summaryrefslogtreecommitdiff
path: root/ext/pybind11/include/pybind11/eigen.h
diff options
context:
space:
mode:
Diffstat (limited to 'ext/pybind11/include/pybind11/eigen.h')
-rw-r--r--ext/pybind11/include/pybind11/eigen.h564
1 files changed, 457 insertions, 107 deletions
diff --git a/ext/pybind11/include/pybind11/eigen.h b/ext/pybind11/include/pybind11/eigen.h
index 0a1208e16..6abe8c48f 100644
--- a/ext/pybind11/include/pybind11/eigen.h
+++ b/ext/pybind11/include/pybind11/eigen.h
@@ -17,158 +17,506 @@
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wconversion"
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
+# if __GNUC__ >= 7
+# pragma GCC diagnostic ignored "-Wint-in-bool-context"
+# endif
#endif
#include <Eigen/Core>
#include <Eigen/SparseCore>
-#if defined(__GNUG__) || defined(__clang__)
-# pragma GCC diagnostic pop
-#endif
-
#if defined(_MSC_VER)
-#pragma warning(push)
-#pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
+# pragma warning(push)
+# pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
#endif
+// Eigen prior to 3.2.7 doesn't have proper move constructors--but worse, some classes get implicit
+// move constructors that break things. We could detect this an explicitly copy, but an extra copy
+// of matrices seems highly undesirable.
+static_assert(EIGEN_VERSION_AT_LEAST(3,2,7), "Eigen support in pybind11 requires Eigen >= 3.2.7");
+
NAMESPACE_BEGIN(pybind11)
+
+// Provide a convenience alias for easier pass-by-ref usage with fully dynamic strides:
+using EigenDStride = Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>;
+template <typename MatrixType> using EigenDRef = Eigen::Ref<MatrixType, 0, EigenDStride>;
+template <typename MatrixType> using EigenDMap = Eigen::Map<MatrixType, 0, EigenDStride>;
+
NAMESPACE_BEGIN(detail)
-template <typename T> using is_eigen_dense = is_template_base_of<Eigen::DenseBase, T>;
-template <typename T> using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>;
-template <typename T> using is_eigen_ref = is_template_base_of<Eigen::RefBase, T>;
+#if EIGEN_VERSION_AT_LEAST(3,3,0)
+using EigenIndex = Eigen::Index;
+#else
+using EigenIndex = EIGEN_DEFAULT_DENSE_INDEX_TYPE;
+#endif
+// Matches Eigen::Map, Eigen::Ref, blocks, etc:
+template <typename T> using is_eigen_dense_map = all_of<is_template_base_of<Eigen::DenseBase, T>, std::is_base_of<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>>;
+template <typename T> using is_eigen_mutable_map = std::is_base_of<Eigen::MapBase<T, Eigen::WriteAccessors>, T>;
+template <typename T> using is_eigen_dense_plain = all_of<negation<is_eigen_dense_map<T>>, is_template_base_of<Eigen::PlainObjectBase, T>>;
+template <typename T> using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>;
// Test for objects inheriting from EigenBase<Derived> that aren't captured by the above. This
// basically covers anything that can be assigned to a dense matrix but that don't have a typical
// matrix data layout that can be copied from their .data(). For example, DiagonalMatrix and
// SelfAdjointView fall into this category.
