summaryrefslogtreecommitdiff
path: root/ext/pybind11/include/pybind11/cast.h
diff options
context:
space:
mode:
Diffstat (limited to 'ext/pybind11/include/pybind11/cast.h')
-rw-r--r--ext/pybind11/include/pybind11/cast.h1468
1 files changed, 1468 insertions, 0 deletions
diff --git a/ext/pybind11/include/pybind11/cast.h b/ext/pybind11/include/pybind11/cast.h
new file mode 100644
index 000000000..535516b37
--- /dev/null
+++ b/ext/pybind11/include/pybind11/cast.h
@@ -0,0 +1,1468 @@
+/*
+ pybind11/cast.h: Partial template specializations to cast between
+ C++ and Python types
+
+ Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
+
+ All rights reserved. Use of this source code is governed by a
+ BSD-style license that can be found in the LICENSE file.
+*/
+
+#pragma once
+
+#include "pytypes.h"
+#include "typeid.h"
+#include "descr.h"
+#include <array>
+#include <limits>
+
+NAMESPACE_BEGIN(pybind11)
+NAMESPACE_BEGIN(detail)
+
+/// Additional type information which does not fit into the PyTypeObject
+struct type_info {
+ PyTypeObject *type;
+ size_t type_size;
+ void (*init_holder)(PyObject *, const void *);
+ std::vector<PyObject *(*)(PyObject *, PyTypeObject *)> implicit_conversions;
+ std::vector<std::pair<const std::type_info *, void *(*)(void *)>> implicit_casts;
+ std::vector<bool (*)(PyObject *, void *&)> *direct_conversions;
+ buffer_info *(*get_buffer)(PyObject *, void *) = nullptr;
+ void *get_buffer_data = nullptr;
+ /** A simple type never occurs as a (direct or indirect) parent
+ * of a class that makes use of multiple inheritance */
+ bool simple_type = true;
+};
+
+PYBIND11_NOINLINE inline internals &get_internals() {
+ static internals *internals_ptr = nullptr;
+ if (internals_ptr)
+ return *internals_ptr;
+ handle builtins(PyEval_GetBuiltins());
+ const char *id = PYBIND11_INTERNALS_ID;
+ if (builtins.contains(id) && isinstance<capsule>(builtins[id])) {
+ internals_ptr = capsule(builtins[id]);
+ } else {
+ internals_ptr = new internals();
+ #if defined(WITH_THREAD)
+ PyEval_InitThreads();
+ PyThreadState *tstate = PyThreadState_Get();
+ internals_ptr->tstate = PyThread_create_key();
+ PyThread_set_key_value(internals_ptr->tstate, tstate);
+ internals_ptr->istate = tstate->interp;
+ #endif
+ builtins[id] = capsule(internals_ptr);
+ internals_ptr->registered_exception_translators.push_front(
+ [](std::exception_ptr p) -> void {
+ try {
+ if (p) std::rethrow_exception(p);
+ } catch (error_already_set &e) { e.restore(); return;
+ } catch (const builtin_exception &e) { e.set_error(); return;
+ } catch (const std::bad_alloc &e) { PyErr_SetString(PyExc_MemoryError, e.what()); return;
+ } catch (const std::domain_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
+ } catch (const std::invalid_argument &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
+ } catch (const std::length_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
+ } catch (const std::out_of_range &e) { PyErr_SetString(PyExc_IndexError, e.what()); return;
+ } catch (const std::range_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
+ } catch (const std::exception &e) { PyErr_SetString(PyExc_RuntimeError, e.what()); return;
+ } catch (...) {
+ PyErr_SetString(PyExc_RuntimeError, "Caught an unknown exception!");
+ return;
+ }
+ }
+ );
+ }
+ return *internals_ptr;
+}
+
+PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) {
+ auto const &type_dict = get_internals().registered_types_py;
+ do {
+ auto it = type_dict.find(type);
+ if (it != type_dict.end())
+ return (detail::type_info *) it->second;
+ type = type->tp_base;
+ if (!type)
+ return nullptr;
+ } while (true);
+}
+
+PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_info &tp,
+ bool throw_if_missing = false) {
+ auto &types = get_internals().registered_types_cpp;
+
+ auto it = types.find(std::type_index(tp));
+ if (it != types.end())
+ return (detail::type_info *) it->second;
+ if (throw_if_missing) {
+ std::string tname = tp.name();
+ detail::clean_type_id(tname);
+ pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\"");
+ }
+ return nullptr;
+}
+
+PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) {
+ detail::type_info *type_info = get_type_info(tp, throw_if_missing);
+ return handle(type_info ? ((PyObject *) type_info->type) : nullptr);
+}
+
+PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) {
+ const auto type = detail::get_type_handle(tp, false);
+ if (!type)
+ return false;
+
+ const auto result = PyObject_IsInstance(obj.ptr(), type.ptr());
+ if (result == -1)
+ throw error_already_set();
+ return result != 0;
+}
+
+PYBIND11_NOINLINE inline std::string error_string() {
+ if (!PyErr_Occurred()) {
+ PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred");
+ return "Unknown internal error occurred";
+ }
+
+ error_scope scope; // Preserve error state
+
+ std::string errorString;
+ if (scope.type) {
+ errorString += handle(scope.type).attr("__name__").cast<std::string>();
+ errorString += ": ";
+ }
+ if (scope.value)
+ errorString += (std::string) str(scope.value);
+
+ PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace);
+
+#if PY_MAJOR_VERSION >= 3
+ if (scope.trace != nullptr)
+ PyException_SetTraceback(scope.value, scope.trace);
+#endif
+
+ if (scope.trace) {
+ PyTracebackObject *trace = (PyTracebackObject *) scope.trace;
+
+ /* Get the deepest trace possible */
+ while (trace->tb_next)
+ trace = trace->tb_next;
+
+ PyFrameObject *frame = trace->tb_frame;
+ errorString += "\n\nAt:\n";
+ while (frame) {
+ int lineno = PyFrame_GetLineNumber(frame);
+ errorString +=
+ " " + handle(frame->f_code->co_filename).cast<std::string>() +
+ "(" + std::to_string(lineno) + "): " +
+ handle(frame->f_code->co_name).cast<std::string>() + "\n";
+ frame = frame->f_back;
+ }
+ trace = trace->tb_next;
+ }
+
+ return errorString;
+}
+
+PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) {
+ auto &instances = get_internals().registered_instances;
+ auto range = instances.equal_range(ptr);
+ for (auto it = range.first; it != range.second; ++it) {
+ auto instance_type = detail::get_type_info(Py_TYPE(it->second));
+ if (instance_type && instance_type == type)
+ return handle((PyObject *) it->second);
