summaryrefslogtreecommitdiff
path: root/ext/pybind11/tests/test_virtual_functions.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ext/pybind11/tests/test_virtual_functions.cpp')
-rw-r--r--ext/pybind11/tests/test_virtual_functions.cpp347
1 files changed, 347 insertions, 0 deletions
diff --git a/ext/pybind11/tests/test_virtual_functions.cpp b/ext/pybind11/tests/test_virtual_functions.cpp
new file mode 100644
index 000000000..0f8ed2afb
--- /dev/null
+++ b/ext/pybind11/tests/test_virtual_functions.cpp
@@ -0,0 +1,347 @@
+/*
+ tests/test_virtual_functions.cpp -- overriding virtual functions from Python
+
+ Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
+
+ All rights reserved. Use of this source code is governed by a
+ BSD-style license that can be found in the LICENSE file.
+*/
+
+#include "pybind11_tests.h"
+#include "constructor_stats.h"
+#include <pybind11/functional.h>
+
+/* This is an example class that we'll want to be able to extend from Python */
+class ExampleVirt {
+public:
+ ExampleVirt(int state) : state(state) { print_created(this, state); }
+ ExampleVirt(const ExampleVirt &e) : state(e.state) { print_copy_created(this); }
+ ExampleVirt(ExampleVirt &&e) : state(e.state) { print_move_created(this); e.state = 0; }
+ ~ExampleVirt() { print_destroyed(this); }
+
+ virtual int run(int value) {
+ py::print("Original implementation of "
+ "ExampleVirt::run(state={}, value={}, str1={}, str2={})"_s.format(state, value, get_string1(), *get_string2()));
+ return state + value;
+ }
+
+ virtual bool run_bool() = 0;
+ virtual void pure_virtual() = 0;
+
+ // Returning a reference/pointer to a type converted from python (numbers, strings, etc.) is a
+ // bit trickier, because the actual int& or std::string& or whatever only exists temporarily, so
+ // we have to handle it specially in the trampoline class (see below).
+ virtual const std::string &get_string1() { return str1; }
+ virtual const std::string *get_string2() { return &str2; }
+
+private:
+ int state;
+ const std::string str1{"default1"}, str2{"default2"};
+};
+
+/* This is a wrapper class that must be generated */
+class PyExampleVirt : public ExampleVirt {
+public:
+ using ExampleVirt::ExampleVirt; /* Inherit constructors */
+
+ int run(int value) override {
+ /* Generate wrapping code that enables native function overloading */
+ PYBIND11_OVERLOAD(
+ int, /* Return type */
+ ExampleVirt, /* Parent class */
+ run, /* Name of function */
+ value /* Argument(s) */
+ );
+ }
+
+ bool run_bool() override {
+ PYBIND11_OVERLOAD_PURE(
+ bool, /* Return type */
+ ExampleVirt, /* Parent class */
+ run_bool, /* Name of function */
+ /* This function has no arguments. The trailing comma
+ in the previous line is needed for some compilers */
+ );
+ }
+
+ void pure_virtual() override {
+ PYBIND11_OVERLOAD_PURE(
+ void, /* Return type */
+ ExampleVirt, /* Parent class */
+ pure_virtual, /* Name of function */
+ /* This function has no arguments. The trailing comma
+ in the previous line is needed for some compilers */
+ );
+ }
+
+ // We can return reference types for compatibility with C++ virtual interfaces that do so, but
+ // note they have some significant limitations (see the documentation).
+ const std::string &get_string1() override {
+ PYBIND11_OVERLOAD(
+ const std::string &, /* Return type */
+ ExampleVirt, /* Parent class */
+ get_string1, /* Name of function */
+ /* (no arguments) */
+ );
+ }
+
+ const std::string *get_string2() override {
+ PYBIND11_OVERLOAD(
+ const std::string *, /* Return type */
+ ExampleVirt, /* Parent class */
+ get_string2, /* Name of function */
+ /* (no arguments) */
+ );
+ }
+
+};
+
+class NonCopyable {
+public:
+ NonCopyable(int a, int b) : value{new int(a*b)} { print_created(this, a, b); }
+ NonCopyable(NonCopyable &&o) { value = std::move(o.value); print_move_created(this); }
+ NonCopyable(const NonCopyable &) = delete;
+ NonCopyable() = delete;
+ void operator=(const NonCopyable &) = delete;
+ void operator=(NonCopyable &&) = delete;
+ std::string get_value() const {
+ if (value) return std::to_string(*value); else return "(null)";
+ }
+ ~NonCopyable() { print_destroyed(this); }
+
+private:
+ std::unique_ptr<int> value;
+};
+
+// This is like the above, but is both copy and movable. In effect this means it should get moved
+// when it is not referenced elsewhere, but copied if it is still referenced.
