diff options
Diffstat (limited to 'ext/pybind11/docs/upgrade.rst')
-rw-r--r-- | ext/pybind11/docs/upgrade.rst | 404 |
1 files changed, 404 insertions, 0 deletions
diff --git a/ext/pybind11/docs/upgrade.rst b/ext/pybind11/docs/upgrade.rst new file mode 100644 index 000000000..3f5697391 --- /dev/null +++ b/ext/pybind11/docs/upgrade.rst @@ -0,0 +1,404 @@ +Upgrade guide +############# + +This is a companion guide to the :doc:`changelog`. While the changelog briefly +lists all of the new features, improvements and bug fixes, this upgrade guide +focuses only the subset which directly impacts your experience when upgrading +to a new version. But it goes into more detail. This includes things like +deprecated APIs and their replacements, build system changes, general code +modernization and other useful information. + + +v2.2 +==== + +Deprecation of the ``PYBIND11_PLUGIN`` macro +-------------------------------------------- + +``PYBIND11_MODULE`` is now the preferred way to create module entry points. +The old macro emits a compile-time deprecation warning. + +.. code-block:: cpp + + // old + PYBIND11_PLUGIN(example) { + py::module m("example", "documentation string"); + + m.def("add", [](int a, int b) { return a + b; }); + + return m.ptr(); + } + + // new + PYBIND11_MODULE(example, m) { + m.doc() = "documentation string"; // optional + + m.def("add", [](int a, int b) { return a + b; }); + } + + +New API for defining custom constructors and pickling functions +--------------------------------------------------------------- + +The old placement-new custom constructors have been deprecated. The new approach +uses ``py::init()`` and factory functions to greatly improve type safety. + +Placement-new can be called accidentally with an incompatible type (without any +compiler errors or warnings), or it can initialize the same object multiple times +if not careful with the Python-side ``__init__`` calls. The new-style custom +constructors prevent such mistakes. See :ref:`custom_constructors` for details. + +.. code-block:: cpp + + // old -- deprecated (runtime warning shown only in debug mode) + py::class<Foo>(m, "Foo") + .def("__init__", [](Foo &self, ...) { + new (&self) Foo(...); // uses placement-new + }); + + // new + py::class<Foo>(m, "Foo") + .def(py::init([](...) { // Note: no `self` argument + return new Foo(...); // return by raw pointer + // or: return std::make_unique<Foo>(...); // return by holder + // or: return Foo(...); // return by value (move constructor) + })); + +Mirroring the custom constructor changes, ``py::pickle()`` is now the preferred +way to get and set object state. See :ref:`pickling` for details. + +.. code-block:: cpp + + // old -- deprecated (runtime warning shown only in debug mode) + py::class<Foo>(m, "Foo") + ... + .def("__getstate__", [](const Foo &self) { + return py::make_tuple(self.value1(), self.value2(), ...); + }) + .def("__setstate__", [](Foo &self, py::tuple t) { + new (&self) Foo(t[0].cast<std::string>(), ...); + }); + + // new + py::class<Foo>(m, "Foo") + ... + .def(py::pickle( + [](const Foo &self) { // __getstate__ + return py::make_tuple(f.value1(), f.value2(), ...); // unchanged + }, + [](py::tuple t) { // __setstate__, note: no `self` argument + return new Foo(t[0].cast<std::string>(), ...); + // or: return std::make_unique<Foo>(...); // return by holder + // or: return Foo(...); // return by value (move constructor) + } + )); + +For both the constructors and pickling, warnings are shown at module +initialization time (on import, not when the functions are called). +They're only visible when compiled in debug mode. Sample warning: + +.. code-block:: none + + pybind11-bound class 'mymodule.Foo' is using an old-style placement-new '__init__' + which has been deprecated. See the upgrade guide in pybind11's docs. + + +Stricter enforcement of hidden symbol visibility for pybind11 modules +--------------------------------------------------------------------- + +pybind11 now tries to actively enforce hidden symbol visibility for modules. +If you're using either one of pybind11's :doc:`CMake or Python build systems +<compiling>` (the two example repositories) and you haven't been exporting any +symbols, there's nothing to be concerned about. All the changes have been