summaryrefslogtreecommitdiff
path: root/src/arch/isa_parser.py
diff options
context:
space:
mode:
Diffstat (limited to 'src/arch/isa_parser.py')
-rwxr-xr-xsrc/arch/isa_parser.py1818
1 files changed, 1818 insertions, 0 deletions
diff --git a/src/arch/isa_parser.py b/src/arch/isa_parser.py
new file mode 100755
index 000000000..4d522e18a
--- /dev/null
+++ b/src/arch/isa_parser.py
@@ -0,0 +1,1818 @@
+# Copyright (c) 2003-2005 The Regents of The University of Michigan
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are
+# met: redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer;
+# redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in the
+# documentation and/or other materials provided with the distribution;
+# neither the name of the copyright holders nor the names of its
+# contributors may be used to endorse or promote products derived from
+# this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+#
+# Authors: Steve Reinhardt
+# Korey Sewell
+
+import os
+import sys
+import re
+import string
+import traceback
+# get type names
+from types import *
+
+# Prepend the directory where the PLY lex & yacc modules are found
+# to the search path. Assumes we're compiling in a subdirectory
+# of 'build' in the current tree.
+sys.path[0:0] = [os.environ['M5_PLY']]
+
+import lex
+import yacc
+
+#####################################################################
+#
+# Lexer
+#
+# The PLY lexer module takes two things as input:
+# - A list of token names (the string list 'tokens')
+# - A regular expression describing a match for each token. The
+# regexp for token FOO can be provided in two ways:
+# - as a string variable named t_FOO
+# - as the doc string for a function named t_FOO. In this case,
+# the function is also executed, allowing an action to be
+# associated with each token match.
+#
+#####################################################################
+
+# Reserved words. These are listed separately as they are matched
+# using the same regexp as generic IDs, but distinguished in the
+# t_ID() function. The PLY documentation suggests this approach.
+reserved = (
+ 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
+ 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
+ 'OUTPUT', 'SIGNED', 'TEMPLATE'
+ )
+
+# List of tokens. The lex module requires this.
+tokens = reserved + (
+ # identifier
+ 'ID',
+
+ # integer literal
+ 'INTLIT',
+
+ # string literal
+ 'STRLIT',
+
+ # code literal
+ 'CODELIT',
+
+ # ( ) [ ] { } < > , ; : :: *
+ 'LPAREN', 'RPAREN',
+ 'LBRACKET', 'RBRACKET',
+ 'LBRACE', 'RBRACE',
+ 'LESS', 'GREATER', 'EQUALS',
+ 'COMMA', 'SEMI', 'COLON', 'DBLCOLON',
+ 'ASTERISK',
+
+ # C preprocessor directives
+ 'CPPDIRECTIVE'
+
+# The following are matched but never returned. commented out to
+# suppress PLY warning
+ # newfile directive
+# 'NEWFILE',
+
+ # endfile directive
+# 'ENDFILE'
+)
+
+# Regular expressions for token matching
+t_LPAREN = r'\('
+t_RPAREN = r'\)'
+t_LBRACKET = r'\['
+t_RBRACKET = r'\]'
+t_LBRACE = r'\{'
+t_RBRACE = r'\}'
+t_LESS = r'\<'
+t_GREATER = r'\>'
+t_EQUALS = r'='
+t_COMMA = r','
+t_SEMI = r';'
+t_COLON = r':'
+t_DBLCOLON = r'::'
+t_ASTERISK = r'\*'
+
+# Identifiers and reserved words
+reserved_map = { }
+for r in reserved:
+ reserved_map[r.lower()] = r
+
+def t_ID(t):
+ r'[A-Za-z_]\w*'
+ t.type = reserved_map.get(t.value,'ID')
+ return t
+
+# Integer literal
+def t_INTLIT(t):
+ r'(0x[\da-fA-F]+)|\d+'
+ try:
+ t.value = int(t.value,0)
+ except ValueError:
+ error(t.lineno, 'Integer value "%s" too large' % t.value)
+ t.value = 0
+ return t
+
+# String literal. Note that these use only single quotes, and
+# can span multiple lines.
+def t_STRLIT(t):
+ r"(?m)'([^'])+'"
+ # strip off quotes
+ t.value = t.value[1:-1]
+ t.lineno += t.value.count('\n')
+ return t
+
+
+# "Code literal"... like a string literal, but delimiters are
+# '{{' and '}}' so they get formatted nicely under emacs c-mode
+def t_CODELIT(t):
+ r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
+ # strip off {{ & }}
+ t.value = t.value[2:-2]
+ t.lineno += t.value.count('\n')
+ return t
+
+def t_CPPDIRECTIVE(t):
+ r'^\#[^\#].*\n'
+ t.lineno += t.value.count('\n')
+ return t
+
+def t_NEWFILE(t):
+ r'^\#\#newfile\s+"[\w/.-]*"'
+ fileNameStack.push((t.value[11:-1], t.lineno))
+ t.lineno = 0
+
+def t_ENDFILE(t):
+ r'^\#\#endfile'
+ (old_filename, t.lineno) = fileNameStack.pop()
+
+#
+# The functions t_NEWLINE, t_ignore, and t_error are
+# special for the lex module.
+#
+
+# Newlines
+def t_NEWLINE(t):
+ r'\n+'
+ t.lineno += t.value.count('\n')
+
+# Comments
+def t_comment(t):
+ r'//.*'
+
+# Completely ignored characters
+t_ignore = ' \t\x0c'
+
+# Error handler
+def t_error(t):
+ error(t.lineno, "illegal character '%s'" % t.value[0])
+ t.skip(1)
+
+# Build the lexer
+lex.lex()
+
+#####################################################################
+#
+# Parser
+#
+# Every function whose name starts with 'p_' defines a grammar rule.
+# The rule is encoded in the function's doc string, while the
+# function body provides the action taken when the rule is matched.
+# The argument to each function is a list of the values of the
+# rule's symbols: t[0] for the LHS, and t[1..n] for the symbols
+# on the RHS. For tokens, the value is copied from the t.value
+# attribute provided by the lexer. For non-terminals, the value
+# is assigned by the producing rule; i.e., the job of the grammar
+# rule function is to set the value for the non-terminal on the LHS
+# (by assigning to t[0]).
+#####################################################################
+
+# The LHS of the first grammar rule is used as the start symbol
+# (in this case, 'specification'). Note that this rule enforces
+# that there will be exactly one namespace declaration, with 0 or more
+# global defs/decls before and after it. The defs & decls before
+# the namespace decl will be outside the namespace; those after
+# will be inside. The decoder function is always inside the namespace.
+def p_specification(t):
+ 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
+ global_code = t[1]
+ isa_name = t[2]
+ namespace = isa_name + "Inst"
+ # wrap the decode block as a function definition
+ t[4].wrap_decode_block('''
+StaticInstPtr
+%(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst)
+{
+ using namespace %(namespace)s;
+''' % vars(), '}')
+ # both the latter output blocks and the decode block are in the namespace
+ namespace_code = t[3] + t[4]
+ # pass it all back to the caller of yacc.parse()
+ t[0] = (isa_name, namespace, global_code, namespace_code)
+
+# ISA name declaration looks like "namespace <foo>;"
+def p_name_decl(t):
+ 'name_decl : NAMESPACE ID SEMI'
+ t[0] = t[2]
+
+# 'opt_defs_and_outputs' is a possibly empty sequence of
+# def and/or output statements.
