summaryrefslogtreecommitdiff
path: root/src/arch/alpha/isa/decoder.isa
diff options
context:
space:
mode:
Diffstat (limited to 'src/arch/alpha/isa/decoder.isa')
-rw-r--r--src/arch/alpha/isa/decoder.isa826
1 files changed, 826 insertions, 0 deletions
diff --git a/src/arch/alpha/isa/decoder.isa b/src/arch/alpha/isa/decoder.isa
new file mode 100644
index 000000000..fbdb119b6
--- /dev/null
+++ b/src/arch/alpha/isa/decoder.isa
@@ -0,0 +1,826 @@
+// -*- mode:c++ -*-
+
+// Copyright (c) 2003-2006 The Regents of The University of Michigan
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met: redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer;
+// redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution;
+// neither the name of the copyright holders nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Authors: Steve Reinhardt
+
+////////////////////////////////////////////////////////////////////
+//
+// The actual decoder specification
+//
+
+decode OPCODE default Unknown::unknown() {
+
+ format LoadAddress {
+ 0x08: lda({{ Ra = Rb + disp; }});
+ 0x09: ldah({{ Ra = Rb + (disp << 16); }});
+ }
+
+ format LoadOrNop {
+ 0x0a: ldbu({{ Ra.uq = Mem.ub; }});
+ 0x0c: ldwu({{ Ra.uq = Mem.uw; }});
+ 0x0b: ldq_u({{ Ra = Mem.uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }});
+ 0x23: ldt({{ Fa = Mem.df; }});
+ 0x2a: ldl_l({{ Ra.sl = Mem.sl; }}, mem_flags = LOCKED);
+ 0x2b: ldq_l({{ Ra.uq = Mem.uq; }}, mem_flags = LOCKED);
+ 0x20: MiscPrefetch::copy_load({{ EA = Ra; }},
+ {{ fault = xc->copySrcTranslate(EA); }},
+ inst_flags = [IsMemRef, IsLoad, IsCopy]);
+ }
+
+ format LoadOrPrefetch {
+ 0x28: ldl({{ Ra.sl = Mem.sl; }});
+ 0x29: ldq({{ Ra.uq = Mem.uq; }}, pf_flags = EVICT_NEXT);
+ // IsFloating flag on lds gets the prefetch to disassemble
+ // using f31 instead of r31... funcitonally it's unnecessary
+ 0x22: lds({{ Fa.uq = s_to_t(Mem.ul); }},
+ pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating);
+ }
+
+ format Store {
+ 0x0e: stb({{ Mem.ub = Ra<7:0>; }});
+ 0x0d: stw({{ Mem.uw = Ra<15:0>; }});
+ 0x2c: stl({{ Mem.ul = Ra<31:0>; }});
+ 0x2d: stq({{ Mem.uq = Ra.uq; }});
+ 0x0f: stq_u({{ Mem.uq = Ra.uq; }}, {{ EA = (Rb + disp) & ~7; }});
+ 0x26: sts({{ Mem.ul = t_to_s(Fa.uq); }});
+ 0x27: stt({{ Mem.df = Fa; }});
+ 0x24: MiscPrefetch::copy_store({{ EA = Rb; }},
+ {{ fault = xc->copy(EA); }},
+ inst_flags = [IsMemRef, IsStore, IsCopy]);
+ }
+
+ format StoreCond {
+ 0x2e: stl_c({{ Mem.ul = Ra<31:0>; }},
+ {{
+ uint64_t tmp = write_result;
+ // see stq_c
+ Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
+ }}, mem_flags = LOCKED, inst_flags = IsStoreConditional);
+ 0x2f: stq_c({{ Mem.uq = Ra; }},
+ {{
+ uint64_t tmp = write_result;
+ // If the write operation returns 0 or 1, then
+ // this was a conventional store conditional,
+ // and the value indicates the success/failure
+ // of the operation. If another value is
+ // returned, then this was a Turbolaser
+ // mailbox access, and we don't update the
+ // result register at all.
+ Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
+ }}, mem_flags = LOCKED, inst_flags = IsStoreConditional);
+ }
+
+ format IntegerOperate {
+
+ 0x10: decode INTFUNC { // integer arithmetic operations
+
+ 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }});
+ 0x40: addlv({{
+ uint32_t tmp = Ra.sl + Rb_or_imm.sl;
+ // signed overflow occurs when operands have same sign
+ // and sign of result does not match.
