diff options
Diffstat (limited to 'ext/mcpat/memoryctrl.cc')
-rw-r--r-- | ext/mcpat/memoryctrl.cc | 736 |
1 files changed, 736 insertions, 0 deletions
diff --git a/ext/mcpat/memoryctrl.cc b/ext/mcpat/memoryctrl.cc new file mode 100644 index 000000000..ae3bc75ec --- /dev/null +++ b/ext/mcpat/memoryctrl.cc @@ -0,0 +1,736 @@ +/***************************************************************************** + * McPAT + * SOFTWARE LICENSE AGREEMENT + * Copyright 2012 Hewlett-Packard Development Company, L.P. + * All Rights Reserved + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are + * met: redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer; + * redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution; + * neither the name of the copyright holders nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.” + * + ***************************************************************************/ +#include <algorithm> +#include <cassert> +#include <cmath> +#include <iostream> +#include <string> + +#include "XML_Parse.h" +#include "basic_circuit.h" +#include "basic_components.h" +#include "const.h" +#include "io.h" +#include "logic.h" +#include "memoryctrl.h" +#include "parameter.h" + +/* overview of MC models: + * McPAT memory controllers are modeled according to large number of industrial data points. + * The Basic memory controller architecture is base on the Synopsis designs + * (DesignWare DDR2/DDR3-Lite memory controllers and DDR2/DDR3-Lite protocol controllers) + * as in Cadence ChipEstimator Tool + * + * An MC has 3 parts as shown in this design. McPAT models both high performance MC + * based on Niagara processor designs and curving and low power MC based on data points in + * Cadence ChipEstimator Tool. + * + * The frontend is modeled analytically, the backend is modeled empirically according to + * DDR2/DDR3-Lite protocol controllers in Cadence ChipEstimator Tool + * The PHY is modeled based on + * "A 100mW 9.6Gb/s Transceiver in 90nm CMOS for next-generation memory interfaces ," ISSCC 2006, + * and A 14mW 6.25Gb/s Transceiver in 90nm CMOS for Serial Chip-to-Chip Communication," ISSCC 2007 + * + * In Cadence ChipEstimator Tool there are two types of memory controllers: the full memory controllers + * that includes the frontend as the DesignWare DDR2/DDR3-Lite memory controllers and the backend only + * memory controllers as the DDR2/DDR3-Lite protocol controllers (except DesignWare DDR2/DDR3-Lite memory + * controllers, all memory controller IP in Cadence ChipEstimator Tool are backend memory controllers such as + * DDRC 1600A and DDRC 800A). Thus,to some extend the area and power difference between DesignWare + * DDR2/DDR3-Lite memory controllers and DDR2/DDR3-Lite protocol controllers can be an estimation to the + * frontend power and area, which is very close the analitically modeled results of the frontend for Niagara2@65nm + * + */ + +MCBackend::MCBackend(InputParameter* interface_ip_, const MCParam & mcp_, enum MemoryCtrl_type mc_type_) +:l_ip(*interface_ip_), + mc_type(mc_type_), + mcp(mcp_) +{ + + local_result = init_interface(&l_ip); + compute(); + +} + + +void MCBackend::compute() +{ + //double max_row_addr_width = 20.0;//Current address 12~18bits + double C_MCB, mc_power, backend_dyn, backend_gates;//, refresh_period,refresh_freq;//Equivalent per bit Cap for backend, + double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio(); + double NMOS_sizing, PMOS_sizing; + + if (mc_type == MC) + { + if (mcp.type == 0) + { + //area = (2.2927*log(peakDataTransferRate)-14.504)*memDataWidth/144.0*(l_ip.F_sz_um/0.09); + area.set_area((2.7927*log(mcp.peakDataTransferRate*2)-19.862)/2.0*mcp.dataBusWidth/128.0*(l_ip.F_sz_um/0.09)*mcp.num_channels*1e6);//um^2 + //assuming the approximately same scaling factor as seen in processors. + //C_MCB=0.2/1.3/1.3/266/64/0.09*g_ip.F_sz_um;//based on AMD Geode processor which has a very basic mc on chip. + //C_MCB = 1.6/200/1e6/144/1.2/1.2*g_ip.F_sz_um/0.19;//Based on Niagara power numbers.The base power (W) is divided by device frequency and vdd and scale to target process. + //mc_power = 0.0291*2;//29.1mW@200MHz @130nm From Power Analysis of SystemLevel OnChip Communication Architectures by Lahiri et + mc_power = 4.32*0.1;//4.32W@1GhzMHz @65nm Cadence ChipEstimator 10% for backend + C_MCB = mc_power/1e9/72/1.1/1.1*l_ip.F_sz_um/0.065; + power_t.readOp.dynamic = C_MCB*g_tp.peri_global.Vdd*g_tp.peri_global.Vdd*(mcp.dataBusWidth/*+mcp.addressBusWidth*/);//per access energy in memory controller + power_t.readOp.leakage = area.get_area()/2 *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(g_tp.min_w_nmos_, g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd;//unit W + power_t.readOp.gate_leakage = area.get_area()/2 *(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(g_tp.min_w_nmos_, g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd;//unit W + + } + else + { NMOS_sizing = g_tp.min_w_nmos_; + PMOS_sizing = g_tp.min_w_nmos_*pmos_to_nmos_sizing_r; + area.set_area(0.15*mcp.dataBusWidth/72.0*(l_ip.F_sz_um/0.065)* (l_ip.F_sz_um/0.065)*mcp.num_channels*1e6);//um^2 + backend_dyn = 0.9e-9/800e6*mcp.clockRate/12800*mcp.peakDataTransferRate*mcp.dataBusWidth/72.0*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(l_ip.F_sz_nm/65.0);//Average on DDR2/3 protocol controller and DDRC 1600/800A in Cadence ChipEstimate + //Scaling to technology and DIMM feature. The base IP support DDR3-1600(PC3 12800) + backend_gates = 50000*mcp.dataBusWidth/64.0;//5000 is from Cadence ChipEstimator + + power_t.readOp.dynamic = backend_dyn; + power_t.readOp.leakage = (backend_gates)*cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W + power_t.readOp.gate_leakage = (backend_gates)*cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W + + } + } + else + {//skip old model + cout<<"Unknown memory controllers"<<endl;exit(0); + area.set_area(0.243*mcp.dataBusWidth/8);//area based on Cadence ChipEstimator for 8bit bus + //mc_power = 4.32*0.1;//4.32W@1GhzMHz @65nm Cadence ChipEstimator 10% for backend + C_MCB = mc_power/1e9/72/1.1/1.1*l_ip.F_sz_um/0.065; + power_t.readOp.leakage = area.get_area()/2 *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(g_tp.min_w_nmos_, g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd;//unit W + power_t.readOp.gate_leakage = area.get_area()/2 *(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(g_tp.min_w_nmos_, g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd;//unit W + power_t.readOp.dynamic *= 1.2; + power_t.readOp.leakage *= 1.2; + power_t.readOp.gate_leakage *= 1.2; + //flash controller has about 20% more backend power since BCH ECC in flash is complex and power hungry + } + double long_channel_device_reduction = longer_channel_device_reduction(Uncore_device); + power_t.readOp.longer_channel_leakage = power_t.readOp.leakage * long_channel_device_reduction; +} + +void MCBackend::computeEnergy(bool is_tdp) +{ + //backend uses internal data buswidth + if (is_tdp) + { + //init stats for Peak + stats_t.readAc.access = 0.5*mcp.num_channels; + stats_t.writeAc.access = 0.5*mcp.num_channels; + tdp_stats = stats_t; + } + else + { + //init stats for runtime power (RTP) + stats_t.readAc.access = mcp.reads; + stats_t.writeAc.access = mcp.writes; + tdp_stats = stats_t; + } + if (is_tdp) + { + power = power_t; + power.readOp.dynamic = (stats_t.readAc.access + stats_t.writeAc.access)*power_t.readOp.dynamic; + + } + else + { + rt_power.readOp.dynamic = (stats_t.readAc.access + stats_t.writeAc.access)*mcp.llcBlockSize*8.0/mcp.dataBusWidth*power_t.readOp.dynamic; + rt_power = rt_power + power_t*pppm_lkg; + rt_power.readOp.dynamic = rt_power.readOp.dynamic + power.readOp.dynamic*0.1*mcp.clockRate*mcp.num_mcs*mcp.executionTime; + //Assume 10% of peak power is consumed by routine job including memory refreshing and scrubbing + } +} + + +MCPHY::MCPHY(InputParameter* interface_ip_, const MCParam & mcp_, enum MemoryCtrl_type mc_type_) +:l_ip(*interface_ip_), + mc_type(mc_type_), + mcp(mcp_) +{ + + local_result = init_interface(&l_ip); + compute(); +} + +void MCPHY::compute() +{ + //PHY uses internal data buswidth but the actuall off-chip datawidth is 64bits + ecc + double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio() ; + /* + * according to "A 100mW 9.6Gb/s Transceiver in 90nm CMOS for next-generation memory interfaces ," ISSCC 2006; + * From Cadence ChipEstimator for normal I/O around 0.4~0.8 mW/Gb/s + */ + double power_per_gb_per_s, phy_dyn,phy_gates, NMOS_sizing, PMOS_sizing; + + if (mc_type == MC) + { + if (mcp.type == 0) + { + power_per_gb_per_s = mcp.LVDS? 0.01:0.04; + //Based on die photos from Niagara 1 and 2. + //TODO