+def p_opt_defs_and_outputs_0(t):
+ 'opt_defs_and_outputs : empty'
+ t[0] = GenCode()
+
+def p_opt_defs_and_outputs_1(t):
+ 'opt_defs_and_outputs : defs_and_outputs'
+ t[0] = t[1]
+
+def p_defs_and_outputs_0(t):
+ 'defs_and_outputs : def_or_output'
+ t[0] = t[1]
+
+def p_defs_and_outputs_1(t):
+ 'defs_and_outputs : defs_and_outputs def_or_output'
+ t[0] = t[1] + t[2]
+
+# The list of possible definition/output statements.
+def p_def_or_output(t):
+ '''def_or_output : def_format
+ | def_bitfield
+ | def_template
+ | def_operand_types
+ | def_operands
+ | output_header
+ | output_decoder
+ | output_exec
+ | global_let'''
+ t[0] = t[1]
+
+# Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
+# directly to the appropriate output section.
+
+
+# Protect any non-dict-substitution '%'s in a format string
+# (i.e. those not followed by '(')
+def protect_non_subst_percents(s):
+ return re.sub(r'%(?!\()', '%%', s)
+
+# Massage output block by substituting in template definitions and bit
+# operators. We handle '%'s embedded in the string that don't
+# indicate template substitutions (or CPU-specific symbols, which get
+# handled in GenCode) by doubling them first so that the format
+# operation will reduce them back to single '%'s.
+def process_output(s):
+ s = protect_non_subst_percents(s)
+ # protects cpu-specific symbols too
+ s = protect_cpu_symbols(s)
+ return substBitOps(s % templateMap)
+
+def p_output_header(t):
+ 'output_header : OUTPUT HEADER CODELIT SEMI'
+ t[0] = GenCode(header_output = process_output(t[3]))
+
+def p_output_decoder(t):
+ 'output_decoder : OUTPUT DECODER CODELIT SEMI'
+ t[0] = GenCode(decoder_output = process_output(t[3]))
+
+def p_output_exec(t):
+ 'output_exec : OUTPUT EXEC CODELIT SEMI'
+ t[0] = GenCode(exec_output = process_output(t[3]))
+
+# global let blocks 'let {{...}}' (Python code blocks) are executed
+# directly when seen. Note that these execute in a special variable
+# context 'exportContext' to prevent the code from polluting this
+# script's namespace.
+def p_global_let(t):
+ 'global_let : LET CODELIT SEMI'
+ updateExportContext()
+ try:
+ exec fixPythonIndentation(t[2]) in exportContext
+ except Exception, exc:
+ error(t.lineno(1),
+ 'error: %s in global let block "%s".' % (exc, t[2]))
+ t[0] = GenCode() # contributes nothing to the output C++ file
+
+# Define the mapping from operand type extensions to C++ types and bit
+# widths (stored in operandTypeMap).
+def p_def_operand_types(t):
+ 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
+ try:
+ userDict = eval('{' + t[3] + '}')
+ except Exception, exc:
+ error(t.lineno(1),
+ 'error: %s in def operand_types block "%s".' % (exc, t[3]))
+ buildOperandTypeMap(userDict, t.lineno(1))
+ t[0] = GenCode() # contributes nothing to the output C++ file
+
+# Define the mapping from operand names to operand classes and other
+# traits. Stored in operandNameMap.
+def p_def_operands(t):
+ 'def_operands : DEF OPERANDS CODELIT SEMI'
+ if not globals().has_key('operandTypeMap'):
+ error(t.lineno(1),
+ 'error: operand types must be defined before operands')
+ try:
+ userDict = eval('{' + t[3] + '}')
+ except Exception, exc:
+ error(t.lineno(1),
+ 'error: %s in def operands block "%s".' % (exc, t[3]))
+ buildOperandNameMap(userDict, t.lineno(1))
+ t[0] = GenCode() # contributes nothing to the output C++ file
+
+# A bitfield definition looks like:
+# 'def [signed] bitfield <ID> [<first>:<last>]'
+# This generates a preprocessor macro in the output file.
+def p_def_bitfield_0(t):
+ 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
+ expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
+ if (t[2] == 'signed'):
+ expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
+ hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
+ t[0] = GenCode(header_output = hash_define)
+
+# alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
+def p_def_bitfield_1(t):
+ 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
+ expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
+ if (t[2] == 'signed'):
+ expr = 'sext<%d>(%s)' % (1, expr)
+ hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
+ t[0] = GenCode(header_output = hash_define)
+
+def p_opt_signed_0(t):
+ 'opt_signed : SIGNED'
+ t[0] = t[1]
+
+def p_opt_signed_1(t):
+ 'opt_signed : empty'
+ t[0] = ''
+
+# Global map variable to hold templates
+templateMap = {}
+
+def p_def_template(t):
+ 'def_template : DEF TEMPLATE ID CODELIT SEMI'
+ templateMap[t[3]] = Template(t[4])
+ t[0] = GenCode()
+
+# An instruction format definition looks like
+# "def format <fmt>(<params>) {{...}};"
+def p_def_format(t):
+ 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
+ (id, params, code) = (t[3], t[5], t[7])
+ defFormat(id, params, code, t.lineno(1))
+ t[0] = GenCode()
+
+# The formal parameter list for an instruction format is a possibly
+# empty list of comma-separated parameters. Positional (standard,
+# non-keyword) parameters must come first, followed by keyword
+# parameters, followed by a '*foo' parameter that gets excess
+# positional arguments (as in Python). Each of these three parameter
+# categories is optional.
+#
+# Note that we do not support the '**foo' parameter for collecting
+# otherwise undefined keyword args. Otherwise the parameter list is
+# (I believe) identical to what is supported in Python.
+#
+# The param list generates a tuple, where the first element is a list of
+# the positional params and the second element is a dict containing the
+# keyword params.
+def p_param_list_0(t):
+ 'param_list : positional_param_list COMMA nonpositional_param_list'
+ t[0] = t[1] + t[3]
+
+def p_param_list_1(t):
+ '''param_list : positional_param_list
+ | nonpositional_param_list'''
+ t[0] = t[1]
+
+def p_positional_param_list_0(t):
+ 'positional_param_list : empty'
+ t[0] = []
+
+def p_positional_param_list_1(t):
+ 'positional_param_list : ID'
+ t[0] = [t[1]]
+
+def p_positional_param_list_2(t):
+ 'positional_param_list : positional_param_list COMMA ID'
+ t[0] = t[1] + [t[3]]
+
+def p_nonpositional_param_list_0(t):
+ 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
+ t[0] = t[1] + t[3]
+
+def p_nonpositional_param_list_1(t):
+ '''nonpositional_param_list : keyword_param_list
+ | excess_args_param'''
+ t[0] = t[1]
+
+def p_keyword_param_list_0(t):
+ 'keyword_param_list : keyword_param'
+ t[0] = [t[1]]
+
+def p_keyword_param_list_1(t):
+ 'keyword_param_list : keyword_param_list COMMA keyword_param'
+ t[0] = t[1] + [t[3]]
+
+def p_keyword_param(t):
+ 'keyword_param : ID EQUALS expr'
+ t[0] = t[1] + ' = ' + t[3].__repr__()
+
+def p_excess_args_param(t):
+ 'excess_args_param : ASTERISK ID'
+ # Just concatenate them: '*ID'. Wrap in list to be consistent
+ # with positional_param_list and keyword_param_list.
+ t[0] = [t[1] + t[2]]
+
+# End of format definition-related rules.
+##############
+
+#
+# A decode block looks like:
+# decode <field1> [, <field2>]* [default <inst>] { ... }
+#
+def p_decode_block(t):
+ 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
+ default_defaults = defaultStack.pop()
+ codeObj = t[5]
+ # use the "default defaults" only if there was no explicit
+ # default statement in decode_stmt_list
+ if not codeObj.has_decode_default:
+ codeObj += default_defaults
+ codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
+ t[0] = codeObj
+
+# The opt_default statement serves only to push the "default defaults"
+# onto defaultStack. This value will be used by nested decode blocks,
+# and used and popped off when the current decode_block is processed
+# (in p_decode_block() above).
