diff options
Diffstat (limited to 'src/arch/power/isa/decoder.isa')
-rw-r--r-- | src/arch/power/isa/decoder.isa | 593 |
1 files changed, 593 insertions, 0 deletions
diff --git a/src/arch/power/isa/decoder.isa b/src/arch/power/isa/decoder.isa new file mode 100644 index 000000000..3252ff14a --- /dev/null +++ b/src/arch/power/isa/decoder.isa @@ -0,0 +1,593 @@ +// -*- mode:c++ -*- + +// Copyright (c) 2009 The University of Edinburgh +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer; +// redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution; +// neither the name of the copyright holders nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Authors: Timothy M. Jones + +//////////////////////////////////////////////////////////////////// +// +// The actual Power ISA decoder +// ------------------------------ +// +// I've used the Power ISA Book I v2.06 for instruction formats, +// opcode numbers, register names, etc. +// +decode OPCODE default Unknown::unknown() { + + format IntImmOp { + 10: cmpli({{ + Xer xer = XER; + uint32_t cr = makeCRField(Ra, (uint32_t)uimm, xer.so); + CR = insertCRField(CR, BF, cr); + }}); + 11: cmpi({{ + Xer xer = XER; + uint32_t cr = makeCRField(Ra.sw, (int32_t)imm, xer.so); + CR = insertCRField(CR, BF, cr); + }}); + } + + // Some instructions use bits 21 - 30, others 22 - 30. We have to use + // the larger size to account for all opcodes. For those that use the + // smaller value, the OE bit is bit 21. Therefore, we have two versions + // of each instruction: 1 with OE set, the other without. For an + // example see 'add' and 'addo'. + 31: decode XO_XO { + + // These instructions can all be reduced to the form + // Rt = src1 + src2 [+ CA], therefore we just give src1 and src2 + // (and, if necessary, CA) definitions and let the python script + // deal with setting things up correctly. We also give flags to + // say which control registers to set. + format IntSumOp { + 266: add({{ Ra }}, {{ Rb }}); + 40: subf({{ ~Ra }}, {{ Rb }}, {{ 1 }}); + 10: addc({{ Ra }}, {{ Rb }}, + computeCA = true); + 8: subfc({{ ~Ra }}, {{ Rb }}, {{ 1 }}, + true); + 104: neg({{ ~Ra }}, {{ 1 }}); + 138: adde({{ Ra }}, {{ Rb }}, {{ xer.ca }}, + true); + 234: addme({{ Ra }}, {{ (uint32_t)-1 }}, {{ xer.ca }}, + true); + 136: subfe({{ ~Ra }}, {{ Rb }}, {{ xer.ca }}, + true); + 232: subfme({{ ~Ra }}, {{ (uint32_t)-1 }}, {{ xer.ca }}, + true); + 202: addze({{ Ra }}, {{ xer.ca }}, + computeCA = true); + 200: subfze({{ ~Ra }}, {{ xer.ca }}, + computeCA = true); + } + + // Arithmetic instructions all use source registers Ra and Rb, + // with destination register Rt. + format IntArithOp { + 75: mulhw({{ int64_t prod = Ra.sq * Rb.sq; Rt = prod >> 32; }}); + 11: mulhwu({{ uint64_t prod = Ra.uq * Rb.uq; Rt = prod >> 32; }}); + 235: mullw({{ int64_t prod = Ra.sq * Rb.sq; Rt = prod; }}); + 747: mullwo({{ int64_t