+ if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
+ fault = new IntegerOverflowFault;
+ Rc.sl = tmp;
+ }});
+ 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }});
+ 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }});
+
+ 0x20: addq({{ Rc = Ra + Rb_or_imm; }});
+ 0x60: addqv({{
+ uint64_t tmp = Ra + Rb_or_imm;
+ // signed overflow occurs when operands have same sign
+ // and sign of result does not match.
+ if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
+ fault = new IntegerOverflowFault;
+ Rc = tmp;
+ }});
+ 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }});
+ 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }});
+
+ 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }});
+ 0x49: sublv({{
+ uint32_t tmp = Ra.sl - Rb_or_imm.sl;
+ // signed overflow detection is same as for add,
+ // except we need to look at the *complemented*
+ // sign bit of the subtrahend (Rb), i.e., if the initial
+ // signs are the *same* then no overflow can occur
+ if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
+ fault = new IntegerOverflowFault;
+ Rc.sl = tmp;
+ }});
+ 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }});
+ 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }});
+
+ 0x29: subq({{ Rc = Ra - Rb_or_imm; }});
+ 0x69: subqv({{
+ uint64_t tmp = Ra - Rb_or_imm;
+ // signed overflow detection is same as for add,
+ // except we need to look at the *complemented*
+ // sign bit of the subtrahend (Rb), i.e., if the initial
+ // signs are the *same* then no overflow can occur
+ if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
+ fault = new IntegerOverflowFault;
+ Rc = tmp;
+ }});
+ 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }});
+ 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }});
+
+ 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }});
+ 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }});
+ 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }});
+ 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }});
+ 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }});
+
+ 0x0f: cmpbge({{
+ int hi = 7;
+ int lo = 0;
+ uint64_t tmp = 0;
+ for (int i = 0; i < 8; ++i) {
+ tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i;
+ hi += 8;
+ lo += 8;
+ }
+ Rc = tmp;
+ }});
+ }
+
+ 0x11: decode INTFUNC { // integer logical operations
+
+ 0x00: and({{ Rc = Ra & Rb_or_imm; }});
+ 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }});
+ 0x20: bis({{ Rc = Ra | Rb_or_imm; }});
+ 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }});
+ 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }});
+ 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }});
+
+ // conditional moves
+ 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }});
+ 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }});
+ 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }});
+ 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }});
+ 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }});
+ 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }});
+ 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }});
+ 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }});
+
+ // For AMASK, RA must be R31.
+ 0x61: decode RA {
+ 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }});
+ }
+
+ // For IMPLVER, RA must be R31 and the B operand
+ // must be the immediate value 1.
+ 0x6c: decode RA {
+ 31: decode IMM {
+ 1: decode INTIMM {
+ // return EV5 for FULL_SYSTEM and EV6 otherwise
+ 1: implver({{
+#if FULL_SYSTEM
+ Rc = 1;
+#else
+ Rc = 2;
+#endif
+ }});
+ }
+ }
+ }
+
+#if FULL_SYSTEM
+ // The mysterious 11.25...