+def p_opt_default_0(t):
+ 'opt_default : empty'
+ # no default specified: reuse the one currently at the top of the stack
+ defaultStack.push(defaultStack.top())
+ # no meaningful value returned
+ t[0] = None
+
+def p_opt_default_1(t):
+ 'opt_default : DEFAULT inst'
+ # push the new default
+ codeObj = t[2]
+ codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
+ defaultStack.push(codeObj)
+ # no meaningful value returned
+ t[0] = None
+
+def p_decode_stmt_list_0(t):
+ 'decode_stmt_list : decode_stmt'
+ t[0] = t[1]
+
+def p_decode_stmt_list_1(t):
+ 'decode_stmt_list : decode_stmt decode_stmt_list'
+ if (t[1].has_decode_default and t[2].has_decode_default):
+ error(t.lineno(1), 'Two default cases in decode block')
+ t[0] = t[1] + t[2]
+
+#
+# Decode statement rules
+#
+# There are four types of statements allowed in a decode block:
+# 1. Format blocks 'format <foo> { ... }'
+# 2. Nested decode blocks
+# 3. Instruction definitions.
+# 4. C preprocessor directives.
+
+
+# Preprocessor directives found in a decode statement list are passed
+# through to the output, replicated to all of the output code
+# streams. This works well for ifdefs, so we can ifdef out both the
+# declarations and the decode cases generated by an instruction
+# definition. Handling them as part of the grammar makes it easy to
+# keep them in the right place with respect to the code generated by
+# the other statements.
+def p_decode_stmt_cpp(t):
+ 'decode_stmt : CPPDIRECTIVE'
+ t[0] = GenCode(t[1], t[1], t[1], t[1])
+
+# A format block 'format <foo> { ... }' sets the default instruction
+# format used to handle instruction definitions inside the block.
+# This format can be overridden by using an explicit format on the
+# instruction definition or with a nested format block.
+def p_decode_stmt_format(t):
+ 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
+ # The format will be pushed on the stack when 'push_format_id' is
+ # processed (see below). Once the parser has recognized the full
+ # production (though the right brace), we're done with the format,
+ # so now we can pop it.
+ formatStack.pop()
+ t[0] = t[4]
+
+# This rule exists so we can set the current format (& push the stack)
+# when we recognize the format name part of the format block.
+def p_push_format_id(t):
+ 'push_format_id : ID'
+ try:
+ formatStack.push(formatMap[t[1]])
+ t[0] = ('', '// format %s' % t[1])
+ except KeyError:
+ error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
+
+# Nested decode block: if the value of the current field matches the
+# specified constant, do a nested decode on some other field.
+def p_decode_stmt_decode(t):
+ 'decode_stmt : case_label COLON decode_block'
+ label = t[1]
+ codeObj = t[3]
+ # just wrap the decoding code from the block as a case in the
+ # outer switch statement.
+ codeObj.wrap_decode_block('\n%s:\n' % label)
+ codeObj.has_decode_default = (label == 'default')
+ t[0] = codeObj
+
+# Instruction definition (finally!).
+def p_decode_stmt_inst(t):
+ 'decode_stmt : case_label COLON inst SEMI'
+ label = t[1]
+ codeObj = t[3]
+ codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
+ codeObj.has_decode_default = (label == 'default')
+ t[0] = codeObj
+
+# The case label is either a list of one or more constants or 'default'
+def p_case_label_0(t):
+ 'case_label : intlit_list'
+ t[0] = ': '.join(map(lambda a: 'case %#x' % a, t[1]))
+
+def p_case_label_1(t):
+ 'case_label : DEFAULT'
+ t[0] = 'default'
+
+#
+# The constant list for a decode case label must be non-empty, but may have
+# one or more comma-separated integer literals in it.
+#
+def p_intlit_list_0(t):
+ 'intlit_list : INTLIT'
+ t[0] = [t[1]]
+
+def p_intlit_list_1(t):
+ 'intlit_list : intlit_list COMMA INTLIT'
+ t[0] = t[1]
+ t[0].append(t[3])
+
+# Define an instruction using the current instruction format (specified
+# by an enclosing format block).
+# "<mnemonic>(<args>)"
+def p_inst_0(t):
+ 'inst : ID LPAREN arg_list RPAREN'
+ # Pass the ID and arg list to the current format class to deal with.
+ currentFormat = formatStack.top()
+ codeObj = currentFormat.defineInst(t[1], t[3], t.lineno(1))
+ args = ','.join(map(str, t[3]))
+ args = re.sub('(?m)^', '//', args)
+ args = re.sub('^//', '', args)
+ comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
+ codeObj.prepend_all(comment)
+ t[0] = codeObj
+
+# Define an instruction using an explicitly specified format:
+# "<fmt>::<mnemonic>(<args>)"
+def p_inst_1(t):
+ 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
+ try:
+ format = formatMap[t[1]]
+ except KeyError:
+ error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
+ codeObj = format.defineInst(t[3], t[5], t.lineno(1))
+ comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
+ codeObj.prepend_all(comment)
+ t[0] = codeObj
+
+# The arg list generates a tuple, where the first element is a list of
+# the positional args and the second element is a dict containing the
+# keyword args.
+def p_arg_list_0(t):
+ 'arg_list : positional_arg_list COMMA keyword_arg_list'
+ t[0] = ( t[1], t[3] )
+
+def p_arg_list_1(t):
+ 'arg_list : positional_arg_list'
+ t[0] = ( t[1], {} )
+
+def p_arg_list_2(t):
+ 'arg_list : keyword_arg_list'
+ t[0] = ( [], t[1] )
+
+def p_positional_arg_list_0(t):
+ 'positional_arg_list : empty'
+ t[0] = []
+
+def p_positional_arg_list_1(t):
+ 'positional_arg_list : expr'
+ t[0] = [t[1]]
+
+def p_positional_arg_list_2(t):
+ 'positional_arg_list : positional_arg_list COMMA expr'
+ t[0] = t[1] + [t[3]]
+
+def p_keyword_arg_list_0(t):
+ 'keyword_arg_list : keyword_arg'
+ t[0] = t[1]
+
+def p_keyword_arg_list_1(t):
+ 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
+ t[0] = t[1]
+ t[0].update(t[3])
+
+def p_keyword_arg(t):
+ 'keyword_arg : ID EQUALS expr'
+ t[0] = { t[1] : t[3] }
+
+#
+# Basic expressions. These constitute the argument values of
+# "function calls" (i.e. instruction definitions in the decode block)
+# and default values for formal parameters of format functions.
+#
+# Right now, these are either strings, integers, or (recursively)
+# lists of exprs (using Python square-bracket list syntax). Note that
+# bare identifiers are trated as string constants here (since there
+# isn't really a variable namespace to refer to).
+#
+def p_expr_0(t):
+ '''expr : ID
+ | INTLIT
+ | STRLIT
+ | CODELIT'''
+ t[0] = t[1]
+
+def p_expr_1(t):
+ '''expr : LBRACKET list_expr RBRACKET'''
+ t[0] = t[2]
+
+def p_list_expr_0(t):
+ 'list_expr : expr'
+ t[0] = [t[1]]
+
+def p_list_expr_1(t):
+ 'list_expr : list_expr COMMA expr'
+ t[0] = t[1] + [t[3]]
+
+def p_list_expr_2(t):
+ 'list_expr : empty'
+ t[0] = []
+
+#
+# Empty production... use in other rules for readability.
