = 1300e-9 # Resonant wavelength range +Ring->GroupIndex = 4 # Group index +Ring->Radius = 3e-6 # Bend radius of the ring +Ring->ConfinementFactor = 0.3 # Confinement factor +Ring->ThroughLoss = 0.01 # [dB] +Ring->DropLoss = 1.0 # [dB] +Ring->MaxQualityFactor = 150e3 # Maximum quality factor +Ring->HeatingEfficiency = 100000 # Ring heating efficiency [K/W] +Ring->TuningEfficiency = 10e9 # Ring tuning efficiency [Hz/K] +Ring->LocalVariationSigma = 40e9 # Ring resonance frequency local mismatch sigma [Hz] +Ring->SystematicVariationSigma = 200e9 # Ring resonance frequency systematic mismatch sigma [Hz] +Ring->TemperatureMax = 380 # Maximum temperature that the tuning mechanism must still be able to work at [K] +Ring->TemperatureMin = 280 # Minimum temperature that the tuning mechanism must still be able to work at [K] +Ring->MaxElectricallyTunableFreq = 50e9 # Maximum electrically tunable range when allowing for electrically assisted tuning [Hz] + +# ----------------------------------------------------------------------------- +# Photodetector +# ----------------------------------------------------------------------------- +Photodetector->Responsivity = 1.1 #(A/W) +Photodetector->Area = 10e-12 # m2 +Photodetector->Cap = 0 # F +Photodetector->ParasiticCap = 5e-15 # F +Photodetector->Loss = 1.00 # dB +Photodetector->MinExtinctionRatio = 3 # dB +Photodetector->AvalancheGain = 1 # avalanche gain + +# ----------------------------------------------------------------------------- +# Receivers +# ----------------------------------------------------------------------------- + +# Sense amplifier (common to all receivers) +SenseAmp->BER = 1e-15 # Target bit error rate +SenseAmp->CMRR = 5 # Common-mode rejection ratio +SenseAmp->OffsetCompensationBits = 5 # Number of bits used for fine-tuning offset compensation +SenseAmp->OffsetRatio = 0.04 # Offset mismatch (as a fraction of VDD) +SenseAmp->SupplyNoiseRandRatio = 0.01 # Random supply noise (as a fraction VDD) +SenseAmp->SupplyNoiseDetRatio = 0.05 # Deterministic supply noise (as a fraction VDD) +SenseAmp->NoiseMargin = 0.02 # Extra noise margin +SenseAmp->JitterRatio = 0.01 # Jitter (as a fraction of Tbit) + +Receiver->Int->IntegrationTimeRatio = 0.7 # Integration time (as a fraction of Tbit) diff --git a/ext/dsent/tech/tech_models/TG11LVT.model b/ext/dsent/tech/tech_models/TG11LVT.model new file mode 100644 index 000000000..292e40ab0 --- /dev/null +++ b/ext/dsent/tech/tech_models/TG11LVT.model @@ -0,0 +1,181 @@ +# WARNING: Most commercial fabs will not be happy if you release their exact +# process information! If you derive these numbers through SPICE models, +# the process design kit, or any other confidential material, please round-off +# the values and leave the process name unidentifiable by fab (i.e. call it +# Bulk90LVT instead of TSMC90LVT) if you release parameters publicly. This +# rule may not apply for open processes, but you may want to check. + +# All units are in SI, (volts, meters, kelvin, farads, ohms, amps, etc.) + +# This file contains the model for a Tri-Gate (Multi-Gate) 11nm LVT process +Name = TG11LVT + +# Supply voltage used in the circuit and for characterizations (V) +Vdd = 0.6 +# Temperature (K) +Temperature = 340 + +# ============================================================================= +# Parameters for transistors +# ============================================================================= + +# Contacted gate pitch (m) +Gate->PitchContacted = 0.080e-6 + +# Min gate width (m) +Gate->MinWidth = 0.080e-6 + +# Gate cap per unit width (F/m) +Gate->CapPerWidth = 0.61e-9 +# Source/Drain cap per unit width (F/m) +Drain->CapPerWidth = 0.56e-9 + +# Parameters characterization temperature (K) +Nmos->CharacterizedTemperature = 300.0 +Pmos->CharacterizedTemperature = 300.0 + +#------------------------------------------------------------------------------ +# I_Eff definition in Na, IEDM 2002 +# I_EFF = (I(VG = 0.5, VD = 1.0) + I(VG = 1.0, VD = 0.5))/2 +# R_EFF = VDD / I_EFF * 1 / (2 ln(2)) +# This is generally more accurate for when the delay is input transition time +# limited +#------------------------------------------------------------------------------ +# Effective resistance (Ohm-m) +Nmos->EffResWidth = 1.16e-3 +Pmos->EffResWidth = 1.28e-3 + +#------------------------------------------------------------------------------ +# The ratio of extra effective resistance with each additional stacked +# transistor +# EffResStackRatio = (R_EFF_NAND2 - R_EFF_INV) / R_EFF_INV) +# For example, inverter has an normalized effective drive resistance of 1.0. +# A