summaryrefslogtreecommitdiff
path: root/src/cpu/base_dyn_inst.hh
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpu/base_dyn_inst.hh')
-rw-r--r--src/cpu/base_dyn_inst.hh732
1 files changed, 732 insertions, 0 deletions
diff --git a/src/cpu/base_dyn_inst.hh b/src/cpu/base_dyn_inst.hh
new file mode 100644
index 000000000..926bfcbb2
--- /dev/null
+++ b/src/cpu/base_dyn_inst.hh
@@ -0,0 +1,732 @@
+/*
+ * Copyright (c) 2004-2006 The Regents of The University of Michigan
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * Authors: Kevin Lim
+ */
+
+#ifndef __CPU_BASE_DYN_INST_HH__
+#define __CPU_BASE_DYN_INST_HH__
+
+#include <bitset>
+#include <list>
+#include <string>
+
+#include "arch/faults.hh"
+#include "base/fast_alloc.hh"
+#include "base/trace.hh"
+#include "config/full_system.hh"
+#include "cpu/exetrace.hh"
+#include "cpu/inst_seq.hh"
+#include "cpu/op_class.hh"
+#include "cpu/static_inst.hh"
+#include "mem/packet.hh"
+#include "sim/system.hh"
+
+/**
+ * @file
+ * Defines a dynamic instruction context.
+ */
+
+// Forward declaration.
+class StaticInstPtr;
+
+template <class Impl>
+class BaseDynInst : public FastAlloc, public RefCounted
+{
+ public:
+ // Typedef for the CPU.
+ typedef typename Impl::CPUType ImplCPU;
+ typedef typename ImplCPU::ImplState ImplState;
+
+ // Binary machine instruction type.
+ typedef TheISA::MachInst MachInst;
+ // Extended machine instruction type
+ typedef TheISA::ExtMachInst ExtMachInst;
+ // Logical register index type.
+ typedef TheISA::RegIndex RegIndex;
+ // Integer register type.
+ typedef TheISA::IntReg IntReg;
+ // Floating point register type.
+ typedef TheISA::FloatReg FloatReg;
+
+ // The DynInstPtr type.
+ typedef typename Impl::DynInstPtr DynInstPtr;
+
+ // The list of instructions iterator type.
+ typedef typename std::list<DynInstPtr>::iterator ListIt;
+
+ enum {
+ MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
+ MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs
+ };
+
+ /** The StaticInst used by this BaseDynInst. */
+ StaticInstPtr staticInst;
+
+ ////////////////////////////////////////////
+ //
+ // INSTRUCTION EXECUTION
+ //
+ ////////////////////////////////////////////
+ /** InstRecord that tracks this instructions. */
+ Trace::InstRecord *traceData;
+
+ /**
+ * Does a read to a given address.
+ * @param addr The address to read.
+ * @param data The read's data is written into this parameter.
+ * @param flags The request's flags.
+ * @return Returns any fault due to the read.
+ */
+ template <class T>
+ Fault read(Addr addr, T &data, unsigned flags);
+
+ /**
+ * Does a write to a given address.
+ * @param data The data to be written.
+ * @param addr The address to write to.
+ * @param flags The request's flags.
+ * @param res The result of the write (for load locked/store conditionals).
+ * @return Returns any fault due to the write.