+ }
+ return handle();
+}
+
+inline PyThreadState *get_thread_state_unchecked() {
+#if PY_VERSION_HEX < 0x03000000
+ return _PyThreadState_Current;
+#elif PY_VERSION_HEX < 0x03050000
+ return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current);
+#elif PY_VERSION_HEX < 0x03050200
+ return (PyThreadState*) _PyThreadState_Current.value;
+#else
+ return _PyThreadState_UncheckedGet();
+#endif
+}
+
+// Forward declaration
+inline void keep_alive_impl(handle nurse, handle patient);
+
+class type_caster_generic {
+public:
+ PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info)
+ : typeinfo(get_type_info(type_info)) { }
+
+ PYBIND11_NOINLINE bool load(handle src, bool convert) {
+ if (!src)
+ return false;
+ return load(src, convert, Py_TYPE(src.ptr()));
+ }
+
+ bool load(handle src, bool convert, PyTypeObject *tobj) {
+ if (!src || !typeinfo)
+ return false;
+ if (src.is_none()) {
+ value = nullptr;
+ return true;
+ }
+
+ if (typeinfo->simple_type) { /* Case 1: no multiple inheritance etc. involved */
+ /* Check if we can safely perform a reinterpret-style cast */
+ if (PyType_IsSubtype(tobj, typeinfo->type)) {
+ value = reinterpret_cast<instance<void> *>(src.ptr())->value;
+ return true;
+ }
+ } else { /* Case 2: multiple inheritance */
+ /* Check if we can safely perform a reinterpret-style cast */
+ if (tobj == typeinfo->type) {
+ value = reinterpret_cast<instance<void> *>(src.ptr())->value;
+ return true;
+ }
+
+ /* If this is a python class, also check the parents recursively */
+ auto const &type_dict = get_internals().registered_types_py;
+ bool new_style_class = PyType_Check(tobj);
+ if (type_dict.find(tobj) == type_dict.end() && new_style_class && tobj->tp_bases) {
+ auto parents = reinterpret_borrow<tuple>(tobj->tp_bases);
+ for (handle parent : parents) {
+ bool result = load(src, convert, (PyTypeObject *) parent.ptr());
+ if (result)
+ return true;
+ }
+ }
+
+ /* Try implicit casts */
+ for (auto &cast : typeinfo->implicit_casts) {
+ type_caster_generic sub_caster(*cast.first);
+ if (sub_caster.load(src, convert)) {
+ value = cast.second(sub_caster.value);
+ return true;
+ }
+ }
+ }
+
+ /* Perform an implicit conversion */
+ if (convert) {
+ for (auto &converter : typeinfo->implicit_conversions) {
+ temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type));
+ if (load(temp, false))
+ return true;
+ }
+ for (auto &converter : *typeinfo->direct_conversions) {
+ if (converter(src.ptr(), value))
+ return true;
+ }
+ }
+ return false;
+ }
+
+ PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent,
+ const std::type_info *type_info,
+ const std::type_info *type_info_backup,
+ void *(*copy_constructor)(const void *),
+ void *(*move_constructor)(const void *),
+ const void *existing_holder = nullptr) {
+ void *src = const_cast<void *>(_src);
+ if (src == nullptr)
+ return none().inc_ref();
+
+ auto &internals = get_internals();
+
+ auto it = internals.registered_types_cpp.find(std::type_index(*type_info));
+ if (it == internals.registered_types_cpp.end()) {
+ type_info = type_info_backup;
+ it = internals.registered_types_cpp.find(std::type_index(*type_info));
+ }
+
+ if (it == internals.registered_types_cpp.end()) {
+ std::string tname = type_info->name();
+ detail::clean_type_id(tname);
+ std::string msg = "Unregistered type : " + tname;
+ PyErr_SetString(PyExc_TypeError, msg.c_str());
+ return handle();
+ }
+
+ auto tinfo = (const detail::type_info *) it->second;
+
+ auto it_instances = internals.registered_instances.equal_range(src);
+ for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) {
+ auto instance_type = detail::get_type_info(Py_TYPE(it_i->second));
+ if (instance_type && instance_type == tinfo)
+ return handle((PyObject *) it_i->second).inc_ref();
+ }
+
+ auto inst = reinterpret_steal<object>(PyType_GenericAlloc(tinfo->type, 0));
+
+ auto wrapper = (instance<void> *) inst.ptr();
+
+ wrapper->value = nullptr;
+ wrapper->owned = false;
+
+ switch (policy) {
+ case return_value_policy::automatic:
+ case return_value_policy::take_ownership:
+ wrapper->value = src;
+ wrapper->owned = true;
+ break;
+
+ case return_value_policy::automatic_reference:
+ case return_value_policy::reference:
+ wrapper->value = src;
+ wrapper->owned = false;
+ break;
+
+ case return_value_policy::copy:
+ if (copy_constructor)
+ wrapper->value = copy_constructor(src);
+ else
+ throw cast_error("return_value_policy = copy, but the "
+ "object is non-copyable!");
+ wrapper->owned = true;
+ break;
+
+ case return_value_policy::move:
+ if (move_constructor)
+ wrapper->value = move_constructor(src);
+ else if (copy_constructor)
+ wrapper->value = copy_constructor(src);
+ else
+ throw cast_error("return_value_policy = move, but the "
+ "object is neither movable nor copyable!");
+ wrapper->owned = true;
+ break;
+
+ case return_value_policy::reference_internal:
+ wrapper->value = src;
+ wrapper->owned = false;
+ detail::keep_alive_impl(inst, parent);
+ break;
+
+ default:
+ throw cast_error("unhandled return_value_policy: should not happen!");
+ }
+
+ tinfo->init_holder(inst.ptr(), existing_holder);
+
+ internals.registered_instances.emplace(wrapper->value, inst.ptr());
+
+ return inst.release();
+ }
+
+protected:
+ const type_info *typeinfo = nullptr;
+ void *value = nullptr;
+ object temp;
+};
+
+/* Determine suitable casting operator */
+template <typename T>
+using cast_op_type = typename std::conditional<std::is_pointer<typename std::remove_reference<T>::type>::value,
+ typename std::add_pointer<intrinsic_t<T>>::type,
+ typename std::add_lvalue_reference<intrinsic_t<T>>::type>::type;
+
+// std::is_copy_constructible isn't quite enough: it lets std::vector<T> (and similar) through when
+// T is non-copyable, but code containing such a copy constructor fails to actually compile.
+template <typename T, typename SFINAE = void> struct is_copy_constructible : std::is_copy_constructible<T> {};
+
+// Specialization for types that appear to be copy constructible but also look like stl containers
+// (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if
+// so, copy constructability depends on whether the value_type is copy constructible.