merge this into undifferentiated core.PHY only achieves square root of the ideal scaling. + //area = (6.4323*log(peakDataTransferRate)-34.76)*memDataWidth/128.0*(l_ip.F_sz_um/0.09); + area.set_area((6.4323*log(mcp.peakDataTransferRate*2)-48.134)*mcp.dataBusWidth/128.0*(l_ip.F_sz_um/0.09)*mcp.num_channels*1e6/2);//TODO:/2 + //This is from curve fitting based on Niagara 1 and 2's PHY die photo. + //This is power not energy, 10mw/Gb/s @90nm for each channel and scaling down + //power.readOp.dynamic = 0.02*memAccesses*llcBlocksize*8;//change from Bytes to bits. + power_t.readOp.dynamic = power_per_gb_per_s*sqrt(l_ip.F_sz_um/0.09)*g_tp.peri_global.Vdd/1.2*g_tp.peri_global.Vdd/1.2; + power_t.readOp.leakage = area.get_area()/2 *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(g_tp.min_w_nmos_, g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd;//unit W + power_t.readOp.gate_leakage = area.get_area()/2 *(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(g_tp.min_w_nmos_, g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd;//unit W + + } + else + { + NMOS_sizing = g_tp.min_w_nmos_; + PMOS_sizing = g_tp.min_w_nmos_*pmos_to_nmos_sizing_r; + //Designware/synopsis 16bit DDR3 PHY is 1.3mm (WITH IOs) at 40nm for upto DDR3 2133 (PC3 17066) + double non_IO_percentage = 0.2; + area.set_area(1.3*non_IO_percentage/2133.0e6*mcp.clockRate/17066*mcp.peakDataTransferRate*mcp.dataBusWidth/16.0*(l_ip.F_sz_um/0.040)* (l_ip.F_sz_um/0.040)*mcp.num_channels*1e6);//um^2 + phy_gates = 200000*mcp.dataBusWidth/64.0; + power_per_gb_per_s = 0.01; + //This is power not energy, 10mw/Gb/s @90nm for each channel and scaling down + power_t.readOp.dynamic = power_per_gb_per_s*(l_ip.F_sz_um/0.09)*g_tp.peri_global.Vdd/1.2*g_tp.peri_global.Vdd/1.2; + power_t.readOp.leakage = (mcp.withPHY? phy_gates:0)*cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W + power_t.readOp.gate_leakage = (mcp.withPHY? phy_gates:0)*cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W + } + + } + else + { + area.set_area(0.4e6/2*mcp.dataBusWidth/8);//area based on Cadence ChipEstimator for 8bit bus + } + +// double phy_factor = (int)ceil(mcp.dataBusWidth/72.0);//Previous phy power numbers are based on 72 bit DIMM interface +// power_t.readOp.dynamic *= phy_factor; +// power_t.readOp.leakage *= phy_factor; +// power_t.readOp.gate_leakage *= phy_factor; + + double long_channel_device_reduction = longer_channel_device_reduction(Uncore_device); + power_t.readOp.longer_channel_leakage = power_t.readOp.leakage * long_channel_device_reduction; +} + + +void MCPHY::computeEnergy(bool is_tdp) +{ + if (is_tdp) + { + //init stats for Peak + stats_t.readAc.access = 0.5*mcp.num_channels; //time share on buses + stats_t.writeAc.access = 0.5*mcp.num_channels; + tdp_stats = stats_t; + } + else + { + //init stats for runtime power (RTP) + stats_t.readAc.access = mcp.reads; + stats_t.writeAc.access = mcp.writes; + tdp_stats = stats_t; + } + + if (is_tdp) + { + double data_transfer_unit = (mc_type == MC)? 72:16;/*DIMM data width*/ + power = power_t; + power.readOp.dynamic = power.readOp.dynamic * (mcp.peakDataTransferRate*8*1e6/1e9/*change to Gbs*/)*mcp.dataBusWidth/data_transfer_unit*mcp.num_channels/mcp.clockRate; + // divide by clock rate is for match the final computation where *clock is used + //(stats_t.readAc.access*power_t.readOp.dynamic+ +// stats_t.writeAc.access*power_t.readOp.dynamic); + + } + else + { + rt_power = power_t; +// rt_power.readOp.dynamic = (stats_t.readAc.access*power_t.readOp.dynamic+ +// stats_t.writeAc.access*power_t.readOp.dynamic); + + rt_power.readOp.dynamic=power_t.readOp.dynamic*(stats_t.readAc.access + stats_t.writeAc.access)*(mcp.llcBlockSize)*8/1e9/mcp.executionTime*(mcp.executionTime); + rt_power.readOp.dynamic = rt_power.readOp.dynamic + power.readOp.dynamic*0.1*mcp.clockRate*mcp.num_mcs*mcp.executionTime; + } +} + +MCFrontEnd::MCFrontEnd(ParseXML *XML_interface,InputParameter* interface_ip_, const MCParam & mcp_, enum MemoryCtrl_type mc_type_) +:XML(XML_interface), + interface_ip(*interface_ip_), + mc_type(mc_type_), + mcp(mcp_), + MC_arb(0), + frontendBuffer(0), + readBuffer(0), + writeBuffer(0) +{ + /* All computations are for a single MC + * + */ + + int tag, data; + bool is_default =true;//indication for default setup + + /* MC frontend engine channels share the same