+ 0x25: WarnUnimpl::eleven25();
+#endif
+ }
+
+ 0x12: decode INTFUNC {
+ 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }});
+ 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }});
+ 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }});
+
+ 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }});
+ 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }});
+ 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }});
+ 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }});
+
+ 0x52: mskwh({{
+ int bv = Rb_or_imm<2:0>;
+ Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra;
+ }});
+ 0x62: msklh({{
+ int bv = Rb_or_imm<2:0>;
+ Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra;
+ }});
+ 0x72: mskqh({{
+ int bv = Rb_or_imm<2:0>;
+ Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra;
+ }});
+
+ 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }});
+ 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }});
+ 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }});
+ 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }});
+
+ 0x5a: extwh({{
+ Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }});
+ 0x6a: extlh({{
+ Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }});
+ 0x7a: extqh({{
+ Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }});
+
+ 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }});
+ 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }});
+ 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }});
+ 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }});
+
+ 0x57: inswh({{
+ int bv = Rb_or_imm<2:0>;
+ Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0;
+ }});
+ 0x67: inslh({{
+ int bv = Rb_or_imm<2:0>;
+ Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0;
+ }});
+ 0x77: insqh({{
+ int bv = Rb_or_imm<2:0>;
+ Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0;
+ }});
+
+ 0x30: zap({{
+ uint64_t zapmask = 0;
+ for (int i = 0; i < 8; ++i) {
+ if (Rb_or_imm<i:>)
+ zapmask |= (mask(8) << (i * 8));
+ }
+ Rc = Ra & ~zapmask;
+ }});
+ 0x31: zapnot({{
+ uint64_t zapmask = 0;
+ for (int i = 0; i < 8; ++i) {
+ if (!Rb_or_imm<i:>)
+ zapmask |= (mask(8) << (i * 8));
+ }
+ Rc = Ra & ~zapmask;
+ }});
+ }
+
+ 0x13: decode INTFUNC { // integer multiplies
+ 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp);
+ 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp);
+ 0x30: umulh({{
+ uint64_t hi, lo;
+ mul128(Ra, Rb_or_imm, hi, lo);
+ Rc = hi;
+ }}, IntMultOp);
+ 0x40: mullv({{
+ // 32-bit multiply with trap on overflow
+ int64_t Rax = Ra.sl; // sign extended version of Ra.sl
+ int64_t Rbx = Rb_or_imm.sl;
+ int64_t tmp = Rax * Rbx;
+ // To avoid overflow, all the upper 32 bits must match
+ // the sign bit of the lower 32. We code this as
+ // checking the upper 33 bits for all 0s or all 1s.
+ uint64_t sign_bits = tmp<63:31>;
+ if (sign_bits != 0 && sign_bits != mask(33))
+ fault = new IntegerOverflowFault;
+ Rc.sl = tmp<31:0>;
+ }}, IntMultOp);
+ 0x60: mulqv({{
+ // 64-bit multiply with trap on overflow
+ uint64_t hi, lo;
+ mul128(Ra, Rb_or_imm, hi, lo);
+ // all the upper 64 bits must match the sign bit of
+ // the lower 64
+ if (!((hi == 0 && lo<63:> == 0) ||
+ (hi == mask(64) && lo<63:> == 1)))
+ fault = new IntegerOverflowFault;
+ Rc = lo;
+ }}, IntMultOp);
+ }
+
+ 0x1c: decode INTFUNC {
+ 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); }
+ 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); }
+ 0x32: ctlz({{
+ uint64_t count = 0;
+ uint64_t temp = Rb;
+ if (temp<63:32>) temp >>= 32; else count += 32;
+ if (temp<31:16>) temp >>= 16; else count += 16;
+ if (temp<15:8>) temp >>= 8; else count += 8;
+ if (temp<7:4>) temp >>= 4; else count += 4;
+ if (temp<3:2>) temp >>= 2; else count += 2;
+ if (temp<1:1>) temp >>= 1; else count += 1;
+ if ((temp<0:0>) != 0x1) count += 1;
+ Rc = count;
+ }}, IntAluOp);
+
+ 0x33: cttz({{
+ uint64_t count = 0;
+ uint64_t temp = Rb;
+ if (!(temp<31:0>)) { temp >>= 32; count += 32; }
+ if (!(temp<15:0>)) { temp >>= 16; count += 16; }
+ if (!(temp<7:0>)) { temp >>= 8; count += 8; }
+ if (!(temp<3:0>)) { temp >>= 4; count += 4; }
+ if (!(temp<1:0>)) { temp >>= 2; count += 2; }
+ if (!(temp<0:0> & ULL(0x1))) count += 1;
+ Rc = count;
+ }}, IntAluOp);
+
+ format FailUnimpl {
+ 0x30: ctpop();
+ 0x31: perr();
+ 0x34: unpkbw();
+ 0x35: unpkbl();
+ 0x36: pkwb();
+ 0x37: pklb();
+ 0x38: minsb8();
+ 0x39: minsw4();
+ 0x3a: minub8();
+ 0x3b: minuw4();
+ 0x3c: maxub8();
+ 0x3d: maxuw4();
+ 0x3e: maxsb8();
+ 0x3f: maxsw4();
+ }
+
+ format BasicOperateWithNopCheck {
+ 0x70: decode RB {
+ 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp);
+ }
+ 0x78: decode RB {
+ 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }},
+ FloatCvtOp);
+ }
+ }
+ }
+ }
+
+ // Conditional branches.