src1 = Ra.sq; int64_t src2 = Rb; int64_t prod = src1 * src2; Rt = prod; }}, + true); + + 491: divw({{ + int32_t src1 = Ra.sw; + int32_t src2 = Rb.sw; + if ((src1 != 0x80000000 || src2 != 0xffffffff) + && src2 != 0) { + Rt = src1 / src2; + } else { + Rt = 0; + } + }}); + + 1003: divwo({{ + int32_t src1 = Ra.sw; + int32_t src2 = Rb.sw; + if ((src1 != 0x80000000 || src2 != 0xffffffff) + && src2 != 0) { + Rt = src1 / src2; + } else { + Rt = 0; + divSetOV = true; + } + }}, + true); + + 459: divwu({{ + uint32_t src1 = Ra.sw; + uint32_t src2 = Rb.sw; + if (src2 != 0) { + Rt = src1 / src2; + } else { + Rt = 0; + } + }}); + + 971: divwuo({{ + uint32_t src1 = Ra.sw; + uint32_t src2 = Rb.sw; + if (src2 != 0) { + Rt = src1 / src2; + } else { + Rt = 0; + divSetOV = true; + } + }}, + true); + } + + // Integer logic instructions use source registers Rs and Rb, + // with destination register Ra. + format IntLogicOp { + 28: and({{ Ra = Rs & Rb; }}); + 316: xor({{ Ra = Rs ^ Rb; }}); + 476: nand({{ Ra = ~(Rs & Rb); }}); + 444: or({{ Ra = Rs | Rb; }}); + 124: nor({{ Ra = ~(Rs | Rb); }}); + 60: andc({{ Ra = Rs & ~Rb; }}); + 954: extsb({{ Ra = sext<8>(Rs); }}); + 284: eqv({{ Ra = ~(Rs ^ Rb); }}); + 412: orc({{ Ra = Rs | ~Rb; }}); + 922: extsh({{ Ra = sext<16>(Rs); }}); + 26: cntlzw({{ Ra = Rs == 0 ? 32 : 31 - findMsbSet(Rs); }}); + 508: cmpb({{ + uint32_t val = 0; + for (int n = 0; n < 32; n += 8) { + if(bits(Rs, n, n+7) == bits(Rb, n, n+7)) { + val = insertBits(val, n, n+7, 0xff); + } + } + Ra = val; + }}); + + 24: slw({{ + if (Rb & 0x20) { + Ra = 0; + } else { + Ra = Rs << (Rb & 0x1f); + } + }}); + + 536: srw({{ + if (Rb & 0x20) { + Ra = 0; + } else { + Ra = Rs >> (Rb & 0x1f); + } + }}); + + 792: sraw({{ + bool shiftSetCA = false; + int32_t s = Rs; + if (Rb == 0) { + Ra = Rs; + shiftSetCA = true; + } else if (Rb & 0x20) { + if (s < 0) { + Ra = (uint32_t)-1; + if (s & 0x7fffffff) { + shiftSetCA = true; + } else { + shiftSetCA = false; + } + } else { + Ra = 0; + shiftSetCA = false; + } + } else { + Ra = s >> (Rb & 0x1f); + if (s < 0 && (s << (32 - (Rb & 0x1f))) != 0) { + shiftSetCA = true; + } else { + shiftSetCA = false; + } + } + Xer xer1 = XER; + if (shiftSetCA) { + xer1.ca = 1; + } else { + xer1.ca = 0; + } + XER = xer1; + }}); + } + + // Integer logic instructions with a shift value. + format IntShiftOp { + 824: srawi({{ + bool shiftSetCA = false; + if (sh == 0) { + Ra = Rs; + shiftSetCA = false; + } else { + int32_t s = Rs; + Ra = s >> sh; + if (s < 0 && (s << (32 - sh)) != 0) { + shiftSetCA = true; + } else { + shiftSetCA = false; + } + } + Xer xer1 = XER; + if (shiftSetCA) { + xer1.ca = 1; + } else { + xer1.ca = 0; + } + XER = xer1; + }}); + } + + // Generic integer format instructions. + format IntOp { + 0: cmp({{ + Xer xer = XER; + uint32_t cr = makeCRField(Ra.sw, Rb.sw, xer.so); + CR = insertCRField(CR, BF, cr); + }}); + 