summaryrefslogtreecommitdiff
path: root/src/arch/x86/isa/insts
diff options
context:
space:
mode:
Diffstat (limited to 'src/arch/x86/isa/insts')
-rw-r--r--src/arch/x86/isa/insts/general_purpose/arithmetic/multiply_and_divide.py443
1 files changed, 41 insertions, 402 deletions
diff --git a/src/arch/x86/isa/insts/general_purpose/arithmetic/multiply_and_divide.py b/src/arch/x86/isa/insts/general_purpose/arithmetic/multiply_and_divide.py
index 368e27ab5..800549359 100644
--- a/src/arch/x86/isa/insts/general_purpose/arithmetic/multiply_and_divide.py
+++ b/src/arch/x86/isa/insts/general_purpose/arithmetic/multiply_and_divide.py
@@ -221,62 +221,26 @@ def macroop IMUL_R_P_I
mulel reg
muleh t0
};
+'''
+
+pcRel = '''
+ rdip t7
+ ld %s, seg, riprel, disp
+'''
+sibRel = '''
+ ld %s, seg, sib, disp
+'''
#
# One byte version of unsigned division
#
-def macroop DIV_B_R
-{
- # Do the initial part of the division
- div1 ah, reg, dataSize=1
-
- #These are split out so we can initialize the number of bits in the
- #second register
- div2i t1, rax, 8, dataSize=1
- div2 t1, rax, t1, dataSize=1
-
- #Loop until we're out of bits to shift in
-divLoopTop:
- div2 t1, rax, t1, dataSize=1
- div2 t1, rax, t1, flags=(EZF,), dataSize=1
- br label("divLoopTop"), flags=(nCEZF,)
-
- #Unload the answer
- divq rax, dataSize=1
- divr ah, dataSize=1
-};
-
-def macroop DIV_B_M
+divcode = '''
+def macroop DIV_B_%(suffix)s
{
- ld t2, seg, sib, disp
-
+ %(readOp1)s
# Do the initial part of the division
- div1 ah, t2, dataSize=1
-
- #These are split out so we can initialize the number of bits in the
- #second register
- div2i t1, rax, 8, dataSize=1
- div2 t1, rax, t1, dataSize=1
-
- #Loop until we're out of bits to shift in
-divLoopTop:
- div2 t1, rax, t1, dataSize=1
- div2 t1, rax, t1, flags=(EZF,), dataSize=1
- br label("divLoopTop"), flags=(nCEZF,)
-
- #Unload the answer
- divq rax, dataSize=1
- divr ah, dataSize=1
-};
-
-def macroop DIV_B_P
-{
- rdip t7
- ld t2, seg, riprel, disp
-
- # Do the initial part of the division
- div1 ah, t2, dataSize=1
+ div1 ah, %(op1)s, dataSize=1
#These are split out so we can initialize the number of bits in the
#second register
@@ -293,68 +257,18 @@ divLoopTop:
divq rax, dataSize=1
divr ah, dataSize=1
};
+'''
#
# Unsigned division
#
-def macroop DIV_R
-{
- # Do the initial part of the division
- div1 rdx, reg
-
- #These are split out so we can initialize the number of bits in the
- #second register
- div2i t1, rax, "env.dataSize * 8"
- div2 t1, rax, t1
-
- #Loop until we're out of bits to shift in
- #The amount of unrolling here could stand some tuning
-divLoopTop:
- div2 t1, rax, t1
- div2 t1, rax, t1
- div2 t1, rax, t1
- div2 t1, rax, t1, flags=(EZF,)
- br label("divLoopTop"), flags=(nCEZF,)
-
- #Unload the answer
- divq rax
- divr rdx
-};
-
-def macroop DIV_M
-{
- ld t2, seg, sib, disp
-
- # Do the initial part of the division
- div1 rdx, t2
-
- #These are split out so we can initialize the number of bits in the
- #second register
- div2i t1, rax, "env.dataSize * 8"
- div2 t1, rax, t1
-
- #Loop until we're out of bits to shift in
- #The amount of unrolling here could stand some tuning
-divLoopTop:
- div2 t1, rax, t1
- div2 t1, rax, t1
- div2 t1, rax, t1
- div2 t1, rax, t1, flags=(EZF,)
- br label("divLoopTop"), flags=(nCEZF,)
-
- #Unload the answer
- divq rax
- divr rdx
-};
-
-def macroop DIV_P
+divcode += '''
+def macroop DIV_%(suffix)s
{
- rdip t7
- ld t2, seg, riprel, disp