+#
+def p_empty(t):
+ 'empty :'
+ pass
+
+# Parse error handler. Note that the argument here is the offending
+# *token*, not a grammar symbol (hence the need to use t.value)
+def p_error(t):
+ if t:
+ error(t.lineno, "syntax error at '%s'" % t.value)
+ else:
+ error(0, "unknown syntax error", True)
+
+# END OF GRAMMAR RULES
+#
+# Now build the parser.
+yacc.yacc()
+
+
+#####################################################################
+#
+# Support Classes
+#
+#####################################################################
+
+# Expand template with CPU-specific references into a dictionary with
+# an entry for each CPU model name. The entry key is the model name
+# and the corresponding value is the template with the CPU-specific
+# refs substituted for that model.
+def expand_cpu_symbols_to_dict(template):
+ # Protect '%'s that don't go with CPU-specific terms
+ t = re.sub(r'%(?!\(CPU_)', '%%', template)
+ result = {}
+ for cpu in cpu_models:
+ result[cpu.name] = t % cpu.strings
+ return result
+
+# *If* the template has CPU-specific references, return a single
+# string containing a copy of the template for each CPU model with the
+# corresponding values substituted in. If the template has no
+# CPU-specific references, it is returned unmodified.
+def expand_cpu_symbols_to_string(template):
+ if template.find('%(CPU_') != -1:
+ return reduce(lambda x,y: x+y,
+ expand_cpu_symbols_to_dict(template).values())
+ else:
+ return template
+
+# Protect CPU-specific references by doubling the corresponding '%'s
+# (in preparation for substituting a different set of references into
+# the template).
+def protect_cpu_symbols(template):
+ return re.sub(r'%(?=\(CPU_)', '%%', template)
+
+###############
+# GenCode class
+#
+# The GenCode class encapsulates generated code destined for various
+# output files. The header_output and decoder_output attributes are
+# strings containing code destined for decoder.hh and decoder.cc
+# respectively. The decode_block attribute contains code to be
+# incorporated in the decode function itself (that will also end up in
+# decoder.cc). The exec_output attribute is a dictionary with a key
+# for each CPU model name; the value associated with a particular key
+# is the string of code for that CPU model's exec.cc file. The
+# has_decode_default attribute is used in the decode block to allow
+# explicit default clauses to override default default clauses.
+
+class GenCode:
+ # Constructor. At this point we substitute out all CPU-specific
+ # symbols. For the exec output, these go into the per-model
+ # dictionary. For all other output types they get collapsed into
+ # a single string.
+ def __init__(self,
+ header_output = '', decoder_output = '', exec_output = '',
+ decode_block = '', has_decode_default = False):
+ self.header_output = expand_cpu_symbols_to_string(header_output)
+ self.decoder_output = expand_cpu_symbols_to_string(decoder_output)
+ if isinstance(exec_output, dict):
+ self.exec_output = exec_output
+ elif isinstance(exec_output, str):
+ # If the exec_output arg is a single string, we replicate
+ # it for each of the CPU models, substituting and
+ # %(CPU_foo)s params appropriately.
+ self.exec_output = expand_cpu_symbols_to_dict(exec_output)
+ self.decode_block = expand_cpu_symbols_to_string(decode_block)
+ self.has_decode_default = has_decode_default
+
+ # Override '+' operator: generate a new GenCode object that
+ # concatenates all the individual strings in the operands.
+ def __add__(self, other):
+ exec_output = {}
+ for cpu in cpu_models:
+ n = cpu.name
+ exec_output[n] = self.exec_output[n] + other.exec_output[n]
+ return GenCode(self.header_output + other.header_output,
+ self.decoder_output + other.decoder_output,
+ exec_output,
+ self.decode_block + other.decode_block,
+ self.has_decode_default or other.has_decode_default)
+
+ # Prepend a string (typically a comment) to all the strings.
+ def prepend_all(self, pre):
+ self.header_output = pre + self.header_output
+ self.decoder_output = pre + self.decoder_output
+ self.decode_block = pre + self.decode_block
+ for cpu in cpu_models:
+ self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
+
+ # Wrap the decode block in a pair of strings (e.g., 'case foo:'
+ # and 'break;'). Used to build the big nested switch statement.
+ def wrap_decode_block(self, pre, post = ''):
+ self.decode_block = pre + indent(self.decode_block) + post
+
+################
+# Format object.
+#
+# A format object encapsulates an instruction format. It must provide
+# a defineInst() method that generates the code for an instruction
+# definition.
+
+exportContextSymbols = ('InstObjParams', 'CodeBlock',
+ 'makeList', 're', 'string')
+
+exportContext = {}
+
+def updateExportContext():
+ exportContext.update(exportDict(*exportContextSymbols))
+ exportContext.update(templateMap)
+
+def exportDict(*symNames):
+ return dict([(s, eval(s)) for s in symNames])
+
+
+class Format:
+ def __init__(self, id, params, code):
+ # constructor: just save away arguments
+ self.id = id
+ self.params = params
+ label = 'def format ' + id
+ self.user_code = compile(fixPythonIndentation(code), label, 'exec')
+ param_list = string.join(params, ", ")
+ f = '''def defInst(_code, _context, %s):
+ my_locals = vars().copy()
+ exec _code in _context, my_locals
+ return my_locals\n''' % param_list
+ c = compile(f, label + ' wrapper', 'exec')
+ exec c
+ self.func = defInst
+
+ def defineInst(self, name, args, lineno):
+ context = {}
+ updateExportContext()
+ context.update(exportContext)
+ context.update({ 'name': name, 'Name': string.capitalize(name) })
+ try:
+ vars = self.func(self.user_code, context, *args[0], **args[1])
+ except Exception, exc:
+ error(lineno, 'error defining "%s": %s.' % (name, exc))
+ for k in vars.keys():
+ if k not in ('header_output', 'decoder_output',
+ 'exec_output', 'decode_block'):
+ del vars[k]
+ return GenCode(**vars)
+
+# Special null format to catch an implicit-format instruction
+# definition outside of any format block.
+class NoFormat:
+ def __init__(self):
+ self.defaultInst = ''
+
+ def defineInst(self, name, args, lineno):
+ error(lineno,
+ 'instruction definition "%s" with no active format!' % name)
+
+# This dictionary maps format name strings to Format objects.
+formatMap = {}
+
+# Define a new format
+def defFormat(id, params, code, lineno):
+ # make sure we haven't already defined this one
+ if formatMap.get(id, None) != None:
+ error(lineno, 'format %s redefined.' % id)
+ # create new object and store in global map
+ formatMap[id] = Format(id, params, code)
+
+
+##############
+# Stack: a simple stack object. Used for both formats (formatStack)
+# and default cases (defaultStack). Simply wraps a list to give more
+# stack-like syntax and enable initialization with an argument list
+# (as opposed to an argument that's a list).
+
+class Stack(list):
+ def __init__(self, *items):
+ list.__init__(self, items)
+
+ def push(self, item):
+ self.append(item);
+
+ def top(self):
+ return self[-1]
+
+# The global format stack.
+formatStack = Stack(NoFormat())
+
+# The global default case stack.
+defaultStack = Stack( None )
+
+# Global stack that tracks current file and line number.
+# Each element is a tuple (filename, lineno) that records the
+# *current* filename and the line number in the *previous* file where
+# it was included.
+fileNameStack = Stack()
+
+###################
+# Utility functions
+
+#
+# Indent every line in string 's' by two spaces
+# (except preprocessor directives).
+# Used to make nested code blocks look pretty.
+#
+def indent(s):
+ return re.sub(r'(?m)^(?!#)', ' ', s)
+
+#
+# Munge a somewhat arbitrarily formatted piece of Python code
+# (e.g. from a format 'let' block) into something whose indentation
+# will get by the Python parser.