+ format CondBranch {
+ 0x39: beq({{ cond = (Ra == 0); }});
+ 0x3d: bne({{ cond = (Ra != 0); }});
+ 0x3e: bge({{ cond = (Ra.sq >= 0); }});
+ 0x3f: bgt({{ cond = (Ra.sq > 0); }});
+ 0x3b: ble({{ cond = (Ra.sq <= 0); }});
+ 0x3a: blt({{ cond = (Ra.sq < 0); }});
+ 0x38: blbc({{ cond = ((Ra & 1) == 0); }});
+ 0x3c: blbs({{ cond = ((Ra & 1) == 1); }});
+
+ 0x31: fbeq({{ cond = (Fa == 0); }});
+ 0x35: fbne({{ cond = (Fa != 0); }});
+ 0x36: fbge({{ cond = (Fa >= 0); }});
+ 0x37: fbgt({{ cond = (Fa > 0); }});
+ 0x33: fble({{ cond = (Fa <= 0); }});
+ 0x32: fblt({{ cond = (Fa < 0); }});
+ }
+
+ // unconditional branches
+ format UncondBranch {
+ 0x30: br();
+ 0x34: bsr(IsCall);
+ }
+
+ // indirect branches
+ 0x1a: decode JMPFUNC {
+ format Jump {
+ 0: jmp();
+ 1: jsr(IsCall);
+ 2: ret(IsReturn);
+ 3: jsr_coroutine(IsCall, IsReturn);
+ }
+ }
+
+ // Square root and integer-to-FP moves
+ 0x14: decode FP_SHORTFUNC {
+ // Integer to FP register moves must have RB == 31
+ 0x4: decode RB {
+ 31: decode FP_FULLFUNC {
+ format BasicOperateWithNopCheck {
+ 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp);
+ 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp);
+ 0x014: FailUnimpl::itoff(); // VAX-format conversion
+ }
+ }
+ }
+
+ // Square root instructions must have FA == 31
+ 0xb: decode FA {
+ 31: decode FP_TYPEFUNC {
+ format FloatingPointOperate {
+#if SS_COMPATIBLE_FP
+ 0x0b: sqrts({{
+ if (Fb < 0.0)
+ fault = new ArithmeticFault;
+ Fc = sqrt(Fb);
+ }}, FloatSqrtOp);
+#else
+ 0x0b: sqrts({{
+ if (Fb.sf < 0.0)
+ fault = new ArithmeticFault;
+ Fc.sf = sqrt(Fb.sf);
+ }}, FloatSqrtOp);
+#endif
+ 0x2b: sqrtt({{
+ if (Fb < 0.0)
+ fault = new ArithmeticFault;
+ Fc = sqrt(Fb);
+ }}, FloatSqrtOp);
+ }
+ }
+ }
+
+ // VAX-format sqrtf and sqrtg are not implemented
+ 0xa: FailUnimpl::sqrtfg();
+ }
+
+ // IEEE floating point
+ 0x16: decode FP_SHORTFUNC_TOP2 {
+ // The top two bits of the short function code break this
+ // space into four groups: binary ops, compares, reserved, and
+ // conversions. See Table 4-12 of AHB. There are different
+ // special cases in these different groups, so we decode on
+ // these top two bits first just to select a decode strategy.
+ // Most of these instructions may have various trapping and
+ // rounding mode flags set; these are decoded in the
+ // FloatingPointDecode template used by the
+ // FloatingPointOperate format.
+
+ // add/sub/mul/div: just decode on the short function code
+ // and source type. All valid trapping and rounding modes apply.