+class Movable {
+public:
+ Movable(int a, int b) : value{a+b} { print_created(this, a, b); }
+ Movable(const Movable &m) { value = m.value; print_copy_created(this); }
+ Movable(Movable &&m) { value = std::move(m.value); print_move_created(this); }
+ std::string get_value() const { return std::to_string(value); }
+ ~Movable() { print_destroyed(this); }
+private:
+ int value;
+};
+
+class NCVirt {
+public:
+ virtual NonCopyable get_noncopyable(int a, int b) { return NonCopyable(a, b); }
+ virtual Movable get_movable(int a, int b) = 0;
+
+ std::string print_nc(int a, int b) { return get_noncopyable(a, b).get_value(); }
+ std::string print_movable(int a, int b) { return get_movable(a, b).get_value(); }
+};
+class NCVirtTrampoline : public NCVirt {
+#if !defined(__INTEL_COMPILER)
+ NonCopyable get_noncopyable(int a, int b) override {
+ PYBIND11_OVERLOAD(NonCopyable, NCVirt, get_noncopyable, a, b);
+ }
+#endif
+ Movable get_movable(int a, int b) override {
+ PYBIND11_OVERLOAD_PURE(Movable, NCVirt, get_movable, a, b);
+ }
+};
+
+int runExampleVirt(ExampleVirt *ex, int value) {
+ return ex->run(value);
+}
+
+bool runExampleVirtBool(ExampleVirt* ex) {
+ return ex->run_bool();
+}
+
+void runExampleVirtVirtual(ExampleVirt *ex) {
+ ex->pure_virtual();
+}
+
+
+// Inheriting virtual methods. We do two versions here: the repeat-everything version and the
+// templated trampoline versions mentioned in docs/advanced.rst.
+//
+// These base classes are exactly the same, but we technically need distinct
+// classes for this example code because we need to be able to bind them
+// properly (pybind11, sensibly, doesn't allow us to bind the same C++ class to
+// multiple python classes).
+class A_Repeat {
+#define A_METHODS \
+public: \
+ virtual int unlucky_number() = 0; \
+ virtual std::string say_something(unsigned times) { \
+ std::string s = ""; \
+ for (unsigned i = 0; i < times; ++i) \
+ s += "hi"; \
+ return s; \
+ } \
+ std::string say_everything() { \
+ return say_something(1) + " " + std::to_string(unlucky_number()); \
+ }
+A_METHODS
+};
+class B_Repeat : public A_Repeat {
+#define B_METHODS \
+public: \
+ int unlucky_number() override { return 13; } \
+ std::string say_something(unsigned times) override { \
+ return "B says hi " + std::to_string(times) + " times"; \
+ } \
+ virtual double lucky_number() { return 7.0; }
+B_METHODS
+};
+class C_Repeat : public B_Repeat {
+#define C_METHODS \
+public: \
+ int unlucky_number() override { return 4444; } \
+ double lucky_number() override { return 888; }
+C_METHODS
+};
+class D_Repeat : public C_Repeat {
+#define D_METHODS // Nothing overridden.
+D_METHODS
+};
+
+// Base classes for templated inheritance trampolines. Identical to the repeat-everything version:
+class A_Tpl { A_METHODS };
+class B_Tpl : public A_Tpl { B_METHODS };
+class C_Tpl : public B_Tpl { C_METHODS };
+class D_Tpl : public C_Tpl { D_METHODS };
+
+
+// Inheritance approach 1: each trampoline gets every virtual method (11 in total)
+class PyA_Repeat : public A_Repeat {
+public:
+ using A_Repeat::A_Repeat;
+ int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, A_Repeat, unlucky_number, ); }
+ std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, A_Repeat, say_something, times); }
+};
+class PyB_Repeat : public B_Repeat {
+public:
+ using B_Repeat::B_Repeat;
+ int unlucky_number() override { PYBIND11_OVERLOAD(int, B_Repeat, unlucky_number, ); }
+ std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, B_Repeat, say_something, times); }
+ double lucky_number() override { PYBIND11_OVERLOAD(double, B_Repeat, lucky_number, ); }
+};
+class PyC_Repeat : public C_Repeat {
+public:
+ using C_Repeat::C_Repeat;
+ int unlucky_number() override { PYBIND11_OVERLOAD(int, C_Repeat, unlucky_number, ); }
+ std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, C_Repeat, say_something, times); }
+ double lucky_number() override { PYBIND11_OVERLOAD(double, C_Repeat, lucky_number, ); }
+};
+class PyD_Repeat : public D_Repeat {
+public:
+ using D_Repeat::D_Repeat;
+ int unlucky_number() override { PYBIND11_OVERLOAD(int, D_Repeat, unlucky_number, ); }
+ std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, D_Repeat, say_something, times); }
+ double lucky_number() override { PYBIND11_OVERLOAD(double, D_Repeat, lucky_number, ); }
+};
+
+// Inheritance approach 2: templated trampoline classes.
+//
+// Advantages:
+// - we have only 2 (template) class and 4 method declarations (one per virtual method, plus one for
+// any override of a pure virtual method), versus 4 classes and 6 methods (MI) or 4 classes and 11
+// methods (repeat).