+template <typename Container> struct is_copy_constructible<Container, enable_if_t<
+ std::is_copy_constructible<Container>::value &&
+ std::is_same<typename Container::value_type &, typename Container::reference>::value
+ >> : std::is_copy_constructible<typename Container::value_type> {};
+
+/// Generic type caster for objects stored on the heap
+template <typename type> class type_caster_base : public type_caster_generic {
+ using itype = intrinsic_t<type>;
+public:
+ static PYBIND11_DESCR name() { return type_descr(_<type>()); }
+
+ type_caster_base() : type_caster_base(typeid(type)) { }
+ explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { }
+
+ static handle cast(const itype &src, return_value_policy policy, handle parent) {
+ if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
+ policy = return_value_policy::copy;
+ return cast(&src, policy, parent);
+ }
+
+ static handle cast(itype &&src, return_value_policy, handle parent) {
+ return cast(&src, return_value_policy::move, parent);
+ }
+
+ static handle cast(const itype *src, return_value_policy policy, handle parent) {
+ return type_caster_generic::cast(
+ src, policy, parent, src ? &typeid(*src) : nullptr, &typeid(type),
+ make_copy_constructor(src), make_move_constructor(src));
+ }
+
+ template <typename T> using cast_op_type = pybind11::detail::cast_op_type<T>;
+
+ operator itype*() { return (type *) value; }
+ operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); }
+
+protected:
+ typedef void *(*Constructor)(const void *stream);
+#if !defined(_MSC_VER)
+ /* Only enabled when the types are {copy,move}-constructible *and* when the type
+ does not have a private operator new implementaton. */
+ template <typename T = type, typename = enable_if_t<is_copy_constructible<T>::value>> static auto make_copy_constructor(const T *value) -> decltype(new T(*value), Constructor(nullptr)) {
+ return [](const void *arg) -> void * { return new T(*((const T *) arg)); }; }
+ template <typename T = type> static auto make_move_constructor(const T *value) -> decltype(new T(std::move(*((T *) value))), Constructor(nullptr)) {
+ return [](const void *arg) -> void * { return (void *) new T(std::move(*((T *) arg))); }; }
+#else
+ /* Visual Studio 2015's SFINAE implementation doesn't yet handle the above robustly in all situations.
+ Use a workaround that only tests for constructibility for now. */
+ template <typename T = type, typename = enable_if_t<is_copy_constructible<T>::value>>
+ static Constructor make_copy_constructor(const T *value) {
+ return [](const void *arg) -> void * { return new T(*((const T *)arg)); }; }
+ template <typename T = type, typename = enable_if_t<std::is_move_constructible<T>::value>>
+ static Constructor make_move_constructor(const T *value) {
+ return [](const void *arg) -> void * { return (void *) new T(std::move(*((T *)arg))); }; }
+#endif
+
+ static Constructor make_copy_constructor(...) { return nullptr; }
+ static Constructor make_move_constructor(...) { return nullptr; }
+};
+
+template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> { };
+template <typename type> using make_caster = type_caster<intrinsic_t<type>>;
+
+// Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T
+template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) {
+ return caster.operator typename make_caster<T>::template cast_op_type<T>();
+}
+template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &&caster) {
+ return cast_op<T>(caster);
+}
+
+template <typename type> class type_caster<std::reference_wrapper<type>> : public type_caster_base<type> {
+public:
+ static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
+ return type_caster_base<type>::cast(&src.get(), policy, parent);
+ }
+ template <typename T> using cast_op_type = std::reference_wrapper<type>;
+ operator std::reference_wrapper<type>() { return std::ref(*((type *) this->value)); }
+};
+
+#define PYBIND11_TYPE_CASTER(type, py_name) \
+ protected: \
+ type value; \
+ public: \
+ static PYBIND11_DESCR name() { return type_descr(py_name); } \
+ static handle cast(const type *src, return_value_policy policy, handle parent) { \
+ return cast(*src, policy, parent); \
+ } \
+ operator type*() { return &value; } \
+ operator type&() { return value; } \
+ template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>
+
+
+template <typename T>
+struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value>> {
+ typedef typename std::conditional<sizeof(T) <= sizeof(long), long, long long>::type _py_type_0;
+ typedef typename std::conditional<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>::type _py_type_1;
+ typedef typename std::conditional<std::is_floating_point<T>::value, double, _py_type_1>::type py_type;
+public:
+
+ bool load(handle src, bool) {
+ py_type py_value;
+
+ if (!src) {
+ return false;
+ } if (std::is_floating_point<T>::value) {
+ py_value = (py_type) PyFloat_AsDouble(src.ptr());
+ } else if (sizeof(T) <= sizeof(long)) {
+ if (PyFloat_Check(src.ptr()))
+ return false;
+ if (std::is_signed<T>::value)
+ py_value = (py_type) PyLong_AsLong(src.ptr());
+ else
+ py_value = (py_type) PyLong_AsUnsignedLong(src.ptr());
+ } else {
+ if (PyFloat_Check(src.ptr()))
+ return false;
+ if (std::is_signed<T>::value)
+ py_value = (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr());
+ else
+ py_value = (py_type) PYBIND11_LONG_AS_UNSIGNED_LONGLONG(src.ptr());
+ }
+
+ if ((py_value == (py_type) -1 && PyErr_Occurred()) ||
+ (std::is_integral<T>::value && sizeof(py_type) != sizeof(T) &&
+ (py_value < (py_type) std::numeric_limits<T>::min() ||
+ py_value > (py_type) std::numeric_limits<T>::max()))) {
+#if PY_VERSION_HEX < 0x03000000
+ bool type_error = PyErr_ExceptionMatches(PyExc_SystemError);
+#else
+ bool type_error = PyErr_ExceptionMatches(PyExc_TypeError);
+#endif
+ PyErr_Clear();
+ if (type_error && PyNumber_Check(src.ptr())) {
+ auto tmp = reinterpret_borrow<object>(std::is_floating_point<T>::value
+ ? PyNumber_Float(src.ptr())
+ : PyNumber_Long(src.ptr()));
+ PyErr_Clear();
+ return load(tmp, false);
+ }
+ return false;
+ }
+
+ value = (T) py_value;
+ return true;
+ }
+
+ static handle cast(T src, return_value_policy /* policy */, handle /* parent */) {
+ if (std::is_floating_point<T>::value) {
+ return PyFloat_FromDouble((double) src);
+ } else if (sizeof(T) <= sizeof(long)) {
+ if (std::is_signed<T>::value)
+ return PyLong_FromLong((long) src);
+ else
+ return PyLong_FromUnsignedLong((unsigned long) src);
+ } else {
+ if (std::is_signed<T>::value)
+ return PyLong_FromLongLong((long long) src);
+ else
+ return PyLong_FromUnsignedLongLong((unsigned long long) src);