+ 0: decode FP_TRAPMODE {
+ // check for valid trapping modes here
+ 0,1,5,7: decode FP_TYPEFUNC {
+ format FloatingPointOperate {
+#if SS_COMPATIBLE_FP
+ 0x00: adds({{ Fc = Fa + Fb; }});
+ 0x01: subs({{ Fc = Fa - Fb; }});
+ 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp);
+ 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp);
+#else
+ 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }});
+ 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }});
+ 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp);
+ 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp);
+#endif
+
+ 0x20: addt({{ Fc = Fa + Fb; }});
+ 0x21: subt({{ Fc = Fa - Fb; }});
+ 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp);
+ 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp);
+ }
+ }
+ }
+
+ // Floating-point compare instructions must have the default
+ // rounding mode, and may use the default trapping mode or
+ // /SU. Both trapping modes are treated the same by M5; the
+ // only difference on the real hardware (as far a I can tell)
+ // is that without /SU you'd get an imprecise trap if you
+ // tried to compare a NaN with something else (instead of an
+ // "unordered" result).
+ 1: decode FP_FULLFUNC {
+ format BasicOperateWithNopCheck {
+ 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }},
+ FloatCmpOp);
+ 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }},
+ FloatCmpOp);
+ 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }},
+ FloatCmpOp);
+ 0x0a4, 0x5a4: cmptun({{ // unordered
+ Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0;
+ }}, FloatCmpOp);
+ }
+ }
+
+ // The FP-to-integer and integer-to-FP conversion insts
+ // require that FA be 31.
+ 3: decode FA {
+ 31: decode FP_TYPEFUNC {
+ format FloatingPointOperate {
+ 0x2f: decode FP_ROUNDMODE {
+ format FPFixedRounding {
+ // "chopped" i.e. round toward zero
+ 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }},
+ Chopped);
+ // round to minus infinity
+ 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }},
+ MinusInfinity);
+ }
+ default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }});
+ }
+
+ // The cvtts opcode is overloaded to be cvtst if the trap
+ // mode is 2 or 6 (which are not valid otherwise)
+ 0x2c: decode FP_FULLFUNC {
+ format BasicOperateWithNopCheck {
+ // trap on denorm version "cvtst/s" is
+ // simulated same as cvtst
+ 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }});
+ }
+ default: cvtts({{ Fc.sf = Fb; }});
+ }
+
+ // The trapping mode for integer-to-FP conversions
+ // must be /SUI or nothing; /U and /SU are not
+ // allowed. The full set of rounding modes are
+ // supported though.
+ 0x3c: decode FP_TRAPMODE {
+ 0,7: cvtqs({{ Fc.sf = Fb.sq; }});
+ }
+ 0x3e: decode FP_TRAPMODE {
+ 0,7: cvtqt({{ Fc = Fb.sq; }});
+ }
+ }
+ }
+ }
+ }
+
+ // misc FP operate
+ 0x17: decode FP_FULLFUNC {
+ format BasicOperateWithNopCheck {
+ 0x010: cvtlq({{
+ Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>;
+ }});
+ 0x030: cvtql({{
+ Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
+ }});
+
+ // We treat the precise & imprecise trapping versions of
+ // cvtql identically.
+ 0x130, 0x530: cvtqlv({{
+ // To avoid overflow, all the upper 32 bits must match
+ // the sign bit of the lower 32. We code this as
+ // checking the upper 33 bits for all 0s or all 1s.
+ uint64_t sign_bits = Fb.uq<63:31>;
+ if (sign_bits != 0 && sign_bits != mask(33))
+ fault = new IntegerOverflowFault;
+ Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
+ }});
+
+ 0x020: cpys({{ // copy sign
+ Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>;
+ }});
+ 0x021: cpysn({{ // copy sign negated
+ Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>;
+ }});
+ 0x022: cpyse({{ // copy sign and exponent
+ Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>;
+ }});
+
+ 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }});
+ 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }});
+ 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }});
+ 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }});
+ 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }});
+ 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }});
+
+ 0x024: mt_fpcr({{ FPCR = Fa.uq; }}, IsIprAccess);
+ 0x025: mf_fpcr({{ Fa.uq = FPCR; }}, IsIprAccess);
+ }
+ }
+
+ // miscellaneous mem-format ops
+ 0x18: decode MEMFUNC {
+ format WarnUnimpl {
+ 0x8000: fetch();
+ 0xa000: fetch_m();
+ 0xe800: ecb();
+ }
+
+ format MiscPrefetch {
+ 0xf800: wh64({{ EA = Rb & ~ULL(63); }},
+ {{ xc->writeHint(EA, 64, memAccessFlags); }},
+ mem_flags = NO_FAULT,
+ inst_flags = [IsMemRef, IsDataPrefetch,
+ IsStore, MemWriteOp]);
+ }
+
+ format BasicOperate {
+ 0xc000: rpcc({{
+#if FULL_SYSTEM
+ /* Rb is a fake dependency so here is a fun way to get
+ * the parser to understand that.