+ */
+ template <class T>
+ Fault write(T data, Addr addr, unsigned flags,
+ uint64_t *res);
+
+ void prefetch(Addr addr, unsigned flags);
+ void writeHint(Addr addr, int size, unsigned flags);
+ Fault copySrcTranslate(Addr src);
+ Fault copy(Addr dest);
+
+ /** @todo: Consider making this private. */
+ public:
+ /** The sequence number of the instruction. */
+ InstSeqNum seqNum;
+
+ enum Status {
+ IqEntry, /// Instruction is in the IQ
+ RobEntry, /// Instruction is in the ROB
+ LsqEntry, /// Instruction is in the LSQ
+ Completed, /// Instruction has completed
+ ResultReady, /// Instruction has its result
+ CanIssue, /// Instruction can issue and execute
+ Issued, /// Instruction has issued
+ Executed, /// Instruction has executed
+ CanCommit, /// Instruction can commit
+ AtCommit, /// Instruction has reached commit
+ Committed, /// Instruction has committed
+ Squashed, /// Instruction is squashed
+ SquashedInIQ, /// Instruction is squashed in the IQ
+ SquashedInLSQ, /// Instruction is squashed in the LSQ
+ SquashedInROB, /// Instruction is squashed in the ROB
+ RecoverInst, /// Is a recover instruction
+ BlockingInst, /// Is a blocking instruction
+ ThreadsyncWait, /// Is a thread synchronization instruction
+ SerializeBefore, /// Needs to serialize on
+ /// instructions ahead of it
+ SerializeAfter, /// Needs to serialize instructions behind it
+ SerializeHandled, /// Serialization has been handled
+ NumStatus
+ };
+
+ /** The status of this BaseDynInst. Several bits can be set. */
+ std::bitset<NumStatus> status;
+
+ /** The thread this instruction is from. */
+ short threadNumber;
+
+ /** data address space ID, for loads & stores. */
+ short asid;
+
+ /** How many source registers are ready. */
+ unsigned readyRegs;
+
+ /** Pointer to the Impl's CPU object. */
+ ImplCPU *cpu;
+
+ /** Pointer to the thread state. */
+ ImplState *thread;
+
+ /** The kind of fault this instruction has generated. */
+ Fault fault;
+
+ /** The memory request. */
+ Request *req;
+
+ /** Pointer to the data for the memory access. */
+ uint8_t *memData;
+
+ /** The effective virtual address (lds & stores only). */
+ Addr effAddr;
+
+ /** The effective physical address. */
+ Addr physEffAddr;
+
+ /** Effective virtual address for a copy source. */
+ Addr copySrcEffAddr;
+
+ /** Effective physical address for a copy source. */
+ Addr copySrcPhysEffAddr;
+
+ /** The memory request flags (from translation). */
+ unsigned memReqFlags;
+
+ union Result {
+ uint64_t integer;
+// float fp;
+ double dbl;
+ };
+
+ /** The result of the instruction; assumes for now that there's only one
+ * destination register.
+ */
+ Result instResult;
+
+ /** PC of this instruction. */
+ Addr PC;
+
+ /** Next non-speculative PC. It is not filled in at fetch, but rather
+ * once the target of the branch is truly known (either decode or
+ * execute).
+ */
+ Addr nextPC;
+
+ /** Next non-speculative NPC. Target PC for Mips or Sparc. */
+ Addr nextNPC;
+
+ /** Predicted next PC. */
+ Addr predPC;
+
+ /** Count of total number of dynamic instructions. */
+ static int instcount;
+
+#ifdef DEBUG
+ void dumpSNList();
+#endif
+
+ /** Whether or not the source register is ready.
+ * @todo: Not sure this should be here vs the derived class.
+ */
+ bool _readySrcRegIdx[MaxInstSrcRegs];
+
+ public:
+ /** BaseDynInst constructor given a binary instruction.
+ * @param inst The binary instruction.
+ * @param PC The PC of the instruction.
+ * @param pred_PC The predicted next PC.
+ * @param seq_num The sequence number of the instruction.
+ * @param cpu Pointer to the instruction's CPU.
+ */
+ BaseDynInst(ExtMachInst inst, Addr PC, Addr pred_PC, InstSeqNum seq_num,
+ ImplCPU *cpu);
+
+ /** BaseDynInst constructor given a StaticInst pointer.
+ * @param _staticInst The StaticInst for this BaseDynInst.