-template <typename T> using is_eigen_base = bool_constant<
- is_template_base_of<Eigen::EigenBase, T>::value
- && !is_eigen_dense<T>::value && !is_eigen_sparse<T>::value
+template <typename T> using is_eigen_other = all_of<
+ is_template_base_of<Eigen::EigenBase, T>,
+ negation<any_of<is_eigen_dense_map<T>, is_eigen_dense_plain<T>, is_eigen_sparse<T>>>
>;
+// Captures numpy/eigen conformability status (returned by EigenProps::conformable()):
+template <bool EigenRowMajor> struct EigenConformable {
+ bool conformable = false;
+ EigenIndex rows = 0, cols = 0;
+ EigenDStride stride{0, 0};
+
+ EigenConformable(bool fits = false) : conformable{fits} {}
+ // Matrix type:
+ EigenConformable(EigenIndex r, EigenIndex c,
+ EigenIndex rstride, EigenIndex cstride) :
+ conformable{true}, rows{r}, cols{c},
+ stride(EigenRowMajor ? rstride : cstride /* outer stride */,
+ EigenRowMajor ? cstride : rstride /* inner stride */)
+ {}
+ // Vector type:
+ EigenConformable(EigenIndex r, EigenIndex c, EigenIndex stride)
+ : EigenConformable(r, c, r == 1 ? c*stride : stride, c == 1 ? r : r*stride) {}
+
+ template <typename props> bool stride_compatible() const {
+ // To have compatible strides, we need (on both dimensions) one of fully dynamic strides,
+ // matching strides, or a dimension size of 1 (in which case the stride value is irrelevant)
+ return
+ (props::inner_stride == Eigen::Dynamic || props::inner_stride == stride.inner() ||
+ (EigenRowMajor ? cols : rows) == 1) &&
+ (props::outer_stride == Eigen::Dynamic || props::outer_stride == stride.outer() ||
+ (EigenRowMajor ? rows : cols) == 1);
+ }
+ operator bool() const { return conformable; }
+};
+
+template <typename Type> struct eigen_extract_stride { using type = Type; };
+template <typename PlainObjectType, int MapOptions, typename StrideType>
+struct eigen_extract_stride<Eigen::Map<PlainObjectType, MapOptions, StrideType>> { using type = StrideType; };
+template <typename PlainObjectType, int Options, typename StrideType>
+struct eigen_extract_stride<Eigen::Ref<PlainObjectType, Options, StrideType>> { using type = StrideType; };
+
+// Helper struct for extracting information from an Eigen type
+template <typename Type_> struct EigenProps {
+ using Type = Type_;
+ using Scalar = typename Type::Scalar;
+ using StrideType = typename eigen_extract_stride<Type>::type;
+ static constexpr EigenIndex
+ rows = Type::RowsAtCompileTime,
+ cols = Type::ColsAtCompileTime,
+ size = Type::SizeAtCompileTime;
+ static constexpr bool
+ row_major = Type::IsRowMajor,
+ vector = Type::IsVectorAtCompileTime, // At least one dimension has fixed size 1
+ fixed_rows = rows != Eigen::Dynamic,
+ fixed_cols = cols != Eigen::Dynamic,
+ fixed = size != Eigen::Dynamic, // Fully-fixed size
+ dynamic = !fixed_rows && !fixed_cols; // Fully-dynamic size
+
+ template <EigenIndex i, EigenIndex ifzero> using if_zero = std::integral_constant<EigenIndex, i == 0 ? ifzero : i>;
+ static constexpr EigenIndex inner_stride = if_zero<StrideType::InnerStrideAtCompileTime, 1>::value,
+ outer_stride = if_zero<StrideType::OuterStrideAtCompileTime,
+ vector ? size : row_major ? cols : rows>::value;
+ static constexpr bool dynamic_stride = inner_stride == Eigen::Dynamic && outer_stride == Eigen::Dynamic;
+ static constexpr bool requires_row_major = !dynamic_stride && !vector && (row_major ? inner_stride : outer_stride) == 1;
+ static constexpr bool requires_col_major = !dynamic_stride && !vector && (row_major ? outer_stride : inner_stride) == 1;
+
+ // Takes an input array and determines whether we can make it fit into the Eigen type. If
+ // the array is a vector, we attempt to fit it into either an Eigen 1xN or Nx1 vector
+ // (preferring the latter if it will fit in either, i.e. for a fully dynamic matrix type).
+ static EigenConformable<row_major> conformable(const array &a) {
+ const auto dims = a.ndim();
+ if (dims < 1 || dims > 2)
+ return false;
+
+ if (dims == 2) { // Matrix type: require exact match (or dynamic)
+
+ EigenIndex
+ np_rows = a.shape(0),
+ np_cols = a.shape(1),
+ np_rstride = a.strides(0) / sizeof(Scalar),
+ np_cstride = a.strides(1) / sizeof(Scalar);
+ if ((fixed_rows && np_rows != rows) || (fixed_cols && np_cols != cols))
+ return false;
+
+ return {np_rows, np_cols, np_rstride, np_cstride};
+ }
+
+ // Otherwise we're storing an n-vector. Only one of the strides will be used, but whichever
+ // is used, we want the (single) numpy stride value.