+ }
+ }
+
+ PYBIND11_TYPE_CASTER(T, _<std::is_integral<T>::value>("int", "float"));
+};
+
+template<typename T> struct void_caster {
+public:
+ bool load(handle, bool) { return false; }
+ static handle cast(T, return_value_policy /* policy */, handle /* parent */) {
+ return none().inc_ref();
+ }
+ PYBIND11_TYPE_CASTER(T, _("None"));
+};
+
+template <> class type_caster<void_type> : public void_caster<void_type> {};
+
+template <> class type_caster<void> : public type_caster<void_type> {
+public:
+ using type_caster<void_type>::cast;
+
+ bool load(handle h, bool) {
+ if (!h) {
+ return false;
+ } else if (h.is_none()) {
+ value = nullptr;
+ return true;
+ }
+
+ /* Check if this is a capsule */
+ if (isinstance<capsule>(h)) {
+ value = reinterpret_borrow<capsule>(h);
+ return true;
+ }
+
+ /* Check if this is a C++ type */
+ if (get_type_info((PyTypeObject *) h.get_type().ptr())) {
+ value = ((instance<void> *) h.ptr())->value;
+ return true;
+ }
+
+ /* Fail */
+ return false;
+ }
+
+ static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) {
+ if (ptr)
+ return capsule(ptr).release();
+ else
+ return none().inc_ref();
+ }
+
+ template <typename T> using cast_op_type = void*&;
+ operator void *&() { return value; }
+ static PYBIND11_DESCR name() { return type_descr(_("capsule")); }
+private:
+ void *value = nullptr;
+};
+
+template <> class type_caster<std::nullptr_t> : public type_caster<void_type> { };
+
+template <> class type_caster<bool> {
+public:
+ bool load(handle src, bool) {
+ if (!src) return false;
+ else if (src.ptr() == Py_True) { value = true; return true; }
+ else if (src.ptr() == Py_False) { value = false; return true; }
+ else return false;
+ }
+ static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) {
+ return handle(src ? Py_True : Py_False).inc_ref();
+ }
+ PYBIND11_TYPE_CASTER(bool, _("bool"));
+};
+
+template <> class type_caster<std::string> {
+public:
+ bool load(handle src, bool) {
+ object temp;
+ handle load_src = src;
+ if (!src) {
+ return false;
+ } else if (PyUnicode_Check(load_src.ptr())) {
+ temp = reinterpret_steal<object>(PyUnicode_AsUTF8String(load_src.ptr()));
+ if (!temp) { PyErr_Clear(); return false; } // UnicodeEncodeError
+ load_src = temp;
+ }
+ char *buffer;
+ ssize_t length;
+ int err = PYBIND11_BYTES_AS_STRING_AND_SIZE(load_src.ptr(), &buffer, &length);
+ if (err == -1) { PyErr_Clear(); return false; } // TypeError
+ value = std::string(buffer, (size_t) length);
+ success = true;
+ return true;
+ }
+
+ static handle cast(const std::string &src, return_value_policy /* policy */, handle /* parent */) {
+ return PyUnicode_FromStringAndSize(src.c_str(), (ssize_t) src.length());
+ }
+
+ PYBIND11_TYPE_CASTER(std::string, _(PYBIND11_STRING_NAME));
+protected:
+ bool success = false;
+};
+
+template <typename type, typename deleter> class type_caster<std::unique_ptr<type, deleter>> {
+public:
+ static handle cast(std::unique_ptr<type, deleter> &&src, return_value_policy policy, handle parent) {
+ handle result = type_caster_base<type>::cast(src.get(), policy, parent);
+ if (result)
+ src.release();
+ return result;
+ }
+ static PYBIND11_DESCR name() { return type_caster_base<type>::name(); }
+};
+
+template <> class type_caster<std::wstring> {
+public:
+ bool load(handle src, bool) {
+ object temp;
+ handle load_src = src;
+ if (!src) {
+ return false;
+ } else if (!PyUnicode_Check(load_src.ptr())) {
+ temp = reinterpret_steal<object>(PyUnicode_FromObject(load_src.ptr()));
+ if (!temp) { PyErr_Clear(); return false; }
+ load_src = temp;
+ }
+ wchar_t *buffer = nullptr;
+ ssize_t length = -1;
+#if PY_MAJOR_VERSION >= 3
+ buffer = PyUnicode_AsWideCharString(load_src.ptr(), &length);
+#else
+ temp = reinterpret_steal<object>(
+ sizeof(wchar_t) == sizeof(short)
+ ? PyUnicode_AsUTF16String(load_src.ptr())
+ : PyUnicode_AsUTF32String(load_src.ptr()));
+ if (temp) {
+ int err = PYBIND11_BYTES_AS_STRING_AND_SIZE(temp.ptr(), (char **) &buffer, &length);
+ if (err == -1) { buffer = nullptr; } // TypeError
+ length = length / (ssize_t) sizeof(wchar_t) - 1; ++buffer; // Skip BOM
+ }
+#endif
+ if (!buffer) { PyErr_Clear(); return false; }
+ value = std::wstring(buffer, (size_t) length);
+ success = true;
+ return true;
+ }
+
+ static handle cast(const std::wstring &src, return_value_policy /* policy */, handle /* parent */) {
+ return PyUnicode_FromWideChar(src.c_str(), (ssize_t) src.length());
+ }
+
+ PYBIND11_TYPE_CASTER(std::wstring, _(PYBIND11_STRING_NAME));
+protected:
+ bool success = false;
+};
+
+template <> class type_caster<char> : public type_caster<std::string> {
+public:
+ bool load(handle src, bool convert) {
+ if (src.is_none()) return true;
+ return type_caster<std::string>::load(src, convert);
+ }
+
+ static handle cast(const char *src, return_value_policy /* policy */, handle /* parent */) {
+ if (src == nullptr) return none().inc_ref();
+ return PyUnicode_FromString(src);
+ }
+
+ static handle cast(char src, return_value_policy /* policy */, handle /* parent */) {
+ char str[2] = { src, '\0' };
+ return PyUnicode_DecodeLatin1(str, 1, nullptr);
+ }
+
+ operator char*() { return success ? (char *) value.c_str() : nullptr; }
+ operator char&() { return value[0]; }
+
+ static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); }
+};
+
+template <> class type_caster<wchar_t> : public type_caster<std::wstring> {
+public:
+ bool load(handle src, bool convert) {
+ if (src.is_none()) return true;
+ return type_caster<std::wstring>::load(src, convert);
+ }
+
+ static handle cast(const wchar_t *src, return_value_policy /* policy */, handle /* parent */) {
+ if (src == nullptr) return none().inc_ref();
+ return PyUnicode_FromWideChar(src, (ssize_t) wcslen(src));
+ }
+
+ static handle cast(wchar_t src, return_value_policy /* policy */, handle /* parent */) {
+ wchar_t wstr[2] = { src, L'\0' };
+ return PyUnicode_FromWideChar(wstr, 1);
+ }
+
+ operator wchar_t*() { return success ? (wchar_t *) value.c_str() : nullptr; }
+ operator wchar_t&() { return value[0]; }
+
+ static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); }
+};
+
+template <typename T1, typename T2> class type_caster<std::pair<T1, T2>> {
+ typedef std::pair<T1, T2> type;
+public:
+ bool load(handle src, bool convert) {
+ if (!isinstance<sequence>(src))
+ return false;
+ const auto seq = reinterpret_borrow<sequence>(src);
+ if (seq.size() != 2)
+ return false;
+ return first.load(seq[0], convert) && second.load(seq[1], convert);
+ }
+
+ static handle cast(const type &src, return_value_policy policy, handle parent) {
+ auto o1 = reinterpret_steal<object>(make_caster<T1>::cast(src.first, policy, parent));