+// - Compared to MI, we also don't have to change the non-trampoline inheritance to virtual, and can
+// properly inherit constructors.
+//
+// Disadvantage:
+// - the compiler must still generate and compile 14 different methods (more, even, than the 11
+// required for the repeat approach) instead of the 6 required for MI. (If there was no pure
+// method (or no pure method override), the number would drop down to the same 11 as the repeat
+// approach).
+template <class Base = A_Tpl>
+class PyA_Tpl : public Base {
+public:
+ using Base::Base; // Inherit constructors
+ int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, Base, unlucky_number, ); }
+ std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, Base, say_something, times); }
+};
+template <class Base = B_Tpl>
+class PyB_Tpl : public PyA_Tpl<Base> {
+public:
+ using PyA_Tpl<Base>::PyA_Tpl; // Inherit constructors (via PyA_Tpl's inherited constructors)
+ int unlucky_number() override { PYBIND11_OVERLOAD(int, Base, unlucky_number, ); }
+ double lucky_number() override { PYBIND11_OVERLOAD(double, Base, lucky_number, ); }
+};
+// Since C_Tpl and D_Tpl don't declare any new virtual methods, we don't actually need these (we can
+// use PyB_Tpl<C_Tpl> and PyB_Tpl<D_Tpl> for the trampoline classes instead):
+/*
+template <class Base = C_Tpl> class PyC_Tpl : public PyB_Tpl<Base> {
+public:
+ using PyB_Tpl<Base>::PyB_Tpl;
+};
+template <class Base = D_Tpl> class PyD_Tpl : public PyC_Tpl<Base> {
+public:
+ using PyC_Tpl<Base>::PyC_Tpl;
+};
+*/
+
+
+void initialize_inherited_virtuals(py::module &m) {
+ // Method 1: repeat
+ py::class_<A_Repeat, PyA_Repeat>(m, "A_Repeat")
+ .def(py::init<>())
+ .def("unlucky_number", &A_Repeat::unlucky_number)
+ .def("say_something", &A_Repeat::say_something)
+ .def("say_everything", &A_Repeat::say_everything);
+ py::class_<B_Repeat, A_Repeat, PyB_Repeat>(m, "B_Repeat")
+ .def(py::init<>())
+ .def("lucky_number", &B_Repeat::lucky_number);
+ py::class_<C_Repeat, B_Repeat, PyC_Repeat>(m, "C_Repeat")
+ .def(py::init<>());
+ py::class_<D_Repeat, C_Repeat, PyD_Repeat>(m, "D_Repeat")
+ .def(py::init<>());
+
+ // Method 2: Templated trampolines
+ py::class_<A_Tpl, PyA_Tpl<>>(m, "A_Tpl")
+ .def(py::init<>())
+ .def("unlucky_number", &A_Tpl::unlucky_number)
+ .def("say_something", &A_Tpl::say_something)
+ .def("say_everything", &A_Tpl::say_everything);
+ py::class_<B_Tpl, A_Tpl, PyB_Tpl<>>(m, "B_Tpl")
+ .def(py::init<>())
+ .def("lucky_number", &B_Tpl::lucky_number);
+ py::class_<C_Tpl, B_Tpl, PyB_Tpl<C_Tpl>>(m, "C_Tpl")
+ .def(py::init<>());
+ py::class_<D_Tpl, C_Tpl, PyB_Tpl<D_Tpl>>(m, "D_Tpl")
+ .def(py::init<>());
+
+};
+
+
+test_initializer virtual_functions([](py::module &m) {
+ /* Important: indicate the trampoline class PyExampleVirt using the third
+ argument to py::class_. The second argument with the unique pointer
+ is simply the default holder type used by pybind11. */
+ py::class_<ExampleVirt, PyExampleVirt>(m, "ExampleVirt")
+ .def(py::init<int>())
+ /* Reference original class in function definitions */
+ .def("run", &ExampleVirt::run)
+ .def("run_bool", &ExampleVirt::run_bool)
+ .def("pure_virtual", &ExampleVirt::pure_virtual);
+
+ py::class_<NonCopyable>(m, "NonCopyable")
+ .def(py::init<int, int>());
+
+ py::class_<Movable>(m, "Movable")
+ .def(py::init<int, int>());
+
+#if !defined(__INTEL_COMPILER)
+ py::class_<NCVirt, NCVirtTrampoline>(m, "NCVirt")
+ .def(py::init<>())
+ .def("get_noncopyable", &NCVirt::get_noncopyable)
+ .def("get_movable", &NCVirt::get_movable)
+ .def("print_nc", &NCVirt::print_nc)
+ .def("print_movable", &NCVirt::print_movable);
+#endif
+
+ m.def("runExampleVirt", &runExampleVirt);
+ m.def("runExampleVirtBool", &runExampleVirtBool);
+ m.def("runExampleVirtVirtual", &runExampleVirtVirtual);
+
+ m.def("cstats_debug", &ConstructorStats::get<ExampleVirt>);
+ initialize_inherited_virtuals(m);
+});