+ const EigenIndex n = a.shape(0),
+ stride = a.strides(0) / sizeof(Scalar);
+
+ if (vector) { // Eigen type is a compile-time vector
+ if (fixed && size != n)
+ return false; // Vector size mismatch
+ return {rows == 1 ? 1 : n, cols == 1 ? 1 : n, stride};
+ }
+ else if (fixed) {
+ // The type has a fixed size, but is not a vector: abort
+ return false;
+ }
+ else if (fixed_cols) {
+ // Since this isn't a vector, cols must be != 1. We allow this only if it exactly
+ // equals the number of elements (rows is Dynamic, and so 1 row is allowed).
+ if (cols != n) return false;
+ return {1, n, stride};
+ }
+ else {
+ // Otherwise it's either fully dynamic, or column dynamic; both become a column vector
+ if (fixed_rows && rows != n) return false;
+ return {n, 1, stride};
+ }
+ }
+
+ static PYBIND11_DESCR descriptor() {
+ constexpr bool show_writeable = is_eigen_dense_map<Type>::value && is_eigen_mutable_map<Type>::value;
+ constexpr bool show_order = is_eigen_dense_map<Type>::value;
+ constexpr bool show_c_contiguous = show_order && requires_row_major;
+ constexpr bool show_f_contiguous = !show_c_contiguous && show_order && requires_col_major;
+
+ return _("numpy.ndarray[") + npy_format_descriptor<Scalar>::name() +
+ _("[") + _<fixed_rows>(_<(size_t) rows>(), _("m")) +
+ _(", ") + _<fixed_cols>(_<(size_t) cols>(), _("n")) +
+ _("]") +
+ // For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to be
+ // satisfied: writeable=True (for a mutable reference), and, depending on the map's stride
+ // options, possibly f_contiguous or c_contiguous. We include them in the descriptor output
+ // to provide some hint as to why a TypeError is occurring (otherwise it can be confusing to
+ // see that a function accepts a 'numpy.ndarray[float64[3,2]]' and an error message that you
+ // *gave* a numpy.ndarray of the right type and dimensions.
+ _<show_writeable>(", flags.writeable", "") +
+ _<show_c_contiguous>(", flags.c_contiguous", "") +
+ _<show_f_contiguous>(", flags.f_contiguous", "") +
+ _("]");
+ }
+};
+
+// Casts an Eigen type to numpy array. If given a base, the numpy array references the src data,
+// otherwise it'll make a copy. writeable lets you turn off the writeable flag for the array.
+template <typename props> handle eigen_array_cast(typename props::Type const &src, handle base = handle(), bool writeable = true) {
+ constexpr size_t elem_size = sizeof(typename props::Scalar);
+ std::vector<size_t> shape, strides;
+ if (props::vector) {
+ shape.push_back(src.size());
+ strides.push_back(elem_size * src.innerStride());
+ }
+ else {
+ shape.push_back(src.rows());
+ shape.push_back(src.cols());
+ strides.push_back(elem_size * src.rowStride());
+ strides.push_back(elem_size * src.colStride());
+ }
+ array a(std::move(shape), std::move(strides), src.data(), base);
+ if (!writeable)
+ array_proxy(a.ptr())->flags &= ~detail::npy_api::NPY_ARRAY_WRITEABLE_;
+
+ return a.release();
+}
+
+// Takes an lvalue ref to some Eigen type and a (python) base object, creating a numpy array that
+// reference the Eigen object's data with `base` as the python-registered base class (if omitted,
+// the base will be set to None, and lifetime management is up to the caller). The numpy array is
+// non-writeable if the given type is const.
+template <typename props, typename Type>
+handle eigen_ref_array(Type &src, handle parent = none()) {
+ // none here is to get past array's should-we-copy detection, which currently always
+ // copies when there is no base. Setting the base to None should be harmless.