-
+ %(readOp1)s
# Do the initial part of the division
- div1 rdx, t2
+ div1 rdx, %(op1)s
#These are split out so we can initialize the number of bits in the
#second register
@@ -374,12 +288,14 @@ divLoopTop:
divq rax
divr rdx
};
+'''
#
# One byte version of signed division
#
-def macroop IDIV_B_R
+divcode += '''
+def macroop IDIV_B_%(suffix)s
{
# Negate dividend
sub t1, t0, rax, flags=(ECF,), dataSize=1
@@ -387,84 +303,15 @@ def macroop IDIV_B_R
sub t2, t0, ah, dataSize=1
sub t2, t2, t4
- #Find the sign of the divisor
- slli t0, reg, 1, flags=(ECF,), dataSize=1
-
- # Negate divisor
- sub t3, t0, reg, dataSize=1
- # Put the divisor's absolute value into t3
- mov t3, t3, reg, flags=(nCECF,), dataSize=1
-
- #Find the sign of the dividend
- slli t0, ah, 1, flags=(ECF,), dataSize=1
-
- # Put the dividend's absolute value into t1 and t2
- mov t1, t1, rax, flags=(nCECF,), dataSize=1
- mov t2, t2, ah, flags=(nCECF,), dataSize=1
-
- # Do the initial part of the division
- div1 t2, t3, dataSize=1
-
- #These are split out so we can initialize the number of bits in the
- #second register
- div2i t4, t1, 8, dataSize=1
- div2 t4, t1, t4, dataSize=1
-
- #Loop until we're out of bits to shift in
-divLoopTop:
- div2 t4, t1, t4, dataSize=1
- div2 t4, t1, t4, flags=(EZF,), dataSize=1
- br label("divLoopTop"), flags=(nCEZF,)
-
- #Unload the answer
- divq t5, dataSize=1
- divr t6, dataSize=1
-
- # Fix up signs. The sign of the dividend is still lying around in ECF.
- # The sign of the remainder, ah, is the same as the dividend. The sign
- # of the quotient is negated if the signs of the divisor and dividend
- # were different.
-
- # Negate the remainder
- sub t4, t0, t6, dataSize=1
- # If the dividend was negitive, put the negated remainder in ah.
- mov ah, ah, t4, (CECF,), dataSize=1
- # Otherwise put the regular remainder in ah.
- mov ah, ah, t6, (nCECF,), dataSize=1
-
- # Negate the quotient.
- sub t4, t0, t5, dataSize=1
- # If the dividend was negative, start using the negated quotient
- mov t5, t5, t4, (CECF,), dataSize=1
-
- # Check the sign of the divisor
- slli t0, reg, 1, flags=(ECF,), dataSize=1
-
- # Negate the (possibly already negated) quotient
- sub t4, t0, t5, dataSize=1
- # If the divisor was negative, put the negated quotient in rax.
- mov rax, rax, t4, (CECF,), dataSize=1
- # Otherwise put the one that wasn't negated (at least here) in rax.
- mov rax, rax, t5, (nCECF,), dataSize=1
-};
-
-def macroop IDIV_B_M
-{
- # Negate dividend
- sub t1, t0, rax, flags=(ECF,), dataSize=1
- ruflag t4, 3
- sub t2, t0, ah, dataSize=1
- sub t2, t2, t4
-
- ld t8, seg, sib, disp
+ %(readOp1)s
#Find the sign of the divisor
- slli t0, t8, 1, flags=(ECF,), dataSize=1
+ slli t0, %(op1)s, 1, flags=(ECF,), dataSize=1
# Negate divisor
- sub t3, t0, t8, dataSize=1
+ sub t3, t0, %(op1)s, dataSize=1
# Put the divisor's absolute value into t3
- mov t3, t3, t8, flags=(nCECF,), dataSize=1
+ mov t3, t3, %(op1)s, flags=(nCECF,), dataSize=1
#Find the sign of the dividend
slli t0, ah, 1, flags=(ECF,), dataSize=1
@@ -509,79 +356,7 @@ divLoopTop:
mov t5, t5, t4, (CECF,), dataSize=1
# Check the sign of the divisor
- slli t0, t8, 1, flags=(ECF,), dataSize=1
-
- # Negate the (possibly already negated) quotient
- sub t4, t0, t5, dataSize=1
- # If the divisor was negative, put the negated quotient in rax.
- mov rax, rax, t4, (CECF,), dataSize=1
- # Otherwise put the one that wasn't negated (at least here) in rax.