+#
+# The two keys here are that Python will give a syntax error if
+# there's any whitespace at the beginning of the first line, and that
+# all lines at the same lexical nesting level must have identical
+# indentation. Unfortunately the way code literals work, an entire
+# let block tends to have some initial indentation. Rather than
+# trying to figure out what that is and strip it off, we prepend 'if
+# 1:' to make the let code the nested block inside the if (and have
+# the parser automatically deal with the indentation for us).
+#
+# We don't want to do this if (1) the code block is empty or (2) the
+# first line of the block doesn't have any whitespace at the front.
+
+def fixPythonIndentation(s):
+ # get rid of blank lines first
+ s = re.sub(r'(?m)^\s*\n', '', s);
+ if (s != '' and re.match(r'[ \t]', s[0])):
+ s = 'if 1:\n' + s
+ return s
+
+# Error handler. Just call exit. Output formatted to work under
+# Emacs compile-mode. Optional 'print_traceback' arg, if set to True,
+# prints a Python stack backtrace too (can be handy when trying to
+# debug the parser itself).
+def error(lineno, string, print_traceback = False):
+ spaces = ""
+ for (filename, line) in fileNameStack[0:-1]:
+ print spaces + "In file included from " + filename + ":"
+ spaces += " "
+ # Print a Python stack backtrace if requested.
+ if (print_traceback):
+ traceback.print_exc()
+ if lineno != 0:
+ line_str = "%d:" % lineno
+ else:
+ line_str = ""
+ sys.exit(spaces + "%s:%s %s" % (fileNameStack[-1][0], line_str, string))
+
+
+#####################################################################
+#
+# Bitfield Operator Support
+#
+#####################################################################
+
+bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
+
+bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
+bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
+
+def substBitOps(code):
+ # first convert single-bit selectors to two-index form
+ # i.e., <n> --> <n:n>
+ code = bitOp1ArgRE.sub(r'<\1:\1>', code)
+ # simple case: selector applied to ID (name)
+ # i.e., foo<a:b> --> bits(foo, a, b)
+ code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
+ # if selector is applied to expression (ending in ')'),
+ # we need to search backward for matching '('
+ match = bitOpExprRE.search(code)
+ while match:
+ exprEnd = match.start()
+ here = exprEnd - 1
+ nestLevel = 1
+ while nestLevel > 0:
+ if code[here] == '(':
+ nestLevel -= 1
+ elif code[here] == ')':
+ nestLevel += 1
+ here -= 1
+ if here < 0:
+ sys.exit("Didn't find '('!")
+ exprStart = here+1
+ newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
+ match.group(1), match.group(2))
+ code = code[:exprStart] + newExpr + code[match.end():]
+ match = bitOpExprRE.search(code)
+ return code
+
+
+####################
+# Template objects.
+#
+# Template objects are format strings that allow substitution from
+# the attribute spaces of other objects (e.g. InstObjParams instances).
+
+class Template:
+ def __init__(self, t):
+ self.template = t
+
+ def subst(self, d):
+ # Start with the template namespace. Make a copy since we're
+ # going to modify it.
+ myDict = templateMap.copy()
+ # if the argument is a dictionary, we just use it.
+ if isinstance(d, dict):
+ myDict.update(d)
+ # if the argument is an object, we use its attribute map.
+ elif hasattr(d, '__dict__'):
+ myDict.update(d.__dict__)
+ else:
+ raise TypeError, "Template.subst() arg must be or have dictionary"
+ # Protect non-Python-dict substitutions (e.g. if there's a printf
+ # in the templated C++ code)
+ template = protect_non_subst_percents(self.template)
+ # CPU-model-specific substitutions are handled later (in GenCode).
+ template = protect_cpu_symbols(template)
+ return template % myDict
+
+ # Convert to string. This handles the case when a template with a
+ # CPU-specific term gets interpolated into another template or into
+ # an output block.
+ def __str__(self):
+ return expand_cpu_symbols_to_string(self.template)
+
+#####################################################################
+#
+# Code Parser
+#
+# The remaining code is the support for automatically extracting
+# instruction characteristics from pseudocode.
+#
+#####################################################################
+
+# Force the argument to be a list. Useful for flags, where a caller
+# can specify a singleton flag or a list of flags. Also usful for
+# converting tuples to lists so they can be modified.
+def makeList(arg):
+ if isinstance(arg, list):
+ return arg
+ elif isinstance(arg, tuple):
+ return list(arg)
+ elif not arg:
+ return []
+ else:
+ return [ arg ]
+
+# Generate operandTypeMap from the user's 'def operand_types'
+# statement.
+def buildOperandTypeMap(userDict, lineno):
+ global operandTypeMap
+ operandTypeMap = {}
+ for (ext, (desc, size)) in userDict.iteritems():
+ if desc == 'signed int':
+ ctype = 'int%d_t' % size
+ is_signed = 1
+ elif desc == 'unsigned int':
+ ctype = 'uint%d_t' % size
+ is_signed = 0
+ elif desc == 'float':
+ is_signed = 1 # shouldn't really matter
+ if size == 32:
+ ctype = 'float'
+ elif size == 64:
+ ctype = 'double'
+ if ctype == '':
+ error(lineno, 'Unrecognized type description "%s" in userDict')
+ operandTypeMap[ext] = (size, ctype, is_signed)
+
+#
+#
+#
+# Base class for operand descriptors. An instance of this class (or
+# actually a class derived from this one) represents a specific
+# operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
+# derived classes encapsulates the traits of a particular operand type
+# (e.g., "32-bit integer register").
+#
+class Operand(object):
+ def __init__(self, full_name, ext, is_src, is_dest):
+ self.full_name = full_name
+ self.ext = ext
+ self.is_src = is_src
+ self.is_dest = is_dest
+ # The 'effective extension' (eff_ext) is either the actual
+ # extension, if one was explicitly provided, or the default.
+ if ext:
+ self.eff_ext = ext
+ else:
+ self.eff_ext = self.dflt_ext
+
+ (self.size, self.ctype, self.is_signed) = operandTypeMap[self.eff_ext]
+
+ # note that mem_acc_size is undefined for non-mem operands...
+ # template must be careful not to use it if it doesn't apply.
+ if self.isMem():
+ self.mem_acc_size = self.makeAccSize()
+ self.mem_acc_type = self.ctype
+
+ # Finalize additional fields (primarily code fields). This step
+ # is done separately since some of these fields may depend on the
+ # register index enumeration that hasn't been performed yet at the
+ # time of __init__().
+ def finalize(self):
+ self.flags = self.getFlags()
+ self.constructor = self.makeConstructor()
+ self.op_decl = self.makeDecl()
+
+ if self.is_src:
+ self.op_rd = self.makeRead()
+ self.op_src_decl = self.makeDecl()
+ else:
+ self.op_rd = ''
+ self.op_src_decl = ''
+
+ if self.is_dest:
+ self.op_wb = self.makeWrite()
+ self.op_dest_decl = self.makeDecl()
+ else:
+ self.op_wb = ''
+ self.op_dest_decl = ''
+
+ def isMem(self):
+ return 0
+
+ def isReg(self):
+ return 0
+
+ def isFloatReg(self):
+ return 0
+
+ def isIntReg(self):
+ return 0
+
+ def isControlReg(self):
+ return 0
+
+ def getFlags(self):
+ # note the empty slice '[:]' gives us a copy of self.flags[0]
+ # instead of a reference to it
+ my_flags = self.flags[0][:]
+ if self.is_src:
+ my_flags += self.flags[1]
+ if self.is_dest:
+ my_flags += self.flags[2]
+ return my_flags
+
+ def makeDecl(self):
+ # Note that initializations in the declarations are solely
+ # to avoid 'uninitialized variable' errors from the compiler.