+ return eigen_array_cast<props>(src, parent, !std::is_const<Type>::value);
+}
+
+// Takes a pointer to some dense, plain Eigen type, builds a capsule around it, then returns a numpy
+// array that references the encapsulated data with a python-side reference to the capsule to tie
+// its destruction to that of any dependent python objects. Const-ness is determined by whether or
+// not the Type of the pointer given is const.
+template <typename props, typename Type, typename = enable_if_t<is_eigen_dense_plain<Type>::value>>
+handle eigen_encapsulate(Type *src) {
+ capsule base(src, [](void *o) { delete static_cast<Type *>(o); });
+ return eigen_ref_array<props>(*src, base);
+}
+
+// Type caster for regular, dense matrix types (e.g. MatrixXd), but not maps/refs/etc. of dense
+// types.
template<typename Type>
-struct type_caster<Type, enable_if_t<is_eigen_dense<Type>::value && !is_eigen_ref<Type>::value>> {
- typedef typename Type::Scalar Scalar;
- static constexpr bool rowMajor = Type::Flags & Eigen::RowMajorBit;
- static constexpr bool isVector = Type::IsVectorAtCompileTime;
+struct type_caster<Type, enable_if_t<is_eigen_dense_plain<Type>::value>> {
+ using Scalar = typename Type::Scalar;
+ using props = EigenProps<Type>;
bool load(handle src, bool) {
auto buf = array_t<Scalar>::ensure(src);
if (!buf)
return false;
- if (buf.ndim() == 1) {
- typedef Eigen::InnerStride<> Strides;
- if (!isVector &&
- !(Type::RowsAtCompileTime == Eigen::Dynamic &&
- Type::ColsAtCompileTime == Eigen::Dynamic))
- return false;
+ auto dims = buf.ndim();
+ if (dims < 1 || dims > 2)
+ return false;
- if (Type::SizeAtCompileTime != Eigen::Dynamic &&
- buf.shape(0) != (size_t) Type::SizeAtCompileTime)
- return false;
+ auto fits = props::conformable(buf);
+ if (!fits)
+ return false; // Non-comformable vector/matrix types
- Strides::Index n_elts = (Strides::Index) buf.shape(0);
- Strides::Index unity = 1;
+ value = Eigen::Map<const Type, 0, EigenDStride>(buf.data(), fits.rows, fits.cols, fits.stride);
- value = Eigen::Map<Type, 0, Strides>(
- buf.mutable_data(),
- rowMajor ? unity : n_elts,
- rowMajor ? n_elts : unity,
- Strides(buf.strides(0) / sizeof(Scalar))
- );
- } else if (buf.ndim() == 2) {
- typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
+ return true;
+ }
- if ((Type::RowsAtCompileTime != Eigen::Dynamic && buf.shape(0) != (size_t) Type::RowsAtCompileTime) ||
- (Type::ColsAtCompileTime != Eigen::Dynamic && buf.shape(1) != (size_t) Type::ColsAtCompileTime))
- return false;
+private:
+
+ // Cast implementation
+ template <typename CType>
+ static handle cast_impl(CType *src, return_value_policy policy, handle parent) {
+ switch (policy) {
+ case return_value_policy::take_ownership:
+ case return_value_policy::automatic:
+ return eigen_encapsulate<props>(src);
+ case return_value_policy::move:
+ return eigen_encapsulate<props>(new CType(std::move(*src)));
+ case return_value_policy::copy:
+ return eigen_array_cast<props>(*src);
+ case return_value_policy::reference:
+ case return_value_policy::automatic_reference:
+ return eigen_ref_array<props>(*src);
+ case return_value_policy::reference_internal:
+ return eigen_ref_array<props>(*src, parent);
+ default:
+ throw cast_error("unhandled return_value_policy: should not happen!");
+ };
+ }
- value = Eigen::Map<Type, 0, Strides>(
- buf.mutable_data(),
- typename Strides::Index(buf.shape(0)),
- typename Strides::Index(buf.shape(1)),