engines but logically partitioned + * For all hardware inside MC. different channels do not share resources. + * TODO: add docodeing/mux stage to steer memory requests to different channels. + */ + + //memory request reorder buffer + tag = mcp.addressBusWidth + EXTRA_TAG_BITS + mcp.opcodeW; + data = int(ceil((XML->sys.physical_address_width + mcp.opcodeW)/8.0)); + interface_ip.cache_sz = data*XML->sys.mc.req_window_size_per_channel; + interface_ip.line_sz = data; + interface_ip.assoc = 0; + interface_ip.nbanks = 1; + interface_ip.out_w = interface_ip.line_sz*8; + interface_ip.specific_tag = 1; + interface_ip.tag_w = tag; + interface_ip.access_mode = 0; + interface_ip.throughput = 1.0/mcp.clockRate; + interface_ip.latency = 1.0/mcp.clockRate; + interface_ip.is_cache = true; + interface_ip.pure_cam = false; + interface_ip.pure_ram = false; + interface_ip.obj_func_dyn_energy = 0; + interface_ip.obj_func_dyn_power = 0; + interface_ip.obj_func_leak_power = 0; + interface_ip.obj_func_cycle_t = 1; + interface_ip.num_rw_ports = 0; + interface_ip.num_rd_ports = XML->sys.mc.memory_channels_per_mc; + interface_ip.num_wr_ports = interface_ip.num_rd_ports; + interface_ip.num_se_rd_ports = 0; + interface_ip.num_search_ports = XML->sys.mc.memory_channels_per_mc; + frontendBuffer = new ArrayST(&interface_ip, "MC ReorderBuffer", Uncore_device); + frontendBuffer->area.set_area(frontendBuffer->area.get_area()+ frontendBuffer->local_result.area*XML->sys.mc.memory_channels_per_mc); + area.set_area(area.get_area()+ frontendBuffer->local_result.area*XML->sys.mc.memory_channels_per_mc); + + //selection and arbitration logic + MC_arb = new selection_logic(is_default, XML->sys.mc.req_window_size_per_channel,1,&interface_ip, Uncore_device); + + //read buffers. + data = (int)ceil(mcp.dataBusWidth/8.0);//Support key words first operation //8 means converting bit to Byte + interface_ip.cache_sz = data*XML->sys.mc.IO_buffer_size_per_channel;//*llcBlockSize; + interface_ip.line_sz = data; + interface_ip.assoc = 1; + interface_ip.nbanks = 1; + interface_ip.out_w = interface_ip.line_sz*8; + interface_ip.access_mode = 1; + interface_ip.throughput = 1.0/mcp.clockRate; + interface_ip.latency = 1.0/mcp.clockRate; + interface_ip.is_cache = false; + interface_ip.pure_cam = false; + interface_ip.pure_ram = true; + interface_ip.obj_func_dyn_energy = 0; + interface_ip.obj_func_dyn_power = 0; + interface_ip.obj_func_leak_power = 0; + interface_ip.obj_func_cycle_t = 1; + interface_ip.num_rw_ports = 0;//XML->sys.mc.memory_channels_per_mc*2>2?2:XML->sys.mc.memory_channels_per_mc*2; + interface_ip.num_rd_ports = XML->sys.mc.memory_channels_per_mc; + interface_ip.num_wr_ports = interface_ip.num_rd_ports; + interface_ip.num_se_rd_ports = 0; + readBuffer = new ArrayST(&interface_ip, "MC ReadBuffer", Uncore_device); + readBuffer->area.set_area(readBuffer->area.get_area()+ readBuffer->local_result.area*XML->sys.mc.memory_channels_per_mc); + area.set_area(area.get_area()+ readBuffer->local_result.area*XML->sys.mc.memory_channels_per_mc); + + //write buffer + data = (int)ceil(mcp.dataBusWidth/8.0);//Support key words first operation //8 means converting bit to Byte + interface_ip.cache_sz = data*XML->sys.mc.IO_buffer_size_per_channel;//*llcBlockSize; + interface_ip.line_sz = data; + interface_ip.assoc = 1; + interface_ip.nbanks = 1; + interface_ip.out_w = interface_ip.line_sz*8; + interface_ip.access_mode = 0; + interface_ip.throughput = 1.0/mcp.clockRate; + interface_ip.latency = 1.0/mcp.clockRate; + interface_ip.obj_func_dyn_energy = 0; + interface_ip.obj_func_dyn_power = 0; + interface_ip.obj_func_leak_power = 0; + interface_ip.obj_func_cycle_t = 1; + interface_ip.num_rw_ports = 0; + interface_ip.num_rd_ports = XML->sys.mc.memory_channels_per_mc; + interface_ip.num_wr_ports = interface_ip.num_rd_ports; + interface_ip.num_se_rd_ports = 0; + writeBuffer = new ArrayST(&interface_ip, "MC writeBuffer", Uncore_device); + writeBuffer->area.set_area(writeBuffer->area.get_area()+ writeBuffer->local_result.area*XML->sys.mc.memory_channels_per_mc); + area.set_area(area.get_area()+ writeBuffer->local_result.area*XML->sys.mc.memory_channels_per_mc); +} + +void MCFrontEnd::computeEnergy(bool is_tdp) +{ + if (is_tdp) + { + //init stats for Peak + frontendBuffer->stats_t.readAc.access = frontendBuffer->l_ip.num_search_ports; + frontendBuffer->stats_t.writeAc.access = frontendBuffer->l_ip.num_wr_ports; + frontendBuffer->tdp_stats = frontendBuffer->stats_t; + + readBuffer->stats_t.readAc.access = readBuffer->l_ip.num_rd_ports*mcp.frontend_duty_cycle; + readBuffer->stats_t.writeAc.access = readBuffer->l_ip.num_wr_ports*mcp.frontend_duty_cycle; + readBuffer->tdp_stats = readBuffer->stats_t; + + writeBuffer->stats_t.readAc.access = writeBuffer->l_ip.num_rd_ports*mcp.frontend_duty_cycle; + writeBuffer->stats_t.writeAc.access = writeBuffer->l_ip.num_wr_ports*mcp.frontend_duty_cycle; + writeBuffer->tdp_stats = writeBuffer->stats_t; + + } + else + { + //init stats for runtime power (RTP) + frontendBuffer->stats_t.readAc.access = XML->sys.mc.memory_reads *mcp.llcBlockSize*8.0/mcp.dataBusWidth*mcp.dataBusWidth/72; + //For each channel, each memory word need to check the address data to achieve best scheduling results. + //and this need to be done on all physical DIMMs in each logical memory DIMM *mcp.dataBusWidth/72 + frontendBuffer->stats_t.writeAc.access = XML->sys.mc.memory_writes*mcp.llcBlockSize*8.0/mcp.dataBusWidth*mcp.dataBusWidth/72; + frontendBuffer->rtp_stats = frontendBuffer->stats_t; + + readBuffer->stats_t.readAc.access = XML->sys.mc.memory_reads*mcp.llcBlockSize*8.0/mcp.dataBusWidth;//support key word first + readBuffer->stats_t.writeAc.access = XML->sys.mc.memory_reads*mcp.llcBlockSize*8.0/mcp.dataBusWidth;//support key word first + readBuffer->rtp_stats = readBuffer->stats_t; + + writeBuffer->stats_t.readAc.access = XML->sys.mc.memory_writes*mcp.llcBlockSize*8.0/mcp.dataBusWidth; + writeBuffer->stats_t.writeAc.access = XML->sys.mc.memory_writes*mcp.llcBlockSize*8.0/mcp.dataBusWidth; + writeBuffer->rtp_stats = writeBuffer->stats_t; + } + + frontendBuffer->power_t.reset(); + readBuffer->power_t.reset(); + writeBuffer->power_t.reset(); + +// frontendBuffer->power_t.readOp.dynamic += (frontendBuffer->stats_t.readAc.access* +// (frontendBuffer->local_result.power.searchOp.dynamic+frontendBuffer->local_result.power.readOp.dynamic)+ +// frontendBuffer->stats_t.writeAc.access*frontendBuffer->local_result.power.writeOp.dynamic); + + frontendBuffer->power_t.readOp.dynamic += (frontendBuffer->stats_t.readAc.access + + frontendBuffer->stats_t.writeAc.access)*frontendBuffer->local_result.power.searchOp.dynamic + + frontendBuffer->stats_t.readAc.access * frontendBuffer->local_result.power.readOp.dynamic + + frontendBuffer->stats_t.writeAc.access*frontendBuffer->local_result.power.writeOp.dynamic; + + readBuffer->power_t.readOp.dynamic += (readBuffer->stats_t.readAc.access* + readBuffer->local_result.power.readOp.dynamic+ + readBuffer->stats_t.writeAc.access*readBuffer->local_result.power.writeOp.dynamic); + writeBuffer->power_t.readOp.dynamic += (writeBuffer->stats_t.readAc.access* + writeBuffer->local_result.power.readOp.dynamic+ + writeBuffer->stats_t.writeAc.access*writeBuffer->local_result.power.writeOp.dynamic); + + if (is_tdp) + { + power = power + frontendBuffer->power_t + readBuffer->power_t + writeBuffer->power_t + + (frontendBuffer->local_result.power + + readBuffer->local_result.power + + writeBuffer->local_result.power)*pppm_lkg; + + } + else + { + rt_power = rt_power + frontendBuffer->power_t + readBuffer->power_t + writeBuffer->power_t + + (frontendBuffer->local_result.power + + readBuffer->local_result.power + + writeBuffer->local_result.power)*pppm_lkg; + rt_power.readOp.dynamic = rt_power.readOp.dynamic + power.readOp.dynamic*0.1*mcp.clockRate*mcp.num_mcs*mcp.executionTime; + } +} + +void MCFrontEnd::displayEnergy(uint32_t indent,int plevel,bool is_tdp) +{ + string indent_str(indent, ' '); + string indent_str_next(indent+2, ' '); + + if (is_tdp) + { + cout << indent_str << "Front End ROB:" << endl; + cout << indent_str_next << "Area = " << frontendBuffer->area.get_area()*1e-6<< " mm^2" << endl; + cout << indent_str_next << "Peak Dynamic = " << frontendBuffer->power.readOp.dynamic*mcp.clockRate << " W" << endl; + cout << indent_str_next << "Subthreshold Leakage = " << frontendBuffer->power.readOp.leakage <<" W" << endl; + cout << indent_str_next << "Gate Leakage = " << frontendBuffer->power.readOp.gate_leakage << " W" << endl; + cout << indent_str_next << "Runtime Dynamic = " << frontendBuffer->rt_power.readOp.dynamic/mcp.executionTime << " W" << endl; + + cout <<endl; + cout << indent_str<< "Read Buffer:" << endl; + cout << indent_str_next << "Area = " << readBuffer->area.get_area()*1e-6 << " mm^2" << endl; + cout << indent_str_next << "Peak Dynamic = " << readBuffer->power.readOp.dynamic*mcp.clockRate << " W" << endl; + cout << indent_str_next << "Subthreshold Leakage = " << readBuffer->power.readOp.leakage << " W" << endl; + cout << indent_str_next << "Gate Leakage = " << readBuffer->power.readOp.gate_leakage << " W" << endl; + cout << indent_str_next << "Runtime Dynamic = " << readBuffer->rt_power.readOp.dynamic/mcp.executionTime << " W" << endl; + cout <<endl; + cout << indent_str << "Write Buffer:" << endl; + cout << indent_str_next << "Area = " << writeBuffer->area.get_area() *1e-6 << " mm^2" << endl; + cout << indent_str_next << "Peak Dynamic = " << writeBuffer->power.readOp.dynamic*mcp.clockRate << " W" << endl; + cout << indent_str_next << "Subthreshold Leakage = " << writeBuffer->power.readOp.leakage << " W" << endl; + cout << indent_str_next << "Gate Leakage = " << writeBuffer->power.readOp.gate_leakage << " W" << endl; + cout << indent_str_next << "Runtime Dynamic = " << writeBuffer->rt_power.readOp.dynamic/mcp.executionTime << " W" << endl; + cout <<endl; + } + else + { + cout << indent_str << "Front End ROB:" << endl; + cout << indent_str_next << "Area = " << frontendBuffer->area.get_area()*1e-6<< " mm^2" << endl; + cout << indent_str_next << "Peak Dynamic = " << frontendBuffer->rt_power.readOp.dynamic*mcp.clockRate << " W" << endl; + cout << indent_str_next << "Subthreshold Leakage = " << frontendBuffer->rt_power.readOp.leakage <<" W" << endl; + cout << indent_str_next << "Gate Leakage = " << frontendBuffer->rt_power.readOp.gate_leakage << " W" << endl; + cout <<endl; + cout << indent_str<< "Read Buffer:" << endl; + cout << indent_str_next << "Area = " << readBuffer->area.get_area()*1e-6 << " mm^2" << endl; + cout << indent_str_next << "Peak Dynamic = " << readBuffer->rt_power.readOp.dynamic*mcp.clockRate << " W" << endl; + cout << indent_str_next << "Subthreshold Leakage = " << readBuffer->rt_power.readOp.leakage << " W" << endl; + cout << indent_str_next << "Gate Leakage = " << readBuffer->rt_power.readOp.gate_leakage << " W" << endl; + cout <<endl; + cout << indent_str << "Write Buffer:" << endl; + cout << indent_str_next << "Area = " << writeBuffer->area.get_area() *1e-6 << " mm^2" << endl; + cout << indent_str_next << "Peak Dynamic = " << writeBuffer->rt_power.readOp.dynamic*mcp.clockRate << " W" << endl; + cout << indent_str_next << "Subthreshold Leakage = " << writeBuffer->rt_power.readOp.leakage << " W" << endl; + cout << indent_str_next << "Gate Leakage = " << writeBuffer->rt_power.readOp.gate_leakage << " W" << endl; + } + +} + + +MemoryController::MemoryController(ParseXML *XML_interface,InputParameter* interface_ip_, enum MemoryCtrl_type mc_type_) +:XML(XML_interface), + interface_ip(*interface_ip_), + mc_type(mc_type_), + frontend(0), + transecEngine(0), + PHY(0), + pipeLogic(0) +{ + /* All computations are for a single MC + * + */ + interface_ip.wire_is_mat_type = 2; + interface_ip.wire_os_mat_type = 2; + interface_ip.wt =Global; + set_mc_param(); + frontend = new MCFrontEnd(XML, &interface_ip, mcp, mc_type); + area.set_area(area.get_area()+ frontend->area.get_area()); + transecEngine = new MCBackend(&interface_ip, mcp, mc_type); + area.set_area(area.get_area()+ transecEngine->area.get_area()); + if (mcp.type==0 || (mcp.type==1&&mcp.withPHY)) + { + PHY = new MCPHY(&interface_ip, mcp, mc_type); + area.set_area(area.get_area()+ PHY->area.get_area()); + } + //+++++++++Transaction engine +++++++++++++++++ ////TODO needs better numbers, Run the RTL code from OpenSparc. +// transecEngine.initialize(&interface_ip); +// transecEngine.peakDataTransferRate = XML->sys.mem.peak_transfer_rate; +// transecEngine.memDataWidth = dataBusWidth; +// transecEngine.memRank = XML->sys.mem.number_ranks; +// //transecEngine.memAccesses=XML->sys.mc.memory_accesses; +// //transecEngine.llcBlocksize=llcBlockSize; +// transecEngine.compute(); +// transecEngine.area.set_area(XML->sys.mc.memory_channels_per_mc*transecEngine.area.get_area()) ; +// area.set_area(area.get_area()+ transecEngine.area.get_area()); +// ///cout<<"area="<<area<<endl; +//// +// //++++++++++++++PHY ++++++++++++++++++++++++++ //TODO