+ return self.ctype + ' ' + self.base_name + ' = 0;\n';
+
+class IntRegOperand(Operand):
+ def isReg(self):
+ return 1
+
+ def isIntReg(self):
+ return 1
+
+ def makeConstructor(self):
+ c = ''
+ if self.is_src:
+ c += '\n\t_srcRegIdx[%d] = %s;' % \
+ (self.src_reg_idx, self.reg_spec)
+ if self.is_dest:
+ c += '\n\t_destRegIdx[%d] = %s;' % \
+ (self.dest_reg_idx, self.reg_spec)
+ return c
+
+ def makeRead(self):
+ if (self.ctype == 'float' or self.ctype == 'double'):
+ error(0, 'Attempt to read integer register as FP')
+ if (self.size == self.dflt_size):
+ return '%s = xc->readIntReg(this, %d);\n' % \
+ (self.base_name, self.src_reg_idx)
+ elif (self.size > self.dflt_size):
+ int_reg_val = 'xc->readIntReg(this, %d)' % (self.src_reg_idx)
+ if (self.is_signed):
+ int_reg_val = 'sext<%d>(%s)' % (self.dflt_size, int_reg_val)
+ return '%s = %s;\n' % (self.base_name, int_reg_val)
+ else:
+ return '%s = bits(xc->readIntReg(this, %d), %d, 0);\n' % \
+ (self.base_name, self.src_reg_idx, self.size-1)
+
+ def makeWrite(self):
+ if (self.ctype == 'float' or self.ctype == 'double'):
+ error(0, 'Attempt to write integer register as FP')
+ if (self.size != self.dflt_size and self.is_signed):
+ final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
+ else:
+ final_val = self.base_name
+ wb = '''
+ {
+ %s final_val = %s;
+ xc->setIntReg(this, %d, final_val);\n
+ if (traceData) { traceData->setData(final_val); }
+ }''' % (self.dflt_ctype, final_val, self.dest_reg_idx)
+ return wb
+
+class FloatRegOperand(Operand):
+ def isReg(self):
+ return 1
+
+ def isFloatReg(self):
+ return 1
+
+ def makeConstructor(self):
+ c = ''
+ if self.is_src:
+ c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \
+ (self.src_reg_idx, self.reg_spec)
+ if self.is_dest:
+ c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \
+ (self.dest_reg_idx, self.reg_spec)
+ return c
+
+ def makeRead(self):
+ bit_select = 0
+ width = 0;
+ if (self.ctype == 'float'):
+ func = 'readFloatReg'
+ width = 32;
+ elif (self.ctype == 'double'):
+ func = 'readFloatReg'
+ width = 64;
+ else:
+ func = 'readFloatRegBits'
+ if (self.ctype == 'uint32_t'):
+ width = 32;
+ elif (self.ctype == 'uint64_t'):
+ width = 64;
+ if (self.size != self.dflt_size):
+ bit_select = 1
+ if width:
+ base = 'xc->%s(this, %d, %d)' % \
+ (func, self.src_reg_idx, width)
+ else:
+ base = 'xc->%s(this, %d)' % \
+ (func, self.src_reg_idx)
+ if bit_select:
+ return '%s = bits(%s, %d, 0);\n' % \
+ (self.base_name, base, self.size-1)
+ else:
+ return '%s = %s;\n' % (self.base_name, base)
+
+ def makeWrite(self):
+ final_val = self.base_name
+ final_ctype = self.ctype
+ widthSpecifier = ''
+ width = 0
+ if (self.ctype == 'float'):
+ width = 32
+ func = 'setFloatReg'
+ elif (self.ctype == 'double'):
+ width = 64
+ func = 'setFloatReg'
+ elif (self.ctype == 'uint32_t'):
+ func = 'setFloatRegBits'
+ width = 32
+ elif (self.ctype == 'uint64_t'):
+ func = 'setFloatRegBits'
+ width = 64
+ else:
+ func = 'setFloatRegBits'
+ final_ctype = 'uint%d_t' % self.dflt_size
+ if (self.size != self.dflt_size and self.is_signed):
+ final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
+ if width:
+ widthSpecifier = ', %d' % width
+ wb = '''
+ {
+ %s final_val = %s;
+ xc->%s(this, %d, final_val%s);\n
+ if (traceData) { traceData->setData(final_val); }
+ }''' % (final_ctype, final_val, func, self.dest_reg_idx,
+ widthSpecifier)
+ return wb
+
+class ControlRegOperand(Operand):
+ def isReg(self):
+ return 1
+
+ def isControlReg(self):
+ return 1
+
+ def makeConstructor(self):
+ c = ''
+ if self.is_src:
+ c += '\n\t_srcRegIdx[%d] = %s;' % \
+ (self.src_reg_idx, self.reg_spec)
+ if self.is_dest:
+ c += '\n\t_destRegIdx[%d] = %s;' % \
+ (self.dest_reg_idx, self.reg_spec)
+ return c
+
+ def makeRead(self):
+ bit_select = 0
+ if (self.ctype == 'float' or self.ctype == 'double'):
+ error(0, 'Attempt to read control register as FP')
+ base = 'xc->readMiscReg(%s)' % self.reg_spec
+ if self.size == self.dflt_size:
+ return '%s = %s;\n' % (self.base_name, base)
+ else:
+ return '%s = bits(%s, %d, 0);\n' % \
+ (self.base_name, base, self.size-1)
+
+ def makeWrite(self):
+ if (self.ctype == 'float' or self.ctype == 'double'):
+ error(0, 'Attempt to write control register as FP')
+ wb = 'xc->setMiscReg(%s, %s);\n' % (self.reg_spec, self.base_name)
+ wb += 'if (traceData) { traceData->setData(%s); }' % \
+ self.base_name
+ return wb
+
+class MemOperand(Operand):
+ def isMem(self):
+ return 1
+
+ def makeConstructor(self):
+ return ''
+
+ def makeDecl(self):
+ # Note that initializations in the declarations are solely
+ # to avoid 'uninitialized variable' errors from the compiler.
+ # Declare memory data variable.
+ c = '%s %s = 0;\n' % (self.ctype, self.base_name)
+ return c
+
+ def makeRead(self):
+ return ''
+
+ def makeWrite(self):
+ return ''
+
+ # Return the memory access size *in bits*, suitable for
+ # forming a type via "uint%d_t". Divide by 8 if you want bytes.
+ def makeAccSize(self):
+ return self.size
+
+
+class NPCOperand(Operand):
+ def makeConstructor(self):
+ return ''
+
+ def makeRead(self):
+ return '%s = xc->readNextPC();\n' % self.base_name
+
+ def makeWrite(self):
+ return 'xc->setNextPC(%s);\n' % self.base_name
+
+class NNPCOperand(Operand):
+ def makeConstructor(self):
+ return ''
+
+ def makeRead(self):
+ return '%s = xc->readNextNPC();\n' % self.base_name
+
+ def makeWrite(self):
+ return 'xc->setNextNPC(%s);\n' % self.base_name
+
+def buildOperandNameMap(userDict, lineno):
+ global operandNameMap
+ operandNameMap = {}
+ for (op_name, val) in userDict.iteritems():
+ (base_cls_name, dflt_ext, reg_spec, flags, sort_pri) = val
+ (dflt_size, dflt_ctype, dflt_is_signed) = operandTypeMap[dflt_ext]
+ # Canonical flag structure is a triple of lists, where each list
+ # indicates the set of flags implied by this operand always, when
+ # used as a source, and when used as a dest, respectively.
+ # For simplicity this can be initialized using a variety of fairly
+ # obvious shortcuts; we convert these to canonical form here.