- Strides(buf.strides(rowMajor ? 0 : 1) / sizeof(Scalar),
- buf.strides(rowMajor ? 1 : 0) / sizeof(Scalar))
- );
- } else {
- return false;
- }
- return true;
+public:
+
+ // Normal returned non-reference, non-const value:
+ static handle cast(Type &&src, return_value_policy /* policy */, handle parent) {
+ return cast_impl(&src, return_value_policy::move, parent);
+ }
+ // If you return a non-reference const, we mark the numpy array readonly:
+ static handle cast(const Type &&src, return_value_policy /* policy */, handle parent) {
+ return cast_impl(&src, return_value_policy::move, parent);
+ }
+ // lvalue reference return; default (automatic) becomes copy
+ static handle cast(Type &src, return_value_policy policy, handle parent) {
+ if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
+ policy = return_value_policy::copy;
+ return cast_impl(&src, policy, parent);
+ }
+ // const lvalue reference return; default (automatic) becomes copy
+ static handle cast(const Type &src, return_value_policy policy, handle parent) {
+ if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
+ policy = return_value_policy::copy;
+ return cast(&src, policy, parent);
+ }
+ // non-const pointer return
+ static handle cast(Type *src, return_value_policy policy, handle parent) {
+ return cast_impl(src, policy, parent);
+ }
+ // const pointer return
+ static handle cast(const Type *src, return_value_policy policy, handle parent) {
+ return cast_impl(src, policy, parent);
}
- static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
- if (isVector) {
- return array(
- { (size_t) src.size() }, // shape
- { sizeof(Scalar) * static_cast<size_t>(src.innerStride()) }, // strides
- src.data() // data
- ).release();
- } else {
- return array(
- { (size_t) src.rows(), // shape
- (size_t) src.cols() },
- { sizeof(Scalar) * static_cast<size_t>(src.rowStride()), // strides
- sizeof(Scalar) * static_cast<size_t>(src.colStride()) },
- src.data() // data
- ).release();
+ static PYBIND11_DESCR name() { return type_descr(props::descriptor()); }
+
+ operator Type*() { return &value; }
+ operator Type&() { return value; }
+ template <typename T> using cast_op_type = cast_op_type<T>;
+
+private:
+ Type value;
+};
+
+// Eigen Ref/Map classes have slightly different policy requirements, meaning we don't want to force
+// `move` when a Ref/Map rvalue is returned; we treat Ref<> sort of like a pointer (we care about
+// the underlying data, not the outer shell).
+template <typename Return>
+struct return_value_policy_override<Return, enable_if_t<is_eigen_dense_map<Return>::value>> {
+ static return_value_policy policy(return_value_policy p) { return p; }
+};
+
+// Base class for casting reference/map/block/etc. objects back to python.
+template <typename MapType> struct eigen_map_caster {
+private:
+ using props = EigenProps<MapType>;
+
+public:
+
+ // Directly referencing a ref/map's data is a bit dangerous (whatever the map/ref points to has
+ // to stay around), but we'll allow it under the assumption that you know what you're doing (and
+ // have an appropriate keep_alive in place). We return a numpy array pointing directly at the
+ // ref's data (The numpy array ends up read-only if the ref was to a const matrix type.) Note
+ // that this means you need to ensure you don't destroy the object in some other way (e.g. with
+ // an appropriate keep_alive, or with a reference to a statically allocated matrix).