NAND2 (2-stack) will have an effective drive of 1.0 + 0.7, a NAND3 (3-stack) +# will have an effective drive of 1.0 + 2 * 0.7. Use NORs for Pmos. This fit +# works relatively well up to 4 stacks. This value will change depending on the +# VDD used. +#------------------------------------------------------------------------------ +# Effective resistance stack ratio +Nmos->EffResStackRatio = 0.89 +Pmos->EffResStackRatio = 0.86 + +#------------------------------------------------------------------------------ +# I_OFF defined as |I_DS| for |V_DS| = V_DD and |V_GS| = 0.0 +# Minimum off current is used in technologies where I_OFF stops scaling +# with transistor width below some threshold +#------------------------------------------------------------------------------ +# Off current per width (A/m) +Nmos->OffCurrent = 100.0e-3 +Pmos->OffCurrent = 100.0e-3 +# Minimum off current (A) +Nmos->MinOffCurrent = 40e-9 +Pmos->MinOffCurrent = 4e-9 + +# Subthreshold swing (V/dec) +Nmos->SubthresholdSwing = 0.080 +Pmos->SubthresholdSwing = 0.080 +# DIBL factor (V/V) +Nmos->DIBL = 0.125 +Pmos->DIBL = 0.125 +# Subthreshold temperature swing (K/dec) +Nmos->SubthresholdTempSwing = 100.0 +Pmos->SubthresholdTempSwing = 100.0 +#------------------------------------------------------------------------------ + +# ============================================================================= +# Parameters for interconnect +# ============================================================================= + +Wire->AvailableLayers = [Metal1,Local,Intermediate,Semiglobal,Global] + +# Metal 1 Wire (used for std cell routing only) +# Min width (m) +Wire->Metal1->MinWidth = 20e-9 +# Min spacing (m) +Wire->Metal1->MinSpacing = 20e-9 +# Resistivity (Ohm-m) +Wire->Metal1->Resistivity = 6.8e-8 +# Metal thickness (m) +Wire->Metal1->MetalThickness = 35.0e-9 +# Dielectric thickness (m) +Wire->Metal1->DielectricThickness = 35.0e-9 +# Dielectric constant +Wire->Metal1->DielectricConstant = 3.00 + +# Local wire, 1.0X of the M1 pitch +# Min width (m) +Wire->Local->MinWidth = 20e-9 +# Min spacing (m) +Wire->Local->MinSpacing = 20e-9 +# Resistivity (Ohm-m) +Wire->Local->Resistivity = 6.8e-8 +# Metal thickness (m) +Wire->Local->MetalThickness = 35.0e-9 +# Dielectric thickness (m) +Wire->Local->DielectricThickness = 35.0e-9 +# Dielectric constant +Wire->Local->DielectricConstant = 3.00 + +# Intermediate wire, 2.0X the M1 pitch +# Min width (m) +Wire->Intermediate->MinWidth = 40e-9 +# Min spacing (m) +Wire->Intermediate->MinSpacing = 40e-9 +# Resistivity (Ohm-m) +Wire->Intermediate->Resistivity = 4.50e-8 +# Metal thickness (m) +Wire->Intermediate->MetalThickness = 70.0e-9 +# Dielectric thickness (m) +Wire->Intermediate->DielectricThickness = 70.0e-9 +# Dielectric constant +Wire->Intermediate->DielectricConstant = 2.80 + +# Semiglobal wire, 4.0X the M1 pitch +# Min width (m) +Wire->Semiglobal->MinWidth = 80e-9 +# Min spacing (m) +Wire->Semiglobal->MinSpacing = 80e-9 +# Resistivity (Ohm-m) +Wire->Semiglobal->Resistivity = 2.80e-8 +# Metal thickness (m) +Wire->Semiglobal->MetalThickness = 150.0e-9 +# Dielectric thickness (m) +Wire->Semiglobal->DielectricThickness = 150.0e-9 +# Dielectric constant +Wire->Semiglobal->DielectricConstant = 2.60 + +# Global wire, 8.0X the M1 pitch +# Min width (m) +Wire->Global->MinWidth = 160e-9 +# Min spacing (m) +Wire->Global->MinSpacing = 160e-9 +# Resistivity (Ohm-m) +Wire->Global->Resistivity = 2.30e-8 +# Metal thickness (m) +Wire->Global->MetalThickness = 280e-9 +# Dielectric thickness (m) +Wire->Global->DielectricThickness = 250e-9 +# Dielectric constant +Wire->Global->DielectricConstant = 2.60 + +# ============================================================================= +# Parameters for Standard Cells +# ============================================================================= + +# The height of the standard cell is usually a multiple of the vertical +# M1 pitch (tracks). By definition, an X1 size cell has transistors +# that fit exactly in the given cell height without folding, or leaving +# any wasted vertical area + +# Reasonable values for the number of M1 tracks that we have seen are 8-14 +StdCell->Tracks = 11 +# Height overhead due to supply rails, well spacing, etc. Note that this will grow +# if the height of the standard cell decreases! +StdCell->HeightOverheadFactor = 1.400 + +# Sets the available sizes of each standard cell. Keep in mind that +# 1.0 is the biggest cell without any transistor folding +StdCell->AvailableSizes = [1.0, 1.4, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0, 12.0, 16.0] + + + |