+ */
+ BaseDynInst(StaticInstPtr &_staticInst);
+
+ /** BaseDynInst destructor. */
+ ~BaseDynInst();
+
+ private:
+ /** Function to initialize variables in the constructors. */
+ void initVars();
+
+ public:
+ /** Dumps out contents of this BaseDynInst. */
+ void dump();
+
+ /** Dumps out contents of this BaseDynInst into given string. */
+ void dump(std::string &outstring);
+
+ /** Returns the fault type. */
+ Fault getFault() { return fault; }
+
+ /** Checks whether or not this instruction has had its branch target
+ * calculated yet. For now it is not utilized and is hacked to be
+ * always false.
+ * @todo: Actually use this instruction.
+ */
+ bool doneTargCalc() { return false; }
+
+ /** Returns the next PC. This could be the speculative next PC if it is
+ * called prior to the actual branch target being calculated.
+ */
+ Addr readNextPC() { return nextPC; }
+
+ /** Returns the next NPC. This could be the speculative next NPC if it is
+ * called prior to the actual branch target being calculated.
+ */
+ Addr readNextNPC() { return nextNPC; }
+
+ /** Set the predicted target of this current instruction. */
+ void setPredTarg(Addr predicted_PC) { predPC = predicted_PC; }
+
+ /** Returns the predicted target of the branch. */
+ Addr readPredTarg() { return predPC; }
+
+ /** Returns whether the instruction was predicted taken or not. */
+ bool predTaken()
+#if ISA_HAS_DELAY_SLOT
+ { return predPC != (nextPC + sizeof(MachInst)); }
+#else
+ { return predPC != (PC + sizeof(MachInst)); }
+#endif
+
+ /** Returns whether the instruction mispredicted. */
+ bool mispredicted()
+#if ISA_HAS_DELAY_SLOT
+ { return predPC != nextNPC; }
+#else
+ { return predPC != nextPC; }
+#endif
+ //
+ // Instruction types. Forward checks to StaticInst object.
+ //
+ bool isNop() const { return staticInst->isNop(); }
+ bool isMemRef() const { return staticInst->isMemRef(); }
+ bool isLoad() const { return staticInst->isLoad(); }
+ bool isStore() const { return staticInst->isStore(); }
+ bool isStoreConditional() const
+ { return staticInst->isStoreConditional(); }
+ bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
+ bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
+ bool isCopy() const { return staticInst->isCopy(); }
+ bool isInteger() const { return staticInst->isInteger(); }
+ bool isFloating() const { return staticInst->isFloating(); }
+ bool isControl() const { return staticInst->isControl(); }
+ bool isCall() const { return staticInst->isCall(); }
+ bool isReturn() const { return staticInst->isReturn(); }
+ bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
+ bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
+ bool isCondCtrl() const { return staticInst->isCondCtrl(); }
+ bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
+ bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
+ bool isThreadSync() const { return staticInst->isThreadSync(); }
+ bool isSerializing() const { return staticInst->isSerializing(); }
+ bool isSerializeBefore() const
+ { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
+ bool isSerializeAfter() const
+ { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
+ bool isMemBarrier() const { return staticInst->isMemBarrier(); }
+ bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
+ bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
+ bool isQuiesce() const { return staticInst->isQuiesce(); }
+ bool isIprAccess() const { return staticInst->isIprAccess(); }
+ bool isUnverifiable() const { return staticInst->isUnverifiable(); }
+
+ /** Temporarily sets this instruction as a serialize before instruction. */
+ void setSerializeBefore() { status.set(SerializeBefore); }
+
+ /** Clears the serializeBefore part of this instruction. */
+ void clearSerializeBefore() { status.reset(SerializeBefore); }
+
+ /** Checks if this serializeBefore is only temporarily set. */
+ bool isTempSerializeBefore() { return status[SerializeBefore]; }
+
+ /** Temporarily sets this instruction as a serialize after instruction. */
+ void setSerializeAfter() { status.set(SerializeAfter); }
+
+ /** Clears the serializeAfter part of this instruction.*/
+ void clearSerializeAfter() { status.reset(SerializeAfter); }
+
+ /** Checks if this serializeAfter is only temporarily set. */
+ bool isTempSerializeAfter() { return status[SerializeAfter]; }
+
+ /** Sets the serialization part of this instruction as handled. */
+ void setSerializeHandled() { status.set(SerializeHandled); }
+
+ /** Checks if the serialization part of this instruction has been
+ * handled. This does not apply to the temporary serializing
+ * state; it only applies to this instruction's own permanent
+ * serializing state.