+ static handle cast(const MapType &src, return_value_policy policy, handle parent) {
+ switch (policy) {
+ case return_value_policy::copy:
+ return eigen_array_cast<props>(src);
+ case return_value_policy::reference_internal:
+ return eigen_array_cast<props>(src, parent, is_eigen_mutable_map<MapType>::value);
+ case return_value_policy::reference:
+ case return_value_policy::automatic:
+ case return_value_policy::automatic_reference:
+ return eigen_array_cast<props>(src, none(), is_eigen_mutable_map<MapType>::value);
+ default:
+ // move, take_ownership don't make any sense for a ref/map:
+ pybind11_fail("Invalid return_value_policy for Eigen Map/Ref/Block type");
}
}
- PYBIND11_TYPE_CASTER(Type, _("numpy.ndarray[") + npy_format_descriptor<Scalar>::name() +
- _("[") + rows() + _(", ") + cols() + _("]]"));
+ static PYBIND11_DESCR name() { return props::descriptor(); }
-protected:
- template <typename T = Type, enable_if_t<T::RowsAtCompileTime == Eigen::Dynamic, int> = 0>
- static PYBIND11_DESCR rows() { return _("m"); }
- template <typename T = Type, enable_if_t<T::RowsAtCompileTime != Eigen::Dynamic, int> = 0>
- static PYBIND11_DESCR rows() { return _<T::RowsAtCompileTime>(); }
- template <typename T = Type, enable_if_t<T::ColsAtCompileTime == Eigen::Dynamic, int> = 0>
- static PYBIND11_DESCR cols() { return _("n"); }
- template <typename T = Type, enable_if_t<T::ColsAtCompileTime != Eigen::Dynamic, int> = 0>
- static PYBIND11_DESCR cols() { return _<T::ColsAtCompileTime>(); }
+ // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
+ // types but not bound arguments). We still provide them (with an explicitly delete) so that
+ // you end up here if you try anyway.
+ bool load(handle, bool) = delete;
+ operator MapType() = delete;
+ template <typename> using cast_op_type = MapType;
};
-// Eigen::Ref<Derived> satisfies is_eigen_dense, but isn't constructable, so it needs a special
-// type_caster to handle argument copying/forwarding.
-template <typename CVDerived, int Options, typename StrideType>
-struct type_caster<Eigen::Ref<CVDerived, Options, StrideType>> {
-protected:
- using Type = Eigen::Ref<CVDerived, Options, StrideType>;
- using Derived = typename std::remove_const<CVDerived>::type;
- using DerivedCaster = type_caster<Derived>;
- DerivedCaster derived_caster;
- std::unique_ptr<Type> value;
+// We can return any map-like object (but can only load Refs, specialized next):
+template <typename Type> struct type_caster<Type, enable_if_t<is_eigen_dense_map<Type>::value>>
+ : eigen_map_caster<Type> {};
+
+// Loader for Ref<...> arguments. See the documentation for info on how to make this work without
+// copying (it requires some extra effort in many cases).
+template <typename PlainObjectType, typename StrideType>
+struct type_caster<
+ Eigen::Ref<PlainObjectType, 0, StrideType>,
+ enable_if_t<is_eigen_dense_map<Eigen::Ref<PlainObjectType, 0, StrideType>>::value>
+> : public eigen_map_caster<Eigen::Ref<PlainObjectType, 0, StrideType>> {
+private:
+ using Type = Eigen::Ref<PlainObjectType, 0, StrideType>;
+ using props = EigenProps<Type>;
+ using Scalar = typename props::Scalar;
+ using MapType = Eigen::Map<PlainObjectType, 0, StrideType>;
+ using Array = array_t<Scalar, array::forcecast |
+ ((props::row_major ? props::inner_stride : props::outer_stride) == 1 ? array::c_style :
+ (props::row_major ? props::outer_stride : props::inner_stride) == 1 ? array::f_style : 0)>;
+ static constexpr bool need_writeable = is_eigen_mutable_map<Type>::value;
+ // Delay construction (these have no default constructor)
+ std::unique_ptr<MapType> map;
+ std::unique_ptr<Type> ref;
+ // Our array. When possible, this is just a numpy array pointing to the source data, but
+ // sometimes we can't avoid copying (e.g. input is not a numpy array at all, has an incompatible
+ // layout, or is an array of a type that needs to be converted). Using a numpy temporary
+ // (rather than an Eigen temporary) saves an extra copy when we need both type conversion and
+ // storage order conversion. (Note that we refuse to use this temporary copy when loading an
+ // argument for a Ref<M> with M non-const, i.e. a read-write reference).