32: cmpl({{ + Xer xer = XER; + uint32_t cr = makeCRField(Ra, Rb, xer.so); + CR = insertCRField(CR, BF, cr); + }}); + 144: mtcrf({{ + uint32_t mask = 0; + for (int i = 0; i < 8; ++i) { + if (((FXM >> i) & 0x1) == 0x1) { + mask |= 0xf << (4 * i); + } + } + CR = (Rs & mask) | (CR & ~mask); + }}); + 19: mfcr({{ Rt = CR; }}); + 339: decode SPR { + 0x20: mfxer({{ Rt = XER; }}); + 0x100: mflr({{ Rt = LR; }}); + 0x120: mfctr({{ Rt = CTR; }}); + } + 467: decode SPR { + 0x20: mtxer({{ XER = Rs; }}); + 0x100: mtlr({{ LR = Rs; }}); + 0x120: mtctr({{ CTR = Rs; }}); + } + } + + // All loads with an index register. The non-update versions + // all use the value 0 if Ra == R0, not the value contained in + // R0. Others update Ra with the effective address. In all cases, + // Ra and Rb are source registers, Rt is the destintation. + format LoadIndexOp { + 87: lbzx({{ Rt = Mem.ub; }}); + 279: lhzx({{ Rt = Mem.uh; }}); + 343: lhax({{ Rt = Mem.sh; }}); + 23: lwzx({{ Rt = Mem; }}); + 341: lwax({{ Rt = Mem.sw; }}); + 20: lwarx({{ Rt = Mem.sw; Rsv = 1; RsvLen = 4; RsvAddr = EA; }}); + 535: lfsx({{ Ft.sf = Mem.sf; }}); + 599: lfdx({{ Ft = Mem.df; }}); + 855: lfiwax({{ Ft.uw = Mem; }}); + } + + format LoadIndexUpdateOp { + 119: lbzux({{ Rt = Mem.ub; }}); + 311: lhzux({{ Rt = Mem.uh; }}); + 375: lhaux({{ Rt = Mem.sh; }}); + 55: lwzux({{ Rt = Mem; }}); + 373: lwaux({{ Rt = Mem.sw; }}); + 567: lfsux({{ Ft.sf = Mem.sf; }}); + 631: lfdux({{ Ft = Mem.df; }}); + } + + format StoreIndexOp { + 215: stbx({{ Mem.ub = Rs.ub; }}); + 407: sthx({{ Mem.uh = Rs.uh; }}); + 151: stwx({{ Mem = Rs; }}); + 150: stwcx({{ + bool store_performed = false; + if (Rsv) { + if (RsvLen == 4) { + if (RsvAddr == EA) { + Mem = Rs; + store_performed = true; + } + } + } + Xer xer = XER; + Cr cr = CR; + cr.cr0 = ((store_performed ? 0x2 : 0x0) | xer.so); + CR = cr; + Rsv = 0; + }}); + 663: stfsx({{ Mem.sf = Fs.sf; }}); + 727: stfdx({{ Mem.df = Fs; }}); + 983: stfiwx({{ Mem = Fs.uw; }}); + } + + format StoreIndexUpdateOp { + 247: stbux({{ Mem.ub = Rs.ub; }}); + 439: sthux({{ Mem.uh = Rs.uh; }}); + 183: stwux({{ Mem = Rs; }}); + 695: stfsux({{ Mem.sf = Fs.sf; }}); + 759: stfdux({{ Mem.df = Fs; }}); + } + + // These instructions all provide data cache hints + format MiscOp { + 278: dcbt({{ }}); + 246: dcbtst({{ }}); + 598: sync({{ }}, [ IsMemBarrier ]); + 854: eieio({{ }}, [ IsMemBarrier ]); + } + } + + format IntImmArithCheckRaOp { + 14: addi({{ Rt = Ra + imm; }}, + {{ Rt = imm }}); + 15: addis({{ Rt = Ra + (imm << 16); }}, + {{ Rt = imm << 16; }}); + } + + format IntImmArithOp { + 12: addic({{ uint32_t src = Ra; Rt = src + imm; }}, + [computeCA]); + 13: addic_({{ uint32_t src = Ra; Rt = src + imm; }}, + [computeCA, computeCR0]); + 8: subfic({{ int32_t src = ~Ra; Rt = src + imm + 1; }}, + [computeCA]); + 7: mulli({{ + int32_t src = Ra.sw; + int64_t prod = src * imm; + Rt = (uint32_t)prod; + }}); + } + + format IntImmLogicOp { + 24: ori({{ Ra = Rs | uimm; }}); + 25: oris({{ Ra = Rs | (uimm << 16); }}); + 26: xori({{ Ra = Rs ^ uimm; }}); + 27: xoris({{ Ra = Rs ^ (uimm << 16); }}); + 28: andi_({{ Ra = Rs & uimm; }}, + true); + 29: andis_({{ Ra = Rs & (uimm << 16); }}, + true); + } + + 16: decode AA { + + // Conditionally branch relative to PC based on CR and CTR. + format BranchPCRelCondCtr { + 0: bc({{ NPC = PC + disp; }}); + } + + // Conditionally branch to fixed address based on CR and CTR. + format BranchNonPCRelCondCtr { + 1: bca({{ NPC = targetAddr; }}); + } + } + + 18: decode AA { + + // Unconditionally branch relative to PC. + format BranchPCRel { + 0: b({{ NPC = PC + disp; }}); + } + + // Unconditionally branch to fixed address. + format BranchNonPCRel { + 1: ba({{ NPC = targetAddr; }}); + } + } + + 19: decode XO_XO { + + // Conditionally branch to address in LR based on CR and CTR. + format BranchLrCondCtr { + 16: bclr({{ NPC = LR & 0xfffffffc; }}); + } + + // Conditionally branch to address in CTR based on CR. + format BranchCtrCond { + 528: bcctr({{ NPC = CTR & 0xfffffffc; }}); + } + + // Condition register manipulation instructions. + format CondLogicOp { + 257: crand({{ + uint32_t crBa = bits(CR, 31 - ba); + uint32_t crBb = bits(CR, 31 - bb); + CR = insertBits(CR, 31 - bt, crBa & crBb); + }}); + 449: cror({{ + uint32_t crBa = bits(CR, 31 - ba); + uint32_t crBb = bits(CR, 31 - bb); + CR = insertBits(CR, 31 - bt, crBa | crBb); + }}); + 255: crnand({{ + uint32_t crBa = bits(CR, 31 - ba); + uint32_t crBb = bits(CR, 31 - bb); + CR = insertBits(CR, 31 - bt, !(crBa & crBb)); + }}); + 193: crxor({{ + uint32_t crBa = bits(CR, 31 - ba); + uint32_t crBb = bits(CR, 31 - bb); + CR = insertBits(CR, 31 - bt, crBa ^ crBb); + }}); + 33: crnor({{ + uint32_t crBa = bits(CR, 31 - ba); + uint32_t crBb = bits(CR, 31 - bb); + CR = insertBits(CR, 31 - bt, !(crBa | crBb)); + }}); + 289: creqv({{ + uint32_t crBa = bits(CR, 31 - ba); + uint32_t crBb = bits(CR, 31 - bb); + CR = insertBits(CR, 31 - bt, crBa == crBb); + }}); + 129: crandc({{ + uint32_t crBa = bits(CR, 31 - ba); + uint32_t crBb = bits(CR, 31 - bb); + CR = insertBits(CR, 31 - bt, crBa & !crBb); + }}); + 417: crorc({{ + uint32_t crBa = bits(CR, 31 - ba); + uint32_t crBb = bits(CR, 31 - bb); + CR = insertBits(CR, 31 - bt, crBa | !crBb); + }}); + } + format CondMoveOp { + 0: mcrf({{ + uint32_t crBfa = bits(CR, 31 - bfa*4, 28 - bfa*4); + CR = insertBits(CR, 31 - bf*4, 28 - bf*4, crBfa); + }}); + } + format MiscOp { + 150: isync({{ }}, [ IsSerializeAfter ]); + } + } + + format IntRotateOp { + 21: rlwinm({{ Ra = rotateValue(Rs, sh) & fullMask; }}); + 23: rlwnm({{ Ra = rotateValue(Rs, Rb) & fullMask; }}); + 20: rlwimi({{ Ra = (rotateValue(Rs, sh) & fullMask) | (Ra & ~fullMask); }}); + } + + format LoadDispOp { + 