+ if not flags:
+ # no flags specified (e.g., 'None')
+ flags = ( [], [], [] )
+ elif isinstance(flags, str):
+ # a single flag: assumed to be unconditional
+ flags = ( [ flags ], [], [] )
+ elif isinstance(flags, list):
+ # a list of flags: also assumed to be unconditional
+ flags = ( flags, [], [] )
+ elif isinstance(flags, tuple):
+ # it's a tuple: it should be a triple,
+ # but each item could be a single string or a list
+ (uncond_flags, src_flags, dest_flags) = flags
+ flags = (makeList(uncond_flags),
+ makeList(src_flags), makeList(dest_flags))
+ # Accumulate attributes of new operand class in tmp_dict
+ tmp_dict = {}
+ for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri',
+ 'dflt_size', 'dflt_ctype', 'dflt_is_signed'):
+ tmp_dict[attr] = eval(attr)
+ tmp_dict['base_name'] = op_name
+ # New class name will be e.g. "IntReg_Ra"
+ cls_name = base_cls_name + '_' + op_name
+ # Evaluate string arg to get class object. Note that the
+ # actual base class for "IntReg" is "IntRegOperand", i.e. we
+ # have to append "Operand".
+ try:
+ base_cls = eval(base_cls_name + 'Operand')
+ except NameError:
+ error(lineno,
+ 'error: unknown operand base class "%s"' % base_cls_name)
+ # The following statement creates a new class called
+ # <cls_name> as a subclass of <base_cls> with the attributes
+ # in tmp_dict, just as if we evaluated a class declaration.
+ operandNameMap[op_name] = type(cls_name, (base_cls,), tmp_dict)
+
+ # Define operand variables.
+ operands = userDict.keys()
+
+ operandsREString = (r'''
+ (?<![\w\.]) # neg. lookbehind assertion: prevent partial matches
+ ((%s)(?:\.(\w+))?) # match: operand with optional '.' then suffix
+ (?![\w\.]) # neg. lookahead assertion: prevent partial matches
+ '''
+ % string.join(operands, '|'))
+
+ global operandsRE
+ operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
+
+ # Same as operandsREString, but extension is mandatory, and only two
+ # groups are returned (base and ext, not full name as above).
+ # Used for subtituting '_' for '.' to make C++ identifiers.
+ operandsWithExtREString = (r'(?<![\w\.])(%s)\.(\w+)(?![\w\.])'
+ % string.join(operands, '|'))
+
+ global operandsWithExtRE
+ operandsWithExtRE = re.compile(operandsWithExtREString, re.MULTILINE)
+
+
+class OperandList:
+
+ # Find all the operands in the given code block. Returns an operand
+ # descriptor list (instance of class OperandList).
+ def __init__(self, code):
+ self.items = []
+ self.bases = {}
+ # delete comments so we don't match on reg specifiers inside
+ code = commentRE.sub('', code)
+ # search for operands
+ next_pos = 0
+ while 1:
+ match = operandsRE.search(code, next_pos)
+ if not match:
+ # no more matches: we're done
+ break
+ op = match.groups()
+ # regexp groups are operand full name, base, and extension
+ (op_full, op_base, op_ext) = op
+ # if the token following the operand is an assignment, this is
+ # a destination (LHS), else it's a source (RHS)
+ is_dest = (assignRE.match(code, match.end()) != None)
+ is_src = not is_dest
+ # see if we've already seen this one
+ op_desc = self.find_base(op_base)
+ if op_desc:
+ if op_desc.ext != op_ext:
+ error(0, 'Inconsistent extensions for operand %s' % \
+ op_base)
+ op_desc.is_src = op_desc.is_src or is_src
+ op_desc.is_dest = op_desc.is_dest or is_dest
+ else:
+ # new operand: create new descriptor
+ op_desc = operandNameMap[op_base](op_full, op_ext,
+ is_src, is_dest)
+ self.append(op_desc)
+ # start next search after end of current match
+ next_pos = match.end()
+ self.sort()
+ # enumerate source & dest register operands... used in building
+ # constructor later
+ self.numSrcRegs = 0
+ self.numDestRegs = 0
+ self.numFPDestRegs = 0
+ self.numIntDestRegs = 0
+ self.memOperand = None
+ for op_desc in self.items:
+ if op_desc.isReg():
+ if op_desc.is_src:
+ op_desc.src_reg_idx = self.numSrcRegs
+ self.numSrcRegs += 1
+ if op_desc.is_dest:
+ op_desc.dest_reg_idx = self.numDestRegs
+ self.numDestRegs += 1
+ if op_desc.isFloatReg():
+ self.numFPDestRegs += 1
+ elif op_desc.isIntReg():
+ self.numIntDestRegs += 1
+ elif op_desc.isMem():
+ if self.memOperand:
+ error(0, "Code block has more than one memory operand.")
+ self.memOperand = op_desc
+ # now make a final pass to finalize op_desc fields that may depend
+ # on the register enumeration
+ for op_desc in self.items:
+ op_desc.finalize()
+
+ def __len__(self):
+ return len(self.items)
+
+ def __getitem__(self, index):
+ return self.items[index]
+
+ def append(self, op_desc):
+ self.items.append(op_desc)
+ self.bases[op_desc.base_name] = op_desc
+
+ def find_base(self, base_name):
+ # like self.bases[base_name], but returns None if not found
+ # (rather than raising exception)
+ return self.bases.get(base_name)
+
+ # internal helper function for concat[Some]Attr{Strings|Lists}
+ def __internalConcatAttrs(self, attr_name, filter, result):
+ for op_desc in self.items:
+ if filter(op_desc):
+ result += getattr(op_desc, attr_name)
+ return result
+
+ # return a single string that is the concatenation of the (string)
+ # values of the specified attribute for all operands
+ def concatAttrStrings(self, attr_name):
+ return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
+
+ # like concatAttrStrings, but only include the values for the operands
+ # for which the provided filter function returns true
+ def concatSomeAttrStrings(self, filter, attr_name):
+ return self.__internalConcatAttrs(attr_name, filter, '')
+
+ # return a single list that is the concatenation of the (list)
+ # values of the specified attribute for all operands
+ def concatAttrLists(self, attr_name):
+ return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
+
+ # like concatAttrLists, but only include the values for the operands
+ # for which the provided filter function returns true
+ def concatSomeAttrLists(self, filter, attr_name):
+ return self.__internalConcatAttrs(attr_name, filter, [])
+
+ def sort(self):
+ self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
+
+# Regular expression object to match C++ comments
+# (used in findOperands())
+commentRE = re.compile(r'//.*\n')
+
+# Regular expression object to match assignment statements
+# (used in findOperands())
+assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
+
+# Munge operand names in code string to make legal C++ variable names.
+# This means getting rid of the type extension if any.
+# (Will match base_name attribute of Operand object.)
+def substMungedOpNames(code):
+ return operandsWithExtRE.sub(r'\1', code)
+
+def joinLists(t):
+ return map(string.join, t)
+
+def makeFlagConstructor(flag_list):
+ if len(flag_list) == 0:
+ return ''
+ # filter out repeated flags
+ flag_list.sort()
+ i = 1
+ while i < len(flag_list):
+ if flag_list[i] == flag_list[i-1]:
+ del flag_list[i]
+ else:
+ i += 1
+ pre = '\n\tflags['
+ post = '] = true;'
+ code = pre + string.join(flag_list, post + pre) + post
+ return code
+
+class CodeBlock:
+ def __init__(self, code):
+ self.orig_code = code
+ self.operands = OperandList(code)
+ self.code = substMungedOpNames(substBitOps(code))
+ self.constructor = self.operands.concatAttrStrings('constructor')
+ self.constructor += \
+ '\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs
+ self.constructor += \
+ '\n\t_numDestRegs = %d;' % self.operands.numDestRegs
+ self.constructor += \
+ '\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs
+ self.constructor += \
+ '\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs
+
+ self.op_decl = self.operands.concatAttrStrings('op_decl')
+
+ is_src = lambda op: op.is_src
+ is_dest = lambda op: op.is_dest
+
+ self.op_src_decl = \
+ self.operands.concatSomeAttrStrings(is_src, 'op_src_decl')
+ self.op_dest_decl = \
+ self.operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
+
+ self.op_rd = self.operands.concatAttrStrings('op_rd')
+ self.op_wb = self.operands.concatAttrStrings('op_wb')
+
+ self.flags = self.operands.concatAttrLists('flags')
+
+ if self.operands.memOperand:
+ self.mem_acc_size = self.operands.memOperand.mem_acc_size
+ self.mem_acc_type = self.operands.memOperand.mem_acc_type
+
+ # Make a basic guess on the operand class (function unit type).