- mov rax, rax, t5, (nCECF,), dataSize=1
-};
-
-def macroop IDIV_B_P
-{
- # Negate dividend
- sub t1, t0, rax, flags=(ECF,), dataSize=1
- ruflag t4, 3
- sub t2, t0, ah, dataSize=1
- sub t2, t2, t4
-
- rdip t7
- ld t8, seg, riprel, disp
-
- #Find the sign of the divisor
- slli t0, t8, 1, flags=(ECF,), dataSize=1
-
- # Negate divisor
- sub t3, t0, t8, dataSize=1
- # Put the divisor's absolute value into t3
- mov t3, t3, t8, flags=(nCECF,), dataSize=1
-
- #Find the sign of the dividend
- slli t0, ah, 1, flags=(ECF,), dataSize=1
-
- # Put the dividend's absolute value into t1 and t2
- mov t1, t1, rax, flags=(nCECF,), dataSize=1
- mov t2, t2, ah, flags=(nCECF,), dataSize=1
-
- # Do the initial part of the division
- div1 t2, t3, dataSize=1
-
- #These are split out so we can initialize the number of bits in the
- #second register
- div2i t4, t1, 8, dataSize=1
- div2 t4, t1, t4, dataSize=1
-
- #Loop until we're out of bits to shift in
-divLoopTop:
- div2 t4, t1, t4, dataSize=1
- div2 t4, t1, t4, flags=(EZF,), dataSize=1
- br label("divLoopTop"), flags=(nCEZF,)
-
- #Unload the answer
- divq t5, dataSize=1
- divr t6, dataSize=1
-
- # Fix up signs. The sign of the dividend is still lying around in ECF.
- # The sign of the remainder, ah, is the same as the dividend. The sign
- # of the quotient is negated if the signs of the divisor and dividend
- # were different.
-
- # Negate the remainder
- sub t4, t0, t6, dataSize=1
- # If the dividend was negitive, put the negated remainder in ah.
- mov ah, ah, t4, (CECF,), dataSize=1
- # Otherwise put the regular remainder in ah.
- mov ah, ah, t6, (nCECF,), dataSize=1
-
- # Negate the quotient.
- sub t4, t0, t5, dataSize=1
- # If the dividend was negative, start using the negated quotient
- mov t5, t5, t4, (CECF,), dataSize=1
-
- # Check the sign of the divisor
- slli t0, t8, 1, flags=(ECF,), dataSize=1
+ slli t0, %(op1)s, 1, flags=(ECF,), dataSize=1
# Negate the (possibly already negated) quotient
sub t4, t0, t5, dataSize=1
@@ -590,12 +365,14 @@ divLoopTop:
# Otherwise put the one that wasn't negated (at least here) in rax.
mov rax, rax, t5, (nCECF,), dataSize=1
};
+'''
#
# Signed division
#
-def macroop IDIV_R
+divcode += '''
+def macroop IDIV_%(suffix)s
{
# Negate dividend
sub t1, t0, rax, flags=(ECF,)
@@ -603,160 +380,15 @@ def macroop IDIV_R
sub t2, t0, rdx
sub t2, t2, t4
- #Find the sign of the divisor
- slli t0, reg, 1, flags=(ECF,)
-
- # Negate divisor
- sub t3, t0, reg
- # Put the divisor's absolute value into t3
- mov t3, t3, reg, flags=(nCECF,)
-
- #Find the sign of the dividend
- slli t0, rdx, 1, flags=(ECF,)
-
- # Put the dividend's absolute value into t1 and t2
- mov t1, t1, rax, flags=(nCECF,)
- mov t2, t2, rdx, flags=(nCECF,)
-
- # Do the initial part of the division
- div1 t2, t3
-
- #These are split out so we can initialize the number of bits in the
- #second register
- div2i t4, t1, "env.dataSize * 8"
- div2 t4, t1, t4
-
- #Loop until we're out of bits to shift in
-divLoopTop:
- div2 t4, t1, t4
- div2 t4, t1, t4
- div2 t4, t1, t4
- div2 t4, t1, t4, flags=(EZF,)
- br label("divLoopTop"), flags=(nCEZF,)
-
- #Unload the answer
- divq t5
- divr t6
-
- # Fix up signs. The sign of the dividend is still lying around in ECF.
- # The sign of the remainder, ah, is the same as the dividend. The sign
- # of the quotient is negated if the signs of the divisor and dividend
- # were different.
-
- # Negate the remainder
- sub t4, t0, t6
- # If the dividend was negitive, put the negated remainder in rdx.
- mov rdx, rdx, t4, (CECF,)
- # Otherwise put the regular remainder in rdx.