done +transparently in the background. If you were building manually or relied on +specific default visibility, read on. + +Setting default symbol visibility to *hidden* has always been recommended for +pybind11 (see :ref:`faq:symhidden`). On Linux and macOS, hidden symbol +visibility (in conjunction with the ``strip`` utility) yields much smaller +module binaries. `CPython's extension docs`_ also recommend hiding symbols +by default, with the goal of avoiding symbol name clashes between modules. +Starting with v2.2, pybind11 enforces this more strictly: (1) by declaring +all symbols inside the ``pybind11`` namespace as hidden and (2) by including +the ``-fvisibility=hidden`` flag on Linux and macOS (only for extension +modules, not for embedding the interpreter). + +.. _CPython's extension docs: https://docs.python.org/3/extending/extending.html#providing-a-c-api-for-an-extension-module + +The namespace-scope hidden visibility is done automatically in pybind11's +headers and it's generally transparent to users. It ensures that: + +* Modules compiled with different pybind11 versions don't clash with each other. + +* Some new features, like ``py::module_local`` bindings, can work as intended. + +The ``-fvisibility=hidden`` flag applies the same visibility to user bindings +outside of the ``pybind11`` namespace. It's now set automatic by pybind11's +CMake and Python build systems, but this needs to be done manually by users +of other build systems. Adding this flag: + +* Minimizes the chances of symbol conflicts between modules. E.g. if two + unrelated modules were statically linked to different (ABI-incompatible) + versions of the same third-party library, a symbol clash would be likely + (and would end with unpredictable results). + +* Produces smaller binaries on Linux and macOS, as pointed out previously. + +Within pybind11's CMake build system, ``pybind11_add_module`` has always been +setting the ``-fvisibility=hidden`` flag in release mode. From now on, it's +being applied unconditionally, even in debug mode and it can no longer be opted +out of with the ``NO_EXTRAS`` option. The ``pybind11::module`` target now also +adds this flag to it's interface. The ``pybind11::embed`` target is unchanged. + +The most significant change here is for the ``pybind11::module`` target. If you +were previously relying on default visibility, i.e. if your Python module was +doubling as a shared library with dependents, you'll need to either export +symbols manually (recommended for cross-platform libraries) or factor out the +shared library (and have the Python module link to it like the other +dependents). As a temporary workaround, you can also restore default visibility +using the CMake code below, but this is not recommended in the long run: + +.. code-block:: cmake + + target_link_libraries(mymodule PRIVATE pybind11::module) + + add_library(restore_default_visibility INTERFACE) + target_compile_options(restore_default_visibility INTERFACE -fvisibility=default) + target_link_libraries(mymodule PRIVATE restore_default_visibility) + + +Local STL container bindings +---------------------------- + +Previous pybind11 versions could only bind types globally -- all pybind11 +modules, even unrelated ones, would have access to the same exported types. +However, this would also result in a conflict if two modules exported the +same C++ type, which is especially problematic for very common types, e.g. +``std::vector<int>``. :ref:`module_local` were added to resolve this (see +that section for a complete usage guide). + +``py::class_`` still defaults to global bindings (because these types are +usually unique across modules), however in order to avoid clashes of opaque +types, ``py::bind_vector`` and ``py::bind_map`` will now bind STL containers +as ``py::module_local`` if their elements are: builtins (``int``, ``float``, +etc.), not bound using ``py::class_``, or bound as ``py::module_local``. For +example, this change allows multiple modules to bind ``std::vector<int>`` +without causing conflicts. See :ref:`stl_bind` for more details. + +When upgrading to this version, if you have multiple modules which depend on +a single global binding of an STL container, note that all modules can still +accept foreign ``py::module_local`` types in the direction of Python-to-C++. +The locality only affects the C++-to-Python direction. If this is needed in +multiple modules, you'll need to either: + +* Add a copy of the same STL binding to all of the modules which need it. + +* Restore the global status of that single binding by marking it + ``py::module_local(false)``. + +The latter is an easy workaround, but in the long run it would be best to +localize all common type bindings in order to avoid conflicts with +third-party modules. + + +Negative strides for Python buffer objects and numpy arrays +----------------------------------------------------------- + +Support for negative strides required changing the integer type from unsigned +to signed in the interfaces of ``py::buffer_info`` and ``py::array``. If you +have compiler warnings enabled, you may notice some new conversion warnings +after upgrading. These can be resolved using ``static_cast``. + + +Deprecation of some ``py::object`` APIs +--------------------------------------- + +To compare ``py::object`` instances by pointer, you should now use +``obj1.is(obj2)`` which is equivalent to ``obj1 is obj2`` in Python. +Previously, pybind11 used ``operator==`` for this (``obj1 == obj2``), but +that could be confusing and is now deprecated (so that it can eventually +be replaced with proper rich object comparison in a future release). + +For classes which inherit from ``py::object``, ``borrowed`` and ``stolen`` +were previously available as protected constructor tags. Now the types +should be used directly instead: ``borrowed_t{}`` and ``stolen_t{}`` +(`#771 <https://github.com/pybind/pybind11/pull/771>`_). + + +Stricter compile-time error checking +------------------------------------ + +Some error checks have been moved from run time to compile time. Notably, +automatic conversion of ``std::shared_ptr<T>`` is not possible when ``T`` is +not directly registered with ``py::class_<T>`` (e.g. ``std::shared_ptr<int>`` +or ``std::shared_ptr<std::vector<T>>`` are not automatically convertible). +Attempting to bind a function with such arguments now results in a compile-time +error instead of waiting to fail at run time. + +``py::init<...>()`` constructor definitions are also stricter and now prevent +bindings which could cause unexpected behavior: + +.. code-block:: cpp + + struct Example { + Example(int &); + }; + + py::class_<Example>(m, "Example") + .def(py::init<int &>()); // OK, exact match + // .def(py::init<int>()); // compile-time error, mismatch + +A non-``const`` lvalue reference is not allowed to bind to an rvalue. However, +note that a constructor taking ``const T &`` can still be registered using +``py::init<T>()`` because a ``const`` lvalue reference can bind to an rvalue. + +v2.1 +==== + +Minimum compiler versions are enforced at compile time +------------------------------------------------------ + +The minimums also apply to v2.0 but the check is now explicit and a compile-time +error is raised if the compiler does not meet the requirements: + +* GCC >= 4.8 +* clang >= 3.3 (appleclang >= 5.0) +* MSVC >= 2015u3 +* Intel C++ >= 15.0 + + +The ``py::metaclass`` attribute is not required for static properties +--------------------------------------------------------------------- + +Binding classes with static properties is now possible by default. The +zero-parameter version of ``py::metaclass()`` is deprecated. However, a new +one-parameter ``py::metaclass(python_type)`` version was added for rare +cases when a custom metaclass is needed to override pybind11's default. + +.. code-block:: cpp + + // old -- emits a deprecation warning + py::class_<Foo>(m, "Foo", py::metaclass()) + .def_property_readonly_static("foo", ...); + + // new -- static properties work without the attribute + py::class_<Foo>(m, "Foo") + .def_property_readonly_static("foo", ...); + + // new -- advanced feature, override pybind11's default metaclass + py::class_<Bar>(m, "Bar", py::metaclass(custom_python_type)) + ... + + +v2.0 +==== + +Breaking changes in ``py::class_`` +---------------------------------- + +These changes were necessary to make type definitions in pybind11 +future-proof, to support PyPy via its ``cpyext`` mechanism (`#527 +<https://github.com/pybind/pybind11/pull/527>`_), and to improve efficiency +(`rev. 86d825 <https://github.com/pybind/pybind11/commit/86d825>`_). + +1. Declarations of types that provide access via the buffer protocol must + now include the ``py::buffer_protocol()`` annotation as an argument to + the ``py::class_`` constructor. + + .. code-block:: cpp + + py::class_<Matrix>("Matrix", py::buffer_protocol()) + .def(py::init<...