+ auto o2 = reinterpret_steal<object>(make_caster<T2>::cast(src.second, policy, parent));
+ if (!o1 || !o2)
+ return handle();
+ tuple result(2);
+ PyTuple_SET_ITEM(result.ptr(), 0, o1.release().ptr());
+ PyTuple_SET_ITEM(result.ptr(), 1, o2.release().ptr());
+ return result.release();
+ }
+
+ static PYBIND11_DESCR name() {
+ return type_descr(
+ _("Tuple[") + make_caster<T1>::name() + _(", ") + make_caster<T2>::name() + _("]")
+ );
+ }
+
+ template <typename T> using cast_op_type = type;
+
+ operator type() {
+ return type(cast_op<T1>(first), cast_op<T2>(second));
+ }
+protected:
+ make_caster<T1> first;
+ make_caster<T2> second;
+};
+
+template <typename... Tuple> class type_caster<std::tuple<Tuple...>> {
+ using type = std::tuple<Tuple...>;
+ using indices = make_index_sequence<sizeof...(Tuple)>;
+ static constexpr auto size = sizeof...(Tuple);
+
+public:
+ bool load(handle src, bool convert) {
+ if (!isinstance<sequence>(src))
+ return false;
+ const auto seq = reinterpret_borrow<sequence>(src);
+ if (seq.size() != size)
+ return false;
+ return load_impl(seq, convert, indices{});
+ }
+
+ static handle cast(const type &src, return_value_policy policy, handle parent) {
+ return cast_impl(src, policy, parent, indices{});
+ }
+
+ static PYBIND11_DESCR name() {
+ return type_descr(_("Tuple[") + detail::concat(make_caster<Tuple>::name()...) + _("]"));
+ }
+
+ template <typename T> using cast_op_type = type;
+
+ operator type() { return implicit_cast(indices{}); }
+
+protected:
+ template <size_t... Is>
+ type implicit_cast(index_sequence<Is...>) { return type(cast_op<Tuple>(std::get<Is>(value))...); }
+
+ static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; }
+
+ template <size_t... Is>
+ bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) {
+ for (bool r : {std::get<Is>(value).load(seq[Is], convert)...})
+ if (!r)
+ return false;
+ return true;
+ }
+
+ static handle cast_impl(const type &, return_value_policy, handle,
+ index_sequence<>) { return tuple().release(); }
+
+ /* Implementation: Convert a C++ tuple into a Python tuple */
+ template <size_t... Is>
+ static handle cast_impl(const type &src, return_value_policy policy, handle parent, index_sequence<Is...>) {
+ std::array<object, size> entries {{
+ reinterpret_steal<object>(make_caster<Tuple>::cast(std::get<Is>(src), policy, parent))...
+ }};
+ for (const auto &entry: entries)
+ if (!entry)
+ return handle();
+ tuple result(size);
+ int counter = 0;
+ for (auto & entry: entries)
+ PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr());
+ return result.release();
+ }
+
+protected:
+ std::tuple<make_caster<Tuple>...> value;
+};
+
+/// Type caster for holder types like std::shared_ptr, etc.
+template <typename type, typename holder_type> class type_caster_holder : public type_caster_base<type> {
+public:
+ using base = type_caster_base<type>;
+ using base::base;
+ using base::cast;
+ using base::typeinfo;
+ using base::value;
+ using base::temp;
+
+ PYBIND11_NOINLINE bool load(handle src, bool convert) {
+ return load(src, convert, Py_TYPE(src.ptr()));
+ }
+
+ bool load(handle src, bool convert, PyTypeObject *tobj) {
+ if (!src || !typeinfo)
+ return false;
+ if (src.is_none()) {
+ value = nullptr;
+ return true;
+ }
+
+ if (typeinfo->simple_type) { /* Case 1: no multiple inheritance etc. involved */
+ /* Check if we can safely perform a reinterpret-style cast */
+ if (PyType_IsSubtype(tobj, typeinfo->type))
+ return load_value_and_holder(src);
+ } else { /* Case 2: multiple inheritance */
+ /* Check if we can safely perform a reinterpret-style cast */
+ if (tobj == typeinfo->type)
+ return load_value_and_holder(src);
+
+ /* If this is a python class, also check the parents recursively */
+ auto const &type_dict = get_internals().registered_types_py;
+ bool new_style_class = PyType_Check(tobj);
+ if (type_dict.find(tobj) == type_dict.end() && new_style_class && tobj->tp_bases) {
+ auto parents = reinterpret_borrow<tuple>(tobj->tp_bases);
+ for (handle parent : parents) {
+ bool result = load(src, convert, (PyTypeObject *) parent.ptr());
+ if (result)
+ return true;
+ }
+ }
+
+ if (try_implicit_casts(src, convert))
+ return true;
+ }
+
+ if (convert) {
+ for (auto &converter : typeinfo->implicit_conversions) {
+ temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type));
+ if (load(temp, false))
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+ bool load_value_and_holder(handle src) {
+ auto inst = (instance<type, holder_type> *) src.ptr();
+ value = (void *) inst->value;
+ if (inst->holder_constructed) {
+ holder = inst->holder;
+ return true;
+ } else {
+ throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) "
+#if defined(NDEBUG)
+ "(compile in debug mode for type information)");
+#else
+ "of type '" + type_id<holder_type>() + "''");
+#endif
+ }
+ }
+
+ template <typename T = holder_type, detail::enable_if_t<!std::is_constructible<T, const T &, type*>::value, int> = 0>
+ bool try_implicit_casts(handle, bool) { return false; }
+
+ template <typename T = holder_type, detail::enable_if_t<std::is_constructible<T, const T &, type*>::value, int> = 0>
+ bool try_implicit_casts(handle src, bool convert) {
+ for (auto &cast : typeinfo->implicit_casts) {
+ type_caster_holder sub_caster(*cast.first);
+ if (sub_caster.load(src, convert)) {
+ value = cast.second(sub_caster.value);
+ holder = holder_type(sub_caster.holder, (type *) value);
+ return true;
+ }
+ }
+ return false;
+ }
+
+ explicit operator type*() { return this->value; }
+ explicit operator type&() { return *(this->value); }
+ explicit operator holder_type*() { return &holder; }
+
+ // Workaround for Intel compiler bug
+ // see pybind11 issue 94
+ #if defined(__ICC) || defined(__INTEL_COMPILER)
+ operator holder_type&() { return holder; }
+ #else
+ explicit operator holder_type&() { return holder; }
+ #endif
+
+ static handle cast(const holder_type &src, return_value_policy, handle) {
+ return type_caster_generic::cast(
+ src.get(), return_value_policy::take_ownership, handle(),
+ src.get() ? &typeid(*src.get()) : nullptr, &typeid(type),
+ nullptr, nullptr, &src);
+ }
+
+protected:
+ holder_type holder;
+};
+
+/// Specialize for the common std::shared_ptr, so users don't need to
+template <typename T>
+class type_caster<std::shared_ptr<T>> : public type_caster_holder<T, std::shared_ptr<T>> { };
+
+/// Create a specialization for custom holder types (silently ignores std::shared_ptr)
+#define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type) \
+ namespace pybind11 { namespace detail { \
+ template <typename type> \