+ Array copy_or_ref;
public:
- bool load(handle src, bool convert) { if (derived_caster.load(src, convert)) { value.reset(new Type(derived_caster.operator Derived&())); return true; } return false; }
- static handle cast(const Type &src, return_value_policy policy, handle parent) { return DerivedCaster::cast(src, policy, parent); }
- static handle cast(const Type *src, return_value_policy policy, handle parent) { return DerivedCaster::cast(*src, policy, parent); }
+ bool load(handle src, bool convert) {
+ // First check whether what we have is already an array of the right type. If not, we can't
+ // avoid a copy (because the copy is also going to do type conversion).
+ bool need_copy = !isinstance<Array>(src);
+
+ EigenConformable<props::row_major> fits;
+ if (!need_copy) {
+ // We don't need a converting copy, but we also need to check whether the strides are
+ // compatible with the Ref's stride requirements
+ Array aref = reinterpret_borrow<Array>(src);
+
+ if (aref && (!need_writeable || aref.writeable())) {
+ fits = props::conformable(aref);
+ if (!fits) return false; // Incompatible dimensions
+ if (!fits.template stride_compatible<props>())
+ need_copy = true;
+ else
+ copy_or_ref = std::move(aref);
+ }
+ else {
+ need_copy = true;
+ }
+ }
+
+ if (need_copy) {
+ // We need to copy: If we need a mutable reference, or we're not supposed to convert
+ // (either because we're in the no-convert overload pass, or because we're explicitly
+ // instructed not to copy (via `py::arg().noconvert()`) we have to fail loading.
+ if (!convert || need_writeable) return false;
+
+ Array copy = Array::ensure(src);
+ if (!copy) return false;
+ fits = props::conformable(copy);
+ if (!fits || !fits.template stride_compatible<props>())
+ return false;
+ copy_or_ref = std::move(copy);
+ }
+
+ ref.reset();
+ map.reset(new MapType(data(copy_or_ref), fits.rows, fits.cols, make_stride(fits.stride.outer(), fits.stride.inner())));
+ ref.reset(new Type(*map));
- static PYBIND11_DESCR name() { return DerivedCaster::name(); }
+ return true;
+ }
- operator Type*() { return value.get(); }
- operator Type&() { if (!value) pybind11_fail("Eigen::Ref<...> value not loaded"); return *value; }
+ operator Type*() { return ref.get(); }
+ operator Type&() { return *ref; }
template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>;
+
+private:
+ template <typename T = Type, enable_if_t<is_eigen_mutable_map<T>::value, int> = 0>
+ Scalar *data(Array &a) { return a.mutable_data(); }
+
+ template <typename T = Type, enable_if_t<!is_eigen_mutable_map<T>::value, int> = 0>
+ const Scalar *data(Array &a) { return a.data(); }
+
+ // Attempt to figure out a constructor of `Stride` that will work.
+ // If both strides are fixed, use a default constructor:
+ template <typename S> using stride_ctor_default = bool_constant<
+ S::InnerStrideAtCompileTime != Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic &&
+ std::is_default_constructible<S>::value>;
+ // Otherwise, if there is a two-index constructor, assume it is (outer,inner) like
+ // Eigen::Stride, and use it:
+ template <typename S> using stride_ctor_dual = bool_constant<
+ !stride_ctor_default<S>::value && std::is_constructible<S, EigenIndex, EigenIndex>::value>;
+ // Otherwise, if there is a one-index constructor, and just one of the strides is dynamic, use
+ // it (passing whichever stride is dynamic).
+ template <typename S> using stride_ctor_outer = bool_constant<
+ !any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value &&
+ S::OuterStrideAtCompileTime == Eigen::Dynamic && S::InnerStrideAtCompileTime != Eigen::Dynamic &&
+ std::is_constructible<S, EigenIndex>::value>;
+ template <typename S> using stride_ctor_inner = bool_constant<
+ !any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value &&
+ S::InnerStrideAtCompileTime == Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic &&
+ std::is_constructible<S, EigenIndex>::value>;
+
+ template <typename S = StrideType, enable_if_t<stride_ctor_default<S>::value, int> = 0>
+ static S make_stride(EigenIndex, EigenIndex) { return S(); }
+ template <typename S = StrideType, enable_if_t<stride_ctor_dual<S>::value, int> = 0>
+ static S make_stride(EigenIndex outer, EigenIndex inner) { return S(outer, inner); }
+ template <typename S = StrideType, enable_if_t<stride_ctor_outer<S>::value, int> = 0>
+ static S make_stride(EigenIndex outer, EigenIndex) { return S(outer); }
+ template <typename S = StrideType, enable_if_t<stride_ctor_inner<S>::value, int> = 0>
+ static S make_stride(EigenIndex, EigenIndex inner) { return S(inner); }
+
};
-// type_caster for special matrix types (e.g. DiagonalMatrix): load() is not supported, but we can
-// cast them into the python domain by first copying to a regular Eigen::Matrix, then casting that.