34: lbz({{ Rt = Mem.ub; }}); + 40: lhz({{ Rt = Mem.uh; }}); + 42: lha({{ Rt = Mem.sh; }}); + 32: lwz({{ Rt = Mem; }}); + 58: lwa({{ Rt = Mem.sw; }}, + {{ EA = Ra + (disp & 0xfffffffc); }}, + {{ EA = disp & 0xfffffffc; }}); + 48: lfs({{ Ft.sf = Mem.sf; }}); + 50: lfd({{ Ft = Mem.df; }}); + } + + format LoadDispUpdateOp { + 35: lbzu({{ Rt = Mem.ub; }}); + 41: lhzu({{ Rt = Mem.uh; }}); + 43: lhau({{ Rt = Mem.sh; }}); + 33: lwzu({{ Rt = Mem; }}); + 49: lfsu({{ Ft.sf = Mem.sf; }}); + 51: lfdu({{ Ft = Mem.df; }}); + } + + format StoreDispOp { + 38: stb({{ Mem.ub = Rs.ub; }}); + 44: sth({{ Mem.uh = Rs.uh; }}); + 36: stw({{ Mem = Rs; }}); + 52: stfs({{ Mem.sf = Fs.sf; }}); + 54: stfd({{ Mem.df = Fs; }}); + } + + format StoreDispUpdateOp { + 39: stbu({{ Mem.ub = Rs.ub; }}); + 45: sthu({{ Mem.uh = Rs.uh; }}); + 37: stwu({{ Mem = Rs; }}); + 53: stfsu({{ Mem.sf = Fs.sf; }}); + 55: stfdu({{ Mem.df = Fs; }}); + } + + 17: IntOp::sc({{ xc->syscall(R0); }}, + [ IsSyscall, IsNonSpeculative, IsSerializeAfter ]); + + format FloatArithOp { + 59: decode A_XO { + 21: fadds({{ Ft = Fa + Fb; }}); + 20: fsubs({{ Ft = Fa - Fb; }}); + 25: fmuls({{ Ft = Fa * Fc; }}); + 18: fdivs({{ Ft = Fa / Fb; }}); + 29: fmadds({{ Ft = (Fa * Fc) + Fb; }}); + 28: fmsubs({{ Ft = (Fa * Fc) - Fb; }}); + 31: fnmadds({{ Ft = -((Fa * Fc) + Fb); }}); + 30: fnmsubs({{ Ft = -((Fa * Fc) - Fb); }}); + } + } + + 63: decode A_XO { + format FloatArithOp { + 21: fadd({{ Ft = Fa + Fb; }}); + 20: fsub({{ Ft = Fa - Fb; }}); + 25: fmul({{ Ft = Fa * Fc; }}); + 18: fdiv({{ Ft = Fa / Fb; }}); + 29: fmadd({{ Ft = (Fa * Fc) + Fb; }}); + 28: fmsub({{ Ft = (Fa * Fc) - Fb; }}); + 31: fnmadd({{ Ft = -((Fa * Fc) + Fb); }}); + 30: fnmsub({{ Ft = -((Fa * Fc) - Fb); }}); + } + + default: decode XO_XO { + format FloatConvertOp { + 12: frsp({{ Ft.sf = Fb; }}); + 15: fctiwz({{ Ft.sw = (int32_t)trunc(Fb); }}); + } + + format FloatOp { + 0: fcmpu({{ + uint32_t c = makeCRField(Fa, Fb); + Fpscr fpscr = FPSCR; + fpscr.fprf.fpcc = c; + FPSCR = fpscr; + CR = insertCRField(CR, BF, c); + }}); + } + + format FloatRCCheckOp { + 72: fmr({{ Ft = Fb; }}); + 264: fabs({{ + Ft.uq = Fb.uq; + Ft.uq = insertBits(Ft.uq, 63, 0); }}); + 136: fnabs({{ + Ft.uq = Fb.uq; + Ft.uq = insertBits(Ft.uq, 63, 1); }}); + 40: fneg({{ Ft = -Fb; }}); + 8: fcpsgn({{ + Ft.uq = Fb.uq; + Ft.uq = insertBits(Ft.uq, 63, Fa.uq<63:63>); + }}); + 583: mffs({{ Ft.uq = FPSCR; }}); + 134: mtfsfi({{ + FPSCR = insertCRField(FPSCR, BF + (8 * (1 - W)), U_FIELD); + }}); + 711: mtfsf({{ + if (L == 1) { FPSCR = Fb.uq; } + else { + for (int i = 0; i < 8; ++i) { + if (bits(FLM, i) == 1) { + int k = 4 * (i + (8 * (1 - W))); + FPSCR = insertBits(FPSCR, k, k + 3, + bits(Fb.uq, k, k + 3)); + } + } + } + }}); + 70: mtfsb0({{ FPSCR = insertBits(FPSCR, 31 - BT, 0); }}); + 38: mtfsb1({{ FPSCR = insertBits(FPSCR, 31 - BT, 1); }}); + } + } + } +} |