+ class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \
+ : public type_caster_holder<type, holder_type> { }; \
+ }}
+
+// PYBIND11_DECLARE_HOLDER_TYPE holder types:
+template <typename base, typename holder> struct is_holder_type :
+ std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {};
+// Specialization for always-supported unique_ptr holders:
+template <typename base, typename deleter> struct is_holder_type<base, std::unique_ptr<base, deleter>> :
+ std::true_type {};
+
+template <typename T> struct handle_type_name { static PYBIND11_DESCR name() { return _<T>(); } };
+template <> struct handle_type_name<bytes> { static PYBIND11_DESCR name() { return _(PYBIND11_BYTES_NAME); } };
+template <> struct handle_type_name<args> { static PYBIND11_DESCR name() { return _("*args"); } };
+template <> struct handle_type_name<kwargs> { static PYBIND11_DESCR name() { return _("**kwargs"); } };
+
+template <typename type>
+struct pyobject_caster {
+ template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
+ bool load(handle src, bool /* convert */) { value = src; return static_cast<bool>(value); }
+
+ template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
+ bool load(handle src, bool /* convert */) {
+ if (!isinstance<type>(src))
+ return false;
+ value = reinterpret_borrow<type>(src);
+ return true;
+ }
+
+ static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
+ return src.inc_ref();
+ }
+ PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name());
+};
+
+template <typename T>
+class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> { };
+
+// Our conditions for enabling moving are quite restrictive:
+// At compile time:
+// - T needs to be a non-const, non-pointer, non-reference type
+// - type_caster<T>::operator T&() must exist
+// - the type must be move constructible (obviously)
+// At run-time:
+// - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
+// must have ref_count() == 1)h
+// If any of the above are not satisfied, we fall back to copying.
+template <typename T, typename SFINAE = void> struct move_is_plain_type : std::false_type {};
+template <typename T> struct move_is_plain_type<T, enable_if_t<
+ !std::is_void<T>::value && !std::is_pointer<T>::value && !std::is_reference<T>::value && !std::is_const<T>::value
+ >> : std::true_type { };
+template <typename T, typename SFINAE = void> struct move_always : std::false_type {};
+template <typename T> struct move_always<T, enable_if_t<
+ move_is_plain_type<T>::value &&
+ !std::is_copy_constructible<T>::value && std::is_move_constructible<T>::value &&
+ std::is_same<decltype(std::declval<type_caster<T>>().operator T&()), T&>::value
+ >> : std::true_type { };
+template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {};
+template <typename T> struct move_if_unreferenced<T, enable_if_t<
+ move_is_plain_type<T>::value &&
+ !move_always<T>::value && std::is_move_constructible<T>::value &&
+ std::is_same<decltype(std::declval<type_caster<T>>().operator T&()), T&>::value
+ >> : std::true_type { };
+template <typename T> using move_never = std::integral_constant<bool, !move_always<T>::value && !move_if_unreferenced<T>::value>;
+
+// Detect whether returning a `type` from a cast on type's type_caster is going to result in a
+// reference or pointer to a local variable of the type_caster. Basically, only
+// non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe;
+// everything else returns a reference/pointer to a local variable.
+template <typename type> using cast_is_temporary_value_reference = bool_constant<
+ (std::is_reference<type>::value || std::is_pointer<type>::value) &&
+ !std::is_base_of<type_caster_generic, make_caster<type>>::value
+>;
+
+// Basic python -> C++ casting; throws if casting fails
+template <typename T, typename SFINAE> type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) {
+ if (!conv.load(handle, true)) {
+#if defined(NDEBUG)
+ throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)");
+#else
+ throw cast_error("Unable to cast Python instance of type " +
+ (std::string) str(handle.get_type()) + " to C++ type '" + type_id<T>() + "''");
+#endif
+ }
+ return conv;
+}
+// Wrapper around the above that also constructs and returns a type_caster
+template <typename T> make_caster<T> load_type(const handle &handle) {
+ make_caster<T> conv;
+ load_type(conv, handle);
+ return conv;
+}
+
+NAMESPACE_END(detail)
+
+// pytype -> C++ type
+template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
+T cast(const handle &handle) {
+ using namespace detail;
+ static_assert(!cast_is_temporary_value_reference<T>::value,
+ "Unable to cast type to reference: value is local to type caster");
+ return cast_op<T>(load_type<T>(handle));
+}
+
+// pytype -> pytype (calls converting constructor)
+template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0>
+T cast(const handle &handle) { return T(reinterpret_borrow<object>(handle)); }
+
+// C++ type -> py::object
+template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
+object cast(const T &value, return_value_policy policy = return_value_policy::automatic_reference,
+ handle parent = handle()) {
+ if (policy == return_value_policy::automatic)
+ policy = std::is_pointer<T>::value ? return_value_policy::take_ownership : return_value_policy::copy;
+ else if (policy == return_value_policy::automatic_reference)
+ policy = std::is_pointer<T>::value ? return_value_policy::reference : return_value_policy::copy;
+ return reinterpret_steal<object>(detail::make_caster<T>::cast(value, policy, parent));
+}
+
+template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); }
+template <> inline void handle::cast() const { return; }
+
+template <typename T>
+detail::enable_if_t<detail::move_always<T>::value || detail::move_if_unreferenced<T>::value, T> move(object &&obj) {
+ if (obj.ref_count() > 1)
+#if defined(NDEBUG)
+ throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references"
+ " (compile in debug mode for details)");
+#else
+ throw cast_error("Unable to move from Python " + (std::string) str(obj.get_type()) +
+ " instance to C++ " + type_id<T>() + " instance: instance has multiple references");
+#endif
+
+ // Move into a temporary and return that, because the reference may be a local value of `conv`
+ T ret = std::move(detail::load_type<T>(obj).operator T&());
+ return ret;
+}
+
+// Calling cast() on an rvalue calls pybind::cast with the object rvalue, which does:
+// - If we have to move (because T has no copy constructor), do it. This will fail if the moved
+// object has multiple references, but trying to copy will fail to compile.