+ */
+ bool isSerializeHandled() { return status[SerializeHandled]; }
+
+ /** Returns the opclass of this instruction. */
+ OpClass opClass() const { return staticInst->opClass(); }
+
+ /** Returns the branch target address. */
+ Addr branchTarget() const { return staticInst->branchTarget(PC); }
+
+ /** Returns the number of source registers. */
+ int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
+
+ /** Returns the number of destination registers. */
+ int8_t numDestRegs() const { return staticInst->numDestRegs(); }
+
+ // the following are used to track physical register usage
+ // for machines with separate int & FP reg files
+ int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
+ int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
+
+ /** Returns the logical register index of the i'th destination register. */
+ RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
+
+ /** Returns the logical register index of the i'th source register. */
+ RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
+
+ /** Returns the result of an integer instruction. */
+ uint64_t readIntResult() { return instResult.integer; }
+
+ /** Returns the result of a floating point instruction. */
+ float readFloatResult() { return (float)instResult.dbl; }
+
+ /** Returns the result of a floating point (double) instruction. */
+ double readDoubleResult() { return instResult.dbl; }
+
+ /** Records an integer register being set to a value. */
+ void setIntReg(const StaticInst *si, int idx, uint64_t val)
+ {
+ instResult.integer = val;
+ }
+
+ /** Records an fp register being set to a value. */
+ void setFloatReg(const StaticInst *si, int idx, FloatReg val, int width)
+ {
+ if (width == 32)
+ instResult.fp = val;
+ else if (width == 64)
+ instResult.dbl = val;
+ else
+ panic("Unsupported width!");
+ }
+
+ /** Records an fp register being set to a value. */
+ void setFloatReg(const StaticInst *si, int idx, FloatReg val)
+ {
+// instResult.fp = val;
+ instResult.dbl = (double)val;
+ }
+
+ /** Records an fp register being set to an integer value. */
+ void setFloatRegBits(const StaticInst *si, int idx, uint64_t val, int width)
+ {
+ instResult.integer = val;
+ }
+
+ /** Records an fp register being set to an integer value. */
+ void setFloatRegBits(const StaticInst *si, int idx, uint64_t val)
+ {
+ instResult.integer = val;
+ }
+
+ /** Records that one of the source registers is ready. */
+ void markSrcRegReady();
+
+ /** Marks a specific register as ready. */
+ void markSrcRegReady(RegIndex src_idx);
+
+ /** Returns if a source register is ready. */
+ bool isReadySrcRegIdx(int idx) const
+ {
+ return this->_readySrcRegIdx[idx];
+ }
+
+ /** Sets this instruction as completed. */
+ void setCompleted() { status.set(Completed); }
+
+ /** Returns whether or not this instruction is completed. */
+ bool isCompleted() const { return status[Completed]; }
+
+ /** Marks the result as ready. */
+ void setResultReady() { status.set(ResultReady); }
+
+ /** Returns whether or not the result is ready. */
+ bool isResultReady() const { return status[ResultReady]; }
+
+ /** Sets this instruction as ready to issue. */
+ void setCanIssue() { status.set(CanIssue); }
+
+ /** Returns whether or not this instruction is ready to issue. */
+ bool readyToIssue() const { return status[CanIssue]; }
+
+ /** Sets this instruction as issued from the IQ. */
+ void setIssued() { status.set(Issued); }
+
+ /** Returns whether or not this instruction has issued. */
+ bool isIssued() const { return status[Issued]; }
+
+ /** Sets this instruction as executed. */
+ void setExecuted() { status.set(Executed); }
+
+ /** Returns whether or not this instruction has executed. */
+ bool isExecuted() const { return status[Executed]; }