needs better numbers +// PHY.initialize(&interface_ip); +// PHY.peakDataTransferRate = XML->sys.mem.peak_transfer_rate; +// PHY.memDataWidth = dataBusWidth; +// //PHY.memAccesses=PHY.peakDataTransferRate;//this is the max power +// //PHY.llcBlocksize=llcBlockSize; +// PHY.compute(); +// PHY.area.set_area(XML->sys.mc.memory_channels_per_mc*PHY.area.get_area()) ; +// area.set_area(area.get_area()+ PHY.area.get_area()); + ///cout<<"area="<<area<<endl; +// +// interface_ip.pipeline_stages = 5;//normal memory controller has five stages in the pipeline. +// interface_ip.per_stage_vector = addressBusWidth + XML->sys.core[0].opcode_width + dataBusWidth; +// pipeLogic = new pipeline(is_default, &interface_ip); +// //pipeLogic.init_pipeline(is_default, &interface_ip); +// pipeLogic->compute_pipeline(); +// area.set_area(area.get_area()+ pipeLogic->area.get_area()*1e-6); +// area.set_area((area.get_area()+mc_area*1e-6)*1.1);//placement and routing overhead +// +// +//// //clock +//// clockNetwork.init_wire_external(is_default, &interface_ip); +//// clockNetwork.clk_area =area*1.1;//10% of placement overhead. rule of thumb +//// clockNetwork.end_wiring_level =5;//toplevel metal +//// clockNetwork.start_wiring_level =5;//toplevel metal +//// clockNetwork.num_regs = pipeLogic.tot_stage_vector; +//// clockNetwork.optimize_wire(); + + +} +void MemoryController::computeEnergy(bool is_tdp) +{ + + frontend->computeEnergy(is_tdp); + transecEngine->computeEnergy(is_tdp); + if (mcp.type==0 || (mcp.type==1&&mcp.withPHY)) + { + PHY->computeEnergy(is_tdp); + } + if (is_tdp) + { + power = power + frontend->power + transecEngine->power; + if (mcp.type==0 || (mcp.type==1&&mcp.withPHY)) + { + power = power + PHY->power; + } + } + else + { + rt_power = rt_power + frontend->rt_power + transecEngine->rt_power; + if (mcp.type==0 || (mcp.type==1&&mcp.withPHY)) + { + rt_power = rt_power + PHY->rt_power; + } + } +} + +void MemoryController::displayEnergy(uint32_t indent,int plevel,bool is_tdp) +{ + string indent_str(indent, ' '); + string indent_str_next(indent+2, ' '); + bool long_channel = XML->sys.longer_channel_device; + + if (is_tdp) + { + cout << "Memory Controller:" << endl; + cout << indent_str<< "Area = " << area.get_area()*1e-6<< " mm^2" << endl; + cout << indent_str << "Peak Dynamic = " << power.readOp.dynamic*mcp.clockRate << " W" << endl; + cout << indent_str<< "Subthreshold Leakage = " + << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl; + //cout << indent_str<< "Subthreshold Leakage = " << power.readOp.longer_channel_leakage <<" W" << endl; + cout << indent_str<< "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl; + cout << indent_str << "Runtime Dynamic = " << rt_power.readOp.dynamic/mcp.executionTime << " W" << endl; + cout<<endl; + cout << indent_str << "Front End Engine:" << endl; + cout << indent_str_next << "Area = " << frontend->area.get_area()*1e-6<< " mm^2" << endl; + cout << indent_str_next << "Peak Dynamic = " << frontend->power.readOp.dynamic*mcp.clockRate << " W" << endl; + cout << indent_str_next << "Subthreshold Leakage = " + << (long_channel? frontend->power.readOp.longer_channel_leakage:frontend->power.readOp.leakage) <<" W" << endl; + cout << indent_str_next << "Gate Leakage = " << frontend->power.readOp.gate_leakage << " W" << endl; + cout << indent_str_next << "Runtime Dynamic = " << frontend->rt_power.readOp.dynamic/mcp.executionTime << " W" << endl; + cout <<endl; + if (plevel >2){ + frontend->displayEnergy(indent+4,is_tdp); + } + cout << indent_str << "Transaction Engine:" << endl; + cout << indent_str_next << "Area = " << transecEngine->area.get_area()*1e-6<< " mm^2" << endl; + cout << indent_str_next << "Peak Dynamic = " << transecEngine->power.readOp.dynamic*mcp.clockRate << " W" << endl; + cout << indent_str_next << "Subthreshold Leakage = " + << (long_channel? transecEngine->power.readOp.longer_channel_leakage:transecEngine->power.readOp.leakage) <<" W" << endl; + cout << indent_str_next << "Gate Leakage = " << transecEngine->power.readOp.gate_leakage << " W" << endl; + cout << indent_str_next << "Runtime Dynamic = " << transecEngine->rt_power.readOp.dynamic/mcp.executionTime << " W" << endl; + cout <<endl; + if (mcp.type==0 || (mcp.type==1&&mcp.withPHY)) + { + cout << indent_str << "PHY:" << endl; + cout << indent_str_next << "Area = " << PHY->area.get_area()*1e-6<< " mm^2" << endl; + cout << indent_str_next << "Peak Dynamic = " << PHY->power.readOp.dynamic*mcp.clockRate << " W" << endl; + cout << indent_str_next << "Subthreshold Leakage = " + << (long_channel? PHY->power.readOp.longer_channel_leakage:PHY->power.readOp.leakage) <<" W" << endl; + cout << indent_str_next << "Gate Leakage = " << PHY->power.readOp.gate_leakage << " W" << endl; + cout << indent_str_next << "Runtime Dynamic = " << PHY->rt_power.readOp.dynamic/mcp.executionTime << " W" << endl; + cout <<endl; + } + } + else + { + cout << "Memory Controller:" << endl; + cout << indent_str_next << "Area = " << area.get_area()*1e-6<< " mm^2" << endl; + cout << indent_str_next << "Peak Dynamic = " << power.readOp.dynamic*mcp.clockRate << " W" << endl; + cout << indent_str_next << "Subthreshold Leakage = " << power.readOp.leakage <<" W" << endl; + cout << indent_str_next << "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl; + cout<<endl; + } + +} + +void MemoryController::set_mc_param() +{ + + if (mc_type==MC) + { + mcp.clockRate =XML->sys.mc.mc_clock*2;//DDR double pumped + mcp.clockRate *= 1e6; + mcp.executionTime = XML->sys.total_cycles/(XML->sys.target_core_clockrate*1e6); + + mcp.llcBlockSize =int(ceil(XML->sys.mc.llc_line_length/8.0))+XML->sys.mc.llc_line_length;//ecc overhead + mcp.dataBusWidth =int(ceil(XML->sys.mc.databus_width/8.0)) + XML->sys.mc.databus_width; + mcp.addressBusWidth =int(ceil(XML->sys.mc.addressbus_width));//XML->sys.physical_address_width; + mcp.opcodeW =16; + mcp.num_mcs = XML->sys.mc.number_mcs; + mcp.num_channels = XML->sys.mc.memory_channels_per_mc; + mcp.reads = XML->sys.mc.memory_reads; + mcp.writes = XML->sys.mc.memory_writes; + //+++++++++Transaction engine +++++++++++++++++ ////TODO needs better numbers, Run the RTL code from OpenSparc. + mcp.peakDataTransferRate = XML->sys.mc.peak_transfer_rate; + mcp.memRank = XML->sys.mc.number_ranks; + //++++++++++++++PHY ++++++++++++++++++++++++++ //TODO needs better numbers + //PHY.memAccesses=PHY.peakDataTransferRate;//this is the max power + //PHY.llcBlocksize=llcBlockSize; + mcp.frontend_duty_cycle = 0.5;//for max power, the actual off-chip links is bidirectional but time shared + mcp.LVDS = XML->sys.mc.LVDS; + mcp.type = XML->sys.mc.type; + mcp.withPHY = XML->sys.mc.withPHY; + } +// else if (mc_type==FLASHC) +// { +// mcp.clockRate =XML->sys.flashc.mc_clock*2;//DDR double pumped +// mcp.clockRate *= 1e6; +// mcp.executionTime = XML->sys.total_cycles/(XML->sys.target_core_clockrate*1e6); +// +// mcp.llcBlockSize =int(ceil(XML->sys.flashc.llc_line_length/8.0))+XML->sys.flashc.llc_line_length;//ecc overhead +// mcp.dataBusWidth =int(ceil(XML->sys.flashc.databus_width/8.0)) + XML->sys.flashc.databus_width; +// mcp.addressBusWidth =int(ceil(XML->sys.flashc.addressbus_width));//XML->sys.physical_address_width; +// mcp.opcodeW =16; +// mcp.num_mcs = XML->sys.flashc.number_mcs; +// mcp.num_channels = XML->sys.flashc.memory_channels_per_mc; +// mcp.reads = XML->sys.flashc.memory_reads; +// mcp.writes = XML->sys.flashc.memory_writes; +// //+++++++++Transaction engine +++++++++++++++++ ////TODO needs better numbers, Run the RTL code from OpenSparc. +// mcp.peakDataTransferRate = XML->sys.flashc.peak_transfer_rate; +// mcp.memRank = XML->sys.flashc.number_ranks; +// //++++++++++++++PHY ++++++++++++++++++++++++++ //TODO needs better numbers +// //PHY.memAccesses=PHY.peakDataTransferRate;//this is the max power +// //PHY.llcBlocksize=llcBlockSize; +// mcp.frontend_duty_cycle = 0.5;//for max power, the actual off-chip links is bidirectional but time shared +// mcp.LVDS = XML->sys.flashc.LVDS; +// mcp.type = XML->sys.flashc.type; +// } + else + { + cout<<"Unknown memory controller type: neither DRAM controller nor Flash controller" <<endl; + exit(0); + } +} + +MCFrontEnd ::~MCFrontEnd(){ + + if(MC_arb) {delete MC_arb; MC_arb = 0;} + if(frontendBuffer) {delete frontendBuffer; frontendBuffer = 0;} + if(readBuffer) {delete readBuffer; readBuffer = 0;} + if(writeBuffer) {delete writeBuffer; writeBuffer = 0;} +} + +MemoryController ::~MemoryController(){ + + if(frontend) {delete frontend; frontend = 0;} + if(transecEngine) {delete transecEngine; transecEngine = 0;} + if(PHY) {delete PHY; PHY = 0;} + if(pipeLogic) {delete pipeLogic; pipeLogic = 0;} +} + |