+// - If both movable and copyable, check ref count: if 1, move; otherwise copy
+// - Otherwise (not movable), copy.
+template <typename T> detail::enable_if_t<detail::move_always<T>::value, T> cast(object &&object) {
+ return move<T>(std::move(object));
+}
+template <typename T> detail::enable_if_t<detail::move_if_unreferenced<T>::value, T> cast(object &&object) {
+ if (object.ref_count() > 1)
+ return cast<T>(object);
+ else
+ return move<T>(std::move(object));
+}
+template <typename T> detail::enable_if_t<detail::move_never<T>::value, T> cast(object &&object) {
+ return cast<T>(object);
+}
+
+template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); }
+template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); }
+template <> inline void object::cast() const & { return; }
+template <> inline void object::cast() && { return; }
+
+NAMESPACE_BEGIN(detail)
+
+// Declared in pytypes.h:
+template <typename T, enable_if_t<!is_pyobject<T>::value, int>>
+object object_or_cast(T &&o) { return pybind11::cast(std::forward<T>(o)); }
+
+struct overload_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the OVERLOAD_INT macro
+template <typename ret_type> using overload_caster_t = conditional_t<
+ cast_is_temporary_value_reference<ret_type>::value, make_caster<ret_type>, overload_unused>;
+
+// Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then
+// store the result in the given variable. For other types, this is a no-op.
+template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o, make_caster<T> &caster) {
+ return cast_op<T>(load_type(caster, o));
+}
+template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&, overload_unused &) {
+ pybind11_fail("Internal error: cast_ref fallback invoked"); }
+
+// Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even
+// though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in
+// cases where pybind11::cast is valid.
+template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&o) {
+ return pybind11::cast<T>(std::move(o)); }
+template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) {
+ pybind11_fail("Internal error: cast_safe fallback invoked"); }
+template <> inline void cast_safe<void>(object &&) {}
+
+NAMESPACE_END(detail)
+
+template <return_value_policy policy = return_value_policy::automatic_reference,
+ typename... Args> tuple make_tuple(Args&&... args_) {
+ const size_t size = sizeof...(Args);
+ std::array<object, size> args {
+ { reinterpret_steal<object>(detail::make_caster<Args>::cast(
+ std::forward<Args>(args_), policy, nullptr))... }
+ };
+ for (auto &arg_value : args) {
+ if (!arg_value) {
+#if defined(NDEBUG)
+ throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)");
+#else
+ throw cast_error("make_tuple(): unable to convert arguments of types '" +
+ (std::string) type_id<std::tuple<Args...>>() + "' to Python object");
+#endif
+ }
+ }
+ tuple result(size);
+ int counter = 0;
+ for (auto &arg_value : args)
+ PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr());
+ return result;
+}
+
+/// Annotation for keyword arguments
+struct arg {
+ constexpr explicit arg(const char *name) : name(name) { }
+ template <typename T> arg_v operator=(T &&value) const;
+
+ const char *name;
+};
+
+/// Annotation for keyword arguments with values
+struct arg_v : arg {
+ template <typename T>
+ arg_v(const char *name, T &&x, const char *descr = nullptr)
+ : arg(name),
+ value(reinterpret_steal<object>(
+ detail::make_caster<T>::cast(x, return_value_policy::automatic, {})
+ )),
+ descr(descr)
+#if !defined(NDEBUG)
+ , type(type_id<T>())
+#endif
+ { }
+
+ object value;
+ const char *descr;
+#if !defined(NDEBUG)
+ std::string type;
+#endif
+};
+
+template <typename T>
+arg_v arg::operator=(T &&value) const { return {name, std::forward<T>(value)}; }
+
+/// Alias for backward compatibility -- to be removed in version 2.0
+template <typename /*unused*/> using arg_t = arg_v;
+
+inline namespace literals {
+/// String literal version of arg
+constexpr arg operator"" _a(const char *name, size_t) { return arg(name); }
+}
+
+NAMESPACE_BEGIN(detail)
+
+/// Helper class which loads arguments for C++ functions called from Python
+template <typename... Args>
+class argument_loader {
+ using itypes = type_list<intrinsic_t<Args>...>;
+ using indices = make_index_sequence<sizeof...(Args)>;
+
+public:
+ static constexpr auto has_kwargs = std::is_same<itypes, type_list<args, kwargs>>::value;
+ static constexpr auto has_args = has_kwargs || std::is_same<itypes, type_list<args>>::value;
+
+ static PYBIND11_DESCR arg_names() { return detail::concat(make_caster<Args>::name()...); }
+
+ bool load_args(handle args, handle kwargs, bool convert) {
+ return load_impl(args, kwargs, convert, itypes{});
+ }
+
+ template <typename Return, typename Func>
+ enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) {
+ return call_impl<Return>(std::forward<Func>(f), indices{});
+ }
+
+ template <typename Return, typename Func>
+ enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) {
+ call_impl<Return>(std::forward<Func>(f), indices{});
+ return void_type();
+ }
+
+private:
+ bool load_impl(handle args_, handle, bool convert, type_list<args>) {
+ std::get<0>(value).load(args_, convert);
+ return true;
+ }
+
+ bool load_impl(handle args_, handle kwargs_, bool convert, type_list<args, kwargs>) {
+ std::get<0>(value).load(args_, convert);
+ std::get<1>(value).load(kwargs_, convert);
+ return true;
+ }
+
+ bool load_impl(handle args, handle, bool convert, ... /* anything else */) {
+ return load_impl_sequence(args, convert, indices{});
+ }
+
+ static constexpr bool load_impl_sequence(handle, bool, index_sequence<>) { return true; }
+
+ template <size_t... Is>
+ bool load_impl_sequence(handle src, bool convert, index_sequence<Is...>) {
+ for (bool r : {std::get<Is>(value).load(PyTuple_GET_ITEM(src.ptr(), Is), convert)...})
+ if (!r)
+ return false;
+ return true;
+ }
+
+ template <typename Return, typename Func, size_t... Is>
+ Return call_impl(Func &&f, index_sequence<Is...>) {
+ return std::forward<Func>(f)(cast_op<Args>(std::get<Is>(value))...);
+ }
+
+private:
+ std::tuple<make_caster<Args>...> value;
+};
+
+NAMESPACE_BEGIN(constexpr_impl)
+/// Implementation details for constexpr functions
+constexpr int first(int i) { return i; }
+template <typename T, typename... Ts>
+constexpr int first(int i, T v, Ts... vs) { return v ? i : first(i + 1, vs...); }
+
+constexpr int last(int /*i*/, int result) { return result; }
+template <typename T, typename... Ts>
+constexpr int last(int i, int result, T v, Ts... vs) { return last(i + 1, v ? i : result, vs...); }
+NAMESPACE_END(constexpr_impl)
+
+/// Return the index of the first type in Ts which satisfies Predicate<T>
+template <template<typename> class Predicate, typename... Ts>
+constexpr int constexpr_first() { return constexpr_impl::first(0, Predicate<Ts>::value...); }
+
+/// Return the index of the last type in Ts which satisfies Predicate<T>
+template <template<typename> class Predicate, typename... Ts>
+constexpr int constexpr_last() { return constexpr_impl::last(0, -1, Predicate<Ts>::value...); }
+
+/// Helper class which collects only positional arguments for a Python function call.