+
+ /** Sets this instruction as ready to commit. */
+ void setCanCommit() { status.set(CanCommit); }
+
+ /** Clears this instruction as being ready to commit. */
+ void clearCanCommit() { status.reset(CanCommit); }
+
+ /** Returns whether or not this instruction is ready to commit. */
+ bool readyToCommit() const { return status[CanCommit]; }
+
+ void setAtCommit() { status.set(AtCommit); }
+
+ bool isAtCommit() { return status[AtCommit]; }
+
+ /** Sets this instruction as committed. */
+ void setCommitted() { status.set(Committed); }
+
+ /** Returns whether or not this instruction is committed. */
+ bool isCommitted() const { return status[Committed]; }
+
+ /** Sets this instruction as squashed. */
+ void setSquashed() { status.set(Squashed); }
+
+ /** Returns whether or not this instruction is squashed. */
+ bool isSquashed() const { return status[Squashed]; }
+
+ //Instruction Queue Entry
+ //-----------------------
+ /** Sets this instruction as a entry the IQ. */
+ void setInIQ() { status.set(IqEntry); }
+
+ /** Sets this instruction as a entry the IQ. */
+ void clearInIQ() { status.reset(IqEntry); }
+
+ /** Returns whether or not this instruction has issued. */
+ bool isInIQ() const { return status[IqEntry]; }
+
+ /** Sets this instruction as squashed in the IQ. */
+ void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
+
+ /** Returns whether or not this instruction is squashed in the IQ. */
+ bool isSquashedInIQ() const { return status[SquashedInIQ]; }
+
+
+ //Load / Store Queue Functions
+ //-----------------------
+ /** Sets this instruction as a entry the LSQ. */
+ void setInLSQ() { status.set(LsqEntry); }
+
+ /** Sets this instruction as a entry the LSQ. */
+ void removeInLSQ() { status.reset(LsqEntry); }
+
+ /** Returns whether or not this instruction is in the LSQ. */
+ bool isInLSQ() const { return status[LsqEntry]; }
+
+ /** Sets this instruction as squashed in the LSQ. */
+ void setSquashedInLSQ() { status.set(SquashedInLSQ);}
+
+ /** Returns whether or not this instruction is squashed in the LSQ. */
+ bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
+
+
+ //Reorder Buffer Functions
+ //-----------------------
+ /** Sets this instruction as a entry the ROB. */
+ void setInROB() { status.set(RobEntry); }
+
+ /** Sets this instruction as a entry the ROB. */
+ void clearInROB() { status.reset(RobEntry); }
+
+ /** Returns whether or not this instruction is in the ROB. */
+ bool isInROB() const { return status[RobEntry]; }
+
+ /** Sets this instruction as squashed in the ROB. */
+ void setSquashedInROB() { status.set(SquashedInROB); }
+
+ /** Returns whether or not this instruction is squashed in the ROB. */
+ bool isSquashedInROB() const { return status[SquashedInROB]; }
+
+ /** Read the PC of this instruction. */
+ const Addr readPC() const { return PC; }
+
+ /** Set the next PC of this instruction (its actual target). */
+ void setNextPC(uint64_t val)
+ {
+ nextPC = val;
+ }
+
+ /** Set the next NPC of this instruction (the target in Mips or Sparc).*/
+ void setNextNPC(uint64_t val)
+ {
+ nextNPC = val;
+ }
+
+ /** Sets the ASID. */
+ void setASID(short addr_space_id) { asid = addr_space_id; }
+
+ /** Sets the thread id. */
+ void setTid(unsigned tid) { threadNumber = tid; }
+
+ /** Sets the pointer to the thread state. */
+ void setThreadState(ImplState *state) { thread = state; }
+
+ /** Returns the thread context. */
+ ThreadContext *tcBase() { return thread->getTC(); }
+
+ private:
+ /** Instruction effective address.
+ * @todo: Consider if this is necessary or not.
+ */
+ Addr instEffAddr;
+
+ /** Whether or not the effective address calculation is completed.
+ * @todo: Consider if this is necessary or not.