- mov rdx, rdx, t6, (nCECF,)
-
- # Negate the quotient.
- sub t4, t0, t5
- # If the dividend was negative, start using the negated quotient
- mov t5, t5, t4, (CECF,)
-
- # Check the sign of the divisor
- slli t0, reg, 1, flags=(ECF,)
-
- # Negate the (possibly already negated) quotient
- sub t4, t0, t5
- # If the divisor was negative, put the negated quotient in rax.
- mov rax, rax, t4, (CECF,)
- # Otherwise put the one that wasn't negated (at least here) in rax.
- mov rax, rax, t5, (nCECF,)
-};
-
-def macroop IDIV_M
-{
- # Negate dividend
- sub t1, t0, rax, flags=(ECF,)
- ruflag t4, 3
- sub t2, t0, rdx
- sub t2, t2, t4
-
- ld t8, seg, sib, disp
-
- #Find the sign of the divisor
- slli t0, t8, 1, flags=(ECF,)
-
- # Negate divisor
- sub t3, t0, t8
- # Put the divisor's absolute value into t3
- mov t3, t3, t8, flags=(nCECF,)
-
- #Find the sign of the dividend
- slli t0, rdx, 1, flags=(ECF,)
-
- # Put the dividend's absolute value into t1 and t2
- mov t1, t1, rax, flags=(nCECF,)
- mov t2, t2, rdx, flags=(nCECF,)
-
- # Do the initial part of the division
- div1 t2, t3
-
- #These are split out so we can initialize the number of bits in the
- #second register
- div2i t4, t1, "env.dataSize * 8"
- div2 t4, t1, t4
-
- #Loop until we're out of bits to shift in
-divLoopTop:
- div2 t4, t1, t4
- div2 t4, t1, t4
- div2 t4, t1, t4
- div2 t4, t1, t4, flags=(EZF,)
- br label("divLoopTop"), flags=(nCEZF,)
-
- #Unload the answer
- divq t5
- divr t6
-
- # Fix up signs. The sign of the dividend is still lying around in ECF.
- # The sign of the remainder, ah, is the same as the dividend. The sign
- # of the quotient is negated if the signs of the divisor and dividend
- # were different.
-
- # Negate the remainder
- sub t4, t0, t6
- # If the dividend was negitive, put the negated remainder in rdx.
- mov rdx, rdx, t4, (CECF,)
- # Otherwise put the regular remainder in rdx.
- mov rdx, rdx, t6, (nCECF,)
-
- # Negate the quotient.
- sub t4, t0, t5
- # If the dividend was negative, start using the negated quotient
- mov t5, t5, t4, (CECF,)
-
- # Check the sign of the divisor
- slli t0, t8, 1, flags=(ECF,)
-
- # Negate the (possibly already negated) quotient
- sub t4, t0, t5
- # If the divisor was negative, put the negated quotient in rax.
- mov rax, rax, t4, (CECF,)
- # Otherwise put the one that wasn't negated (at least here) in rax.
- mov rax, rax, t5, (nCECF,)
-};
-
-def macroop IDIV_P
-{
- # Negate dividend
- sub t1, t0, rax, flags=(ECF,)
- ruflag t4, 3
- sub t2, t0, rdx
- sub t2, t2, t4
-
- rdip t7
- ld t8, seg, riprel, disp
+ %(readOp1)s
#Find the sign of the divisor
- slli t0, t8, 1, flags=(ECF,)
+ slli t0, %(op1)s, 1, flags=(ECF,)
# Negate divisor
- sub t3, t0, t8
+ sub t3, t0, %(op1)s
# Put the divisor's absolute value into t3
- mov t3, t3, t4, flags=(nCECF,)
+ mov t3, t3, %(op1)s, flags=(nCECF,)
#Find the sign of the dividend
slli t0, rdx, 1, flags=(ECF,)
@@ -803,7 +435,7 @@ divLoopTop:
mov t5, t5, t4, (CECF,)
# Check the sign of the divisor
- slli t0, t8, 1, flags=(ECF,)
+ slli t0, %(op1)s, 1, flags=(ECF,)
# Negate the (possibly already negated) quotient
sub t4, t0, t5
@@ -813,3 +445,10 @@ divLoopTop:
mov rax, rax, t5, (nCECF,)
};
'''
+
+microcode += divcode % {"suffix": "R",
+ "readOp1": "", "op1": "reg"}
+microcode += divcode % {"suffix": "M",
+ "readOp1": sibRel % "t2", "op1": "t2"}
+microcode += divcode % {"suffix": "P",
+ "readOp1": pcRel % "t2", "op1": "t2"}