+ */
+ Ra = xc->readMiscRegWithEffect(AlphaISA::IPR_CC, fault) + (Rb & 0);
+
+#else
+ Ra = curTick;
+#endif
+ }}, IsUnverifiable);
+
+ // All of the barrier instructions below do nothing in
+ // their execute() methods (hence the empty code blocks).
+ // All of their functionality is hard-coded in the
+ // pipeline based on the flags IsSerializing,
+ // IsMemBarrier, and IsWriteBarrier. In the current
+ // detailed CPU model, the execute() function only gets
+ // called at fetch, so there's no way to generate pipeline
+ // behavior at any other stage. Once we go to an
+ // exec-in-exec CPU model we should be able to get rid of
+ // these flags and implement this behavior via the
+ // execute() methods.
+
+ // trapb is just a barrier on integer traps, where excb is
+ // a barrier on integer and FP traps. "EXCB is thus a
+ // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat
+ // them the same though.
+ 0x0000: trapb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass);
+ 0x0400: excb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass);
+ 0x4000: mb({{ }}, IsMemBarrier, MemReadOp);
+ 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp);
+ }
+
+#if FULL_SYSTEM
+ format BasicOperate {
+ 0xe000: rc({{
+ Ra = xc->readIntrFlag();
+ xc->setIntrFlag(0);
+ }}, IsNonSpeculative);
+ 0xf000: rs({{
+ Ra = xc->readIntrFlag();
+ xc->setIntrFlag(1);
+ }}, IsNonSpeculative);
+ }
+#else
+ format FailUnimpl {
+ 0xe000: rc();
+ 0xf000: rs();
+ }
+#endif
+ }
+
+#if FULL_SYSTEM
+ 0x00: CallPal::call_pal({{
+ if (!palValid ||
+ (palPriv
+ && xc->readMiscRegWithEffect(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) {
+ // invalid pal function code, or attempt to do privileged
+ // PAL call in non-kernel mode
+ fault = new UnimplementedOpcodeFault;
+ }
+ else {
+ // check to see if simulator wants to do something special
+ // on this PAL call (including maybe suppress it)
+ bool dopal = xc->simPalCheck(palFunc);
+
+ if (dopal) {
+ xc->setMiscRegWithEffect(AlphaISA::IPR_EXC_ADDR, NPC);
+ NPC = xc->readMiscRegWithEffect(AlphaISA::IPR_PAL_BASE, fault) + palOffset;
+ }
+ }
+ }}, IsNonSpeculative);
+#else
+ 0x00: decode PALFUNC {
+ format EmulatedCallPal {
+ 0x00: halt ({{
+ exitSimLoop(curTick, "halt instruction encountered");
+ }}, IsNonSpeculative);
+ 0x83: callsys({{
+ xc->syscall(R0);
+ }}, IsNonSpeculative);
+ // Read uniq reg into ABI return value register (r0)
+ 0x9e: rduniq({{ R0 = Runiq; }}, IsIprAccess);
+ // Write uniq reg with value from ABI arg register (r16)
+ 0x9f: wruniq({{ Runiq = R16; }}, IsIprAccess);
+ }
+ }
+#endif
+
+#if FULL_SYSTEM
+ 0x1b: decode PALMODE {
+ 0: OpcdecFault::hw_st_quad();
+ 1: decode HW_LDST_QUAD {
+ format HwLoad {
+ 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L);
+ 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q);