+ */
+ bool eaCalcDone;
+
+ public:
+ /** Sets the effective address. */
+ void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
+
+ /** Returns the effective address. */
+ const Addr &getEA() const { return instEffAddr; }
+
+ /** Returns whether or not the eff. addr. calculation has been completed. */
+ bool doneEACalc() { return eaCalcDone; }
+
+ /** Returns whether or not the eff. addr. source registers are ready. */
+ bool eaSrcsReady();
+
+ /** Whether or not the memory operation is done. */
+ bool memOpDone;
+
+ public:
+ /** Load queue index. */
+ int16_t lqIdx;
+
+ /** Store queue index. */
+ int16_t sqIdx;
+
+ /** Iterator pointing to this BaseDynInst in the list of all insts. */
+ ListIt instListIt;
+
+ /** Returns iterator to this instruction in the list of all insts. */
+ ListIt &getInstListIt() { return instListIt; }
+
+ /** Sets iterator for this instruction in the list of all insts. */
+ void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
+};
+
+template<class Impl>
+template<class T>
+inline Fault
+BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
+{
+ // Sometimes reads will get retried, so they may come through here
+ // twice.
+ if (!req) {
+ req = new Request();
+ req->setVirt(asid, addr, sizeof(T), flags, this->PC);
+ req->setThreadContext(thread->readCpuId(), threadNumber);
+ } else {
+ assert(addr == req->getVaddr());
+ }
+
+ if ((req->getVaddr() & (TheISA::VMPageSize - 1)) + req->getSize() >
+ TheISA::VMPageSize) {
+ return TheISA::genAlignmentFault();
+ }
+
+ fault = cpu->translateDataReadReq(req, thread);
+
+ if (fault == NoFault) {
+ effAddr = req->getVaddr();
+ physEffAddr = req->getPaddr();
+ memReqFlags = req->getFlags();
+
+#if 0
+ if (cpu->system->memctrl->badaddr(physEffAddr)) {
+ fault = TheISA::genMachineCheckFault();
+ data = (T)-1;
+ this->setExecuted();
+ } else {
+ fault = cpu->read(req, data, lqIdx);
+ }
+#else
+ fault = cpu->read(req, data, lqIdx);
+#endif
+ } else {
+ // Return a fixed value to keep simulation deterministic even
+ // along misspeculated paths.
+ data = (T)-1;
+
+ // Commit will have to clean up whatever happened. Set this
+ // instruction as executed.
+ this->setExecuted();
+ }
+
+ if (traceData) {
+ traceData->setAddr(addr);
+ traceData->setData(data);
+ }
+
+ return fault;
+}
+
+template<class Impl>
+template<class T>
+inline Fault
+BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
+{
+ if (traceData) {
+ traceData->setAddr(addr);
+ traceData->setData(data);
+ }
+
+ assert(req == NULL);
+
+ req = new Request();
+ req->setVirt(asid, addr, sizeof(T), flags, this->PC);
+ req->setThreadContext(thread->readCpuId(), threadNumber);
+
+ if ((req->getVaddr() & (TheISA::VMPageSize - 1)) + req->getSize() >
+ TheISA::VMPageSize) {
+ return TheISA::genAlignmentFault();
+ }
+
+ fault = cpu->translateDataWriteReq(req, thread);
+
+ if (fault == NoFault) {
+ effAddr = req->getVaddr();
+ physEffAddr = req->getPaddr();
+ memReqFlags = req->getFlags();
+#if 0
+ if (cpu->system->memctrl->badaddr(physEffAddr)) {
+ fault = TheISA::genMachineCheckFault();
+ } else {
+ fault = cpu->write(req, data, sqIdx);
+ }
+#else
+ fault = cpu->write(req, data, sqIdx);
+#endif
+ }
+
+ if (res) {
+ // always return some result to keep misspeculated paths
+ // (which will ignore faults) deterministic
+ *res = (fault == NoFault) ? req->getScResult() : 0;
+ }
+
+ return fault;
+}
+
+#endif // __CPU_BASE_DYN_INST_HH__