+// type_caster for special matrix types (e.g. DiagonalMatrix), which are EigenBase, but not
+// EigenDense (i.e. they don't have a data(), at least not with the usual matrix layout).
+// load() is not supported, but we can cast them into the python domain by first copying to a
+// regular Eigen::Matrix, then casting that.
template <typename Type>
-struct type_caster<Type, enable_if_t<is_eigen_base<Type>::value && !is_eigen_ref<Type>::value>> {
+struct type_caster<Type, enable_if_t<is_eigen_other<Type>::value>> {
protected:
- using Matrix = Eigen::Matrix<typename Type::Scalar, Eigen::Dynamic, Eigen::Dynamic>;
- using MatrixCaster = type_caster<Matrix>;
+ using Matrix = Eigen::Matrix<typename Type::Scalar, Type::RowsAtCompileTime, Type::ColsAtCompileTime>;
+ using props = EigenProps<Matrix>;
public:
- [[noreturn]] bool load(handle, bool) { pybind11_fail("Unable to load() into specialized EigenBase object"); }
- static handle cast(const Type &src, return_value_policy policy, handle parent) { return MatrixCaster::cast(Matrix(src), policy, parent); }
- static handle cast(const Type *src, return_value_policy policy, handle parent) { return MatrixCaster::cast(Matrix(*src), policy, parent); }
+ static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
+ handle h = eigen_encapsulate<props>(new Matrix(src));
+ return h;
+ }
+ static handle cast(const Type *src, return_value_policy policy, handle parent) { return cast(*src, policy, parent); }
- static PYBIND11_DESCR name() { return MatrixCaster::name(); }
+ static PYBIND11_DESCR name() { return props::descriptor(); }
- [[noreturn]] operator Type*() { pybind11_fail("Loading not supported for specialized EigenBase object"); }
- [[noreturn]] operator Type&() { pybind11_fail("Loading not supported for specialized EigenBase object"); }
- template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>;
+ // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
+ // types but not bound arguments). We still provide them (with an explicitly delete) so that
+ // you end up here if you try anyway.
+ bool load(handle, bool) = delete;
+ operator Type() = delete;
+ template <typename> using cast_op_type = Type;
};
template<typename Type>
@@ -176,7 +524,7 @@ struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> {
typedef typename Type::Scalar Scalar;
typedef typename std::remove_reference<decltype(*std::declval<Type>().outerIndexPtr())>::type StorageIndex;
typedef typename Type::Index Index;
- static constexpr bool rowMajor = Type::Flags & Eigen::RowMajorBit;
+ static constexpr bool rowMajor = Type::IsRowMajor;
bool load(handle src, bool) {
if (!src)
@@ -227,13 +575,15 @@ struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> {
).release();
}
- PYBIND11_TYPE_CASTER(Type, _<(Type::Flags & Eigen::RowMajorBit) != 0>("scipy.sparse.csr_matrix[", "scipy.sparse.csc_matrix[")
+ PYBIND11_TYPE_CASTER(Type, _<(Type::IsRowMajor) != 0>("scipy.sparse.csr_matrix[", "scipy.sparse.csc_matrix[")
+ npy_format_descriptor<Scalar>::name() + _("]"));
};
NAMESPACE_END(detail)
NAMESPACE_END(pybind11)
-#if defined(_MSC_VER)
-#pragma warning(pop)
+#if defined(__GNUG__) || defined(__clang__)
+# pragma GCC diagnostic pop
+#elif defined(_MSC_VER)
+# pragma warning(pop)
#endif