+ }
+ }
+ }
+
+ 0x1f: decode PALMODE {
+ 0: OpcdecFault::hw_st_cond();
+ format HwStore {
+ 1: decode HW_LDST_COND {
+ 0: decode HW_LDST_QUAD {
+ 0: hw_st({{ EA = (Rb + disp) & ~3; }},
+ {{ Mem.ul = Ra<31:0>; }}, L);
+ 1: hw_st({{ EA = (Rb + disp) & ~7; }},
+ {{ Mem.uq = Ra.uq; }}, Q);
+ }
+
+ 1: FailUnimpl::hw_st_cond();
+ }
+ }
+ }
+
+ 0x19: decode PALMODE {
+ 0: OpcdecFault::hw_mfpr();
+ format HwMoveIPR {
+ 1: hw_mfpr({{
+ Ra = xc->readMiscRegWithEffect(ipr_index, fault);
+ }}, IsIprAccess);
+ }
+ }
+
+ 0x1d: decode PALMODE {
+ 0: OpcdecFault::hw_mtpr();
+ format HwMoveIPR {
+ 1: hw_mtpr({{
+ xc->setMiscRegWithEffect(ipr_index, Ra);
+ if (traceData) { traceData->setData(Ra); }
+ }}, IsIprAccess);
+ }
+ }
+
+ format BasicOperate {
+ 0x1e: decode PALMODE {
+ 0: OpcdecFault::hw_rei();
+ 1:hw_rei({{ xc->hwrei(); }}, IsSerializing, IsSerializeBefore);
+ }
+
+ // M5 special opcodes use the reserved 0x01 opcode space
+ 0x01: decode M5FUNC {
+ 0x00: arm({{
+ AlphaPseudo::arm(xc->tcBase());
+ }}, IsNonSpeculative);
+ 0x01: quiesce({{
+ AlphaPseudo::quiesce(xc->tcBase());
+ }}, IsNonSpeculative, IsQuiesce);
+ 0x02: quiesceNs({{
+ AlphaPseudo::quiesceNs(xc->tcBase(), R16);
+ }}, IsNonSpeculative, IsQuiesce);
+ 0x03: quiesceCycles({{
+ AlphaPseudo::quiesceCycles(xc->tcBase(), R16);
+ }}, IsNonSpeculative, IsQuiesce);
+ 0x04: quiesceTime({{
+ R0 = AlphaPseudo::quiesceTime(xc->tcBase());
+ }}, IsNonSpeculative);
+ 0x10: ivlb({{
+ AlphaPseudo::ivlb(xc->tcBase());
+ }}, No_OpClass, IsNonSpeculative);
+ 0x11: ivle({{
+ AlphaPseudo::ivle(xc->tcBase());
+ }}, No_OpClass, IsNonSpeculative);
+ 0x20: m5exit_old({{
+ AlphaPseudo::m5exit_old(xc->tcBase());
+ }}, No_OpClass, IsNonSpeculative);
+ 0x21: m5exit({{
+ AlphaPseudo::m5exit(xc->tcBase(), R16);
+ }}, No_OpClass, IsNonSpeculative);
+ 0x30: initparam({{ Ra = xc->tcBase()->getCpuPtr()->system->init_param; }});
+ 0x40: resetstats({{
+ AlphaPseudo::resetstats(xc->tcBase(), R16, R17);
+ }}, IsNonSpeculative);
+ 0x41: dumpstats({{
+ AlphaPseudo::dumpstats(xc->tcBase(), R16, R17);
+ }}, IsNonSpeculative);
+ 0x42: dumpresetstats({{
+ AlphaPseudo::dumpresetstats(xc->tcBase(), R16, R17);
+ }}, IsNonSpeculative);
+ 0x43: m5checkpoint({{
+ AlphaPseudo::m5checkpoint(xc->tcBase(), R16, R17);
+ }}, IsNonSpeculative);
+ 0x50: m5readfile({{
+ R0 = AlphaPseudo::readfile(xc->tcBase(), R16, R17, R18);
+ }}, IsNonSpeculative);
+ 0x51: m5break({{
+ AlphaPseudo::debugbreak(xc->tcBase());
+ }}, IsNonSpeculative);
+ 0x52: m5switchcpu({{
+ AlphaPseudo::switchcpu(xc->tcBase());
+ }}, IsNonSpeculative);
+ 0x53: m5addsymbol({{
+ AlphaPseudo::addsymbol(xc->tcBase(), R16, R17);
+ }}, IsNonSpeculative);
+ 0x54: m5panic({{
+ panic("M5 panic instruction called at pc=%#x.", xc->readPC());
+ }}, IsNonSpeculative);
+
+ }
+ }
+#endif
+}