+ # These are good enough for most cases, and will be overridden
+ # later otherwise.
+ if 'IsStore' in self.flags:
+ self.op_class = 'MemWriteOp'
+ elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
+ self.op_class = 'MemReadOp'
+ elif 'IsFloating' in self.flags:
+ self.op_class = 'FloatAddOp'
+ else:
+ self.op_class = 'IntAluOp'
+
+# Assume all instruction flags are of the form 'IsFoo'
+instFlagRE = re.compile(r'Is.*')
+
+# OpClass constants end in 'Op' except No_OpClass
+opClassRE = re.compile(r'.*Op|No_OpClass')
+
+class InstObjParams:
+ def __init__(self, mnem, class_name, base_class = '',
+ code = None, opt_args = [], *extras):
+ self.mnemonic = mnem
+ self.class_name = class_name
+ self.base_class = base_class
+ if code:
+ #If the user already made a CodeBlock, pick the parts from it
+ if isinstance(code, CodeBlock):
+ origCode = code.orig_code
+ codeBlock = code
+ else:
+ origCode = code
+ codeBlock = CodeBlock(code)
+ compositeCode = '\n'.join([origCode] +
+ [pair[1] for pair in extras])
+ compositeBlock = CodeBlock(compositeCode)
+ for code_attr in compositeBlock.__dict__.keys():
+ setattr(self, code_attr, getattr(compositeBlock, code_attr))
+ for (key, snippet) in extras:
+ setattr(self, key, CodeBlock(snippet).code)
+ self.code = codeBlock.code
+ self.orig_code = origCode
+ else:
+ self.constructor = ''
+ self.flags = []
+ # Optional arguments are assumed to be either StaticInst flags
+ # or an OpClass value. To avoid having to import a complete
+ # list of these values to match against, we do it ad-hoc
+ # with regexps.
+ for oa in opt_args:
+ if instFlagRE.match(oa):
+ self.flags.append(oa)
+ elif opClassRE.match(oa):
+ self.op_class = oa
+ else:
+ error(0, 'InstObjParams: optional arg "%s" not recognized '
+ 'as StaticInst::Flag or OpClass.' % oa)
+
+ # add flag initialization to contructor here to include
+ # any flags added via opt_args
+ self.constructor += makeFlagConstructor(self.flags)
+
+ # if 'IsFloating' is set, add call to the FP enable check
+ # function (which should be provided by isa_desc via a declare)
+ if 'IsFloating' in self.flags:
+ self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
+ else:
+ self.fp_enable_check = ''
+
+#######################
+#
+# Output file template
+#
+
+file_template = '''
+/*
+ * DO NOT EDIT THIS FILE!!!
+ *
+ * It was automatically generated from the ISA description in %(filename)s
+ */
+
+%(includes)s
+
+%(global_output)s
+
+namespace %(namespace)s {
+
+%(namespace_output)s
+
+} // namespace %(namespace)s
+
+%(decode_function)s
+'''
+
+
+# Update the output file only if the new contents are different from
+# the current contents. Minimizes the files that need to be rebuilt
+# after minor changes.
+def update_if_needed(file, contents):
+ update = False
+ if os.access(file, os.R_OK):
+ f = open(file, 'r')
+ old_contents = f.read()
+ f.close()
+ if contents != old_contents:
+ print 'Updating', file
+ os.remove(file) # in case it's write-protected
+ update = True
+ else:
+ print 'File', file, 'is unchanged'
+ else:
+ print 'Generating', file
+ update = True
+ if update:
+ f = open(file, 'w')
+ f.write(contents)
+ f.close()
+
+# This regular expression matches '##include' directives
+includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[\w/.-]*)".*$',
+ re.MULTILINE)
+
+# Function to replace a matched '##include' directive with the
+# contents of the specified file (with nested ##includes replaced
+# recursively). 'matchobj' is an re match object (from a match of
+# includeRE) and 'dirname' is the directory relative to which the file
+# path should be resolved.
+def replace_include(matchobj, dirname):
+ fname = matchobj.group('filename')
+ full_fname = os.path.normpath(os.path.join(dirname, fname))
+ contents = '##newfile "%s"\n%s\n##endfile\n' % \
+ (full_fname, read_and_flatten(full_fname))
+ return contents
+
+# Read a file and recursively flatten nested '##include' files.
+def read_and_flatten(filename):
+ current_dir = os.path.dirname(filename)
+ try:
+ contents = open(filename).read()
+ except IOError:
+ error(0, 'Error including file "%s"' % filename)
+ fileNameStack.push((filename, 0))
+ # Find any includes and include them
+ contents = includeRE.sub(lambda m: replace_include(m, current_dir),
+ contents)
+ fileNameStack.pop()
+ return contents
+
+#
+# Read in and parse the ISA description.
+#
+def parse_isa_desc(isa_desc_file, output_dir):
+ # Read file and (recursively) all included files into a string.
+ # PLY requires that the input be in a single string so we have to
+ # do this up front.
+ isa_desc = read_and_flatten(isa_desc_file)
+
+ # Initialize filename stack with outer file.
+ fileNameStack.push((isa_desc_file, 0))
+
+ # Parse it.
+ (isa_name, namespace, global_code, namespace_code) = yacc.parse(isa_desc)
+
+ # grab the last three path components of isa_desc_file to put in
+ # the output
+ filename = '/'.join(isa_desc_file.split('/')[-3:])
+
+ # generate decoder.hh
+ includes = '#include "base/bitfield.hh" // for bitfield support'
+ global_output = global_code.header_output
+ namespace_output = namespace_code.header_output
+ decode_function = ''
+ update_if_needed(output_dir + '/decoder.hh', file_template % vars())
+
+ # generate decoder.cc
+ includes = '#include "decoder.hh"'
+ global_output = global_code.decoder_output
+ namespace_output = namespace_code.decoder_output
+ # namespace_output += namespace_code.decode_block
+ decode_function = namespace_code.decode_block
+ update_if_needed(output_dir + '/decoder.cc', file_template % vars())
+
+ # generate per-cpu exec files
+ for cpu in cpu_models:
+ includes = '#include "decoder.hh"\n'
+ includes += cpu.includes
+ global_output = global_code.exec_output[cpu.name]
+ namespace_output = namespace_code.exec_output[cpu.name]
+ decode_function = ''
+ update_if_needed(output_dir + '/' + cpu.filename,
+ file_template % vars())
+
+# global list of CpuModel objects (see cpu_models.py)
+cpu_models = []
+
+# Called as script: get args from command line.
+# Args are: <path to cpu_models.py> <isa desc file> <output dir> <cpu models>
+if __name__ == '__main__':
+ execfile(sys.argv[1]) # read in CpuModel definitions
+ cpu_models = [CpuModel.dict[cpu] for cpu in sys.argv[4:]]
+ parse_isa_desc(sys.argv[2], sys.argv[3])