>()) + .def_buffer(...); + +2. Classes which include static properties (e.g. ``def_readwrite_static()``) + must now include the ``py::metaclass()`` attribute. Note: this requirement + has since been removed in v2.1. If you're upgrading from 1.x, it's + recommended to skip directly to v2.1 or newer. + +3. This version of pybind11 uses a redesigned mechanism for instantiating + trampoline classes that are used to override virtual methods from within + Python. This led to the following user-visible syntax change: + + .. code-block:: cpp + + // old v1.x syntax + py::class_<TrampolineClass>("MyClass") + .alias<MyClass>() + ... + + // new v2.x syntax + py::class_<MyClass, TrampolineClass>("MyClass") + ... + + Importantly, both the original and the trampoline class are now specified + as arguments to the ``py::class_`` template, and the ``alias<..>()`` call + is gone. The new scheme has zero overhead in cases when Python doesn't + override any functions of the underlying C++ class. + `rev. 86d825 <https://github.com/pybind/pybind11/commit/86d825>`_. + + The class type must be the first template argument given to ``py::class_`` + while the trampoline can be mixed in arbitrary order with other arguments + (see the following section). + + +Deprecation of the ``py::base<T>()`` attribute +---------------------------------------------- + +``py::base<T>()`` was deprecated in favor of specifying ``T`` as a template +argument to ``py::class_``. This new syntax also supports multiple inheritance. +Note that, while the type being exported must be the first argument in the +``py::class_<Class, ...>`` template, the order of the following types (bases, +holder and/or trampoline) is not important. + +.. code-block:: cpp + + // old v1.x + py::class_<Derived>("Derived", py::base<Base>()); + + // new v2.x + py::class_<Derived, Base>("Derived"); + + // new -- multiple inheritance + py::class_<Derived, Base1, Base2>("Derived"); + + // new -- apart from `Derived` the argument order can be arbitrary + py::class_<Derived, Base1, Holder, Base2, Trampoline>("Derived"); + + +Out-of-the-box support for ``std::shared_ptr`` +---------------------------------------------- + +The relevant type caster is now built in, so it's no longer necessary to +include a declaration of the form: + +.. code-block:: cpp + + PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>) + +Continuing to do so won’t cause an error or even a deprecation warning, +but it's completely redundant. + + +Deprecation of a few ``py::object`` APIs +---------------------------------------- + +All of the old-style calls emit deprecation warnings. + ++---------------------------------------+---------------------------------------------+ +| Old syntax | New syntax | ++=======================================+=============================================+ +| ``obj.call(args...)`` | ``obj(args...)`` | ++---------------------------------------+---------------------------------------------+ +| ``obj.str()`` | ``py::str(obj)`` | ++---------------------------------------+---------------------------------------------+ +| ``auto l = py::list(obj); l.check()`` | ``py::isinstance<py::list>(obj)`` | ++---------------------------------------+---------------------------------------------+ +| ``py::object(ptr, true)`` | ``py::reinterpret_borrow<py::object>(ptr)`` | ++---------------------------------------+---------------------------------------------+ +| ``py::object(ptr, false)`` | ``py::reinterpret_steal<py::object>(ptr)`` | ++---------------------------------------+---------------------------------------------+ +| ``if (obj.attr("foo"))`` | ``if (py::hasattr(obj, "foo"))`` | ++---------------------------------------+---------------------------------------------+ +| ``if (obj["bar"])`` | ``if (obj.contains("bar"))`` | ++---------------------------------------+---------------------------------------------+ |