+/// A fancier version below can collect any argument, but this one is optimal for simple calls.
+template <return_value_policy policy>
+class simple_collector {
+public:
+ template <typename... Ts>
+ explicit simple_collector(Ts &&...values)
+ : m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) { }
+
+ const tuple &args() const & { return m_args; }
+ dict kwargs() const { return {}; }
+
+ tuple args() && { return std::move(m_args); }
+
+ /// Call a Python function and pass the collected arguments
+ object call(PyObject *ptr) const {
+ PyObject *result = PyObject_CallObject(ptr, m_args.ptr());
+ if (!result)
+ throw error_already_set();
+ return reinterpret_steal<object>(result);
+ }
+
+private:
+ tuple m_args;
+};
+
+/// Helper class which collects positional, keyword, * and ** arguments for a Python function call
+template <return_value_policy policy>
+class unpacking_collector {
+public:
+ template <typename... Ts>
+ explicit unpacking_collector(Ts &&...values) {
+ // Tuples aren't (easily) resizable so a list is needed for collection,
+ // but the actual function call strictly requires a tuple.
+ auto args_list = list();
+ int _[] = { 0, (process(args_list, std::forward<Ts>(values)), 0)... };
+ ignore_unused(_);
+
+ m_args = std::move(args_list);
+ }
+
+ const tuple &args() const & { return m_args; }
+ const dict &kwargs() const & { return m_kwargs; }
+
+ tuple args() && { return std::move(m_args); }
+ dict kwargs() && { return std::move(m_kwargs); }
+
+ /// Call a Python function and pass the collected arguments
+ object call(PyObject *ptr) const {
+ PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr());
+ if (!result)
+ throw error_already_set();
+ return reinterpret_steal<object>(result);
+ }
+
+private:
+ template <typename T>
+ void process(list &args_list, T &&x) {
+ auto o = reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(x), policy, {}));
+ if (!o) {
+#if defined(NDEBUG)
+ argument_cast_error();
+#else
+ argument_cast_error(std::to_string(args_list.size()), type_id<T>());
+#endif
+ }
+ args_list.append(o);
+ }
+
+ void process(list &args_list, detail::args_proxy ap) {
+ for (const auto &a : ap)
+ args_list.append(a);
+ }
+
+ void process(list &/*args_list*/, arg_v a) {
+ if (m_kwargs.contains(a.name)) {
+#if defined(NDEBUG)
+ multiple_values_error();
+#else
+ multiple_values_error(a.name);
+#endif
+ }
+ if (!a.value) {
+#if defined(NDEBUG)
+ argument_cast_error();
+#else
+ argument_cast_error(a.name, a.type);
+#endif
+ }
+ m_kwargs[a.name] = a.value;
+ }
+
+ void process(list &/*args_list*/, detail::kwargs_proxy kp) {
+ if (!kp)
+ return;
+ for (const auto &k : reinterpret_borrow<dict>(kp)) {
+ if (m_kwargs.contains(k.first)) {
+#if defined(NDEBUG)
+ multiple_values_error();
+#else
+ multiple_values_error(str(k.first));
+#endif
+ }
+ m_kwargs[k.first] = k.second;
+ }
+ }
+
+ [[noreturn]] static void multiple_values_error() {
+ throw type_error("Got multiple values for keyword argument "
+ "(compile in debug mode for details)");
+ }
+
+ [[noreturn]] static void multiple_values_error(std::string name) {
+ throw type_error("Got multiple values for keyword argument '" + name + "'");
+ }
+
+ [[noreturn]] static void argument_cast_error() {
+ throw cast_error("Unable to convert call argument to Python object "
+ "(compile in debug mode for details)");
+ }
+
+ [[noreturn]] static void argument_cast_error(std::string name, std::string type) {
+ throw cast_error("Unable to convert call argument '" + name
+ + "' of type '" + type + "' to Python object");
+ }
+
+private:
+ tuple m_args;
+ dict m_kwargs;
+};
+
+/// Collect only positional arguments for a Python function call
+template <return_value_policy policy, typename... Args,
+ typename = enable_if_t<all_of_t<is_positional, Args...>::value>>
+simple_collector<policy> collect_arguments(Args &&...args) {
+ return simple_collector<policy>(std::forward<Args>(args)...);
+}
+
+/// Collect all arguments, including keywords and unpacking (only instantiated when needed)
+template <return_value_policy policy, typename... Args,
+ typename = enable_if_t<!all_of_t<is_positional, Args...>::value>>
+unpacking_collector<policy> collect_arguments(Args &&...args) {
+ // Following argument order rules for generalized unpacking according to PEP 448
+ static_assert(
+ constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>()
+ && constexpr_last<is_s_unpacking, Args...>() < constexpr_first<is_ds_unpacking, Args...>(),
+ "Invalid function call: positional args must precede keywords and ** unpacking; "
+ "* unpacking must precede ** unpacking"
+ );
+ return unpacking_collector<policy>(std::forward<Args>(args)...);
+}
+
+template <typename Derived>
+template <return_value_policy policy, typename... Args>
+object object_api<Derived>::operator()(Args &&...args) const {
+ return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr());
+}
+
+template <typename Derived>
+template <return_value_policy policy, typename... Args>
+object object_api<Derived>::call(Args &&...args) const {
+ return operator()<policy>(std::forward<Args>(args)...);
+}
+
+NAMESPACE_END(detail)
+
+#define PYBIND11_MAKE_OPAQUE(Type) \
+ namespace pybind11 { namespace detail { \
+ template<> class type_caster<Type> : public type_caster_base<Type> { }; \
+ }}
+
+NAMESPACE_END(pybind11)