summaryrefslogtreecommitdiff
path: root/src/gpu-compute/compute_unit.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/gpu-compute/compute_unit.cc')
-rw-r--r--src/gpu-compute/compute_unit.cc1817
1 files changed, 1817 insertions, 0 deletions
diff --git a/src/gpu-compute/compute_unit.cc b/src/gpu-compute/compute_unit.cc
new file mode 100644
index 000000000..d3622007a
--- /dev/null
+++ b/src/gpu-compute/compute_unit.cc
@@ -0,0 +1,1817 @@
+/*
+ * Copyright (c) 2011-2015 Advanced Micro Devices, Inc.
+ * All rights reserved.
+ *
+ * For use for simulation and test purposes only
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * 3. Neither the name of the copyright holder nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ *
+ * Author: John Kalamatianos, Anthony Gutierrez
+ */
+
+#include "gpu-compute/compute_unit.hh"
+
+#include "base/output.hh"
+#include "debug/GPUDisp.hh"
+#include "debug/GPUExec.hh"
+#include "debug/GPUFetch.hh"
+#include "debug/GPUMem.hh"
+#include "debug/GPUPort.hh"
+#include "debug/GPUPrefetch.hh"
+#include "debug/GPUSync.hh"
+#include "debug/GPUTLB.hh"
+#include "gpu-compute/dispatcher.hh"
+#include "gpu-compute/gpu_dyn_inst.hh"
+#include "gpu-compute/gpu_static_inst.hh"
+#include "gpu-compute/ndrange.hh"
+#include "gpu-compute/shader.hh"
+#include "gpu-compute/simple_pool_manager.hh"
+#include "gpu-compute/vector_register_file.hh"
+#include "gpu-compute/wavefront.hh"
+#include "mem/page_table.hh"
+#include "sim/process.hh"
+
+ComputeUnit::ComputeUnit(const Params *p) : MemObject(p), fetchStage(p),
+ scoreboardCheckStage(p), scheduleStage(p), execStage(p),
+ globalMemoryPipe(p), localMemoryPipe(p), rrNextMemID(0), rrNextALUWp(0),
+ cu_id(p->cu_id), vrf(p->vector_register_file), numSIMDs(p->num_SIMDs),
+ spBypassPipeLength(p->spbypass_pipe_length),
+ dpBypassPipeLength(p->dpbypass_pipe_length),
+ issuePeriod(p->issue_period),
+ numGlbMemUnits(p->num_global_mem_pipes),
+ numLocMemUnits(p->num_shared_mem_pipes),
+ perLaneTLB(p->perLaneTLB), prefetchDepth(p->prefetch_depth),
+ prefetchStride(p->prefetch_stride), prefetchType(p->prefetch_prev_type),
+ xact_cas_mode(p->xactCasMode), debugSegFault(p->debugSegFault),
+ functionalTLB(p->functionalTLB), localMemBarrier(p->localMemBarrier),
+ countPages(p->countPages), barrier_id(0),
+ vrfToCoalescerBusWidth(p->vrf_to_coalescer_bus_width),
+ coalescerToVrfBusWidth(p->coalescer_to_vrf_bus_width),
+ req_tick_latency(p->mem_req_latency * p->clk_domain->clockPeriod()),
+ resp_tick_latency(p->mem_resp_latency * p->clk_domain->clockPeriod()),
+ _masterId(p->system->getMasterId(name() + ".ComputeUnit")),
+ lds(*p->localDataStore), globalSeqNum(0), wavefrontSize(p->wfSize)
+{
+ // this check will be eliminated once we have wavefront size support added
+ fatal_if(p->wfSize != VSZ, "Wavefront size parameter does not match VSZ");
+ // calculate how many cycles a vector load or store will need to transfer
+ // its data over the corresponding buses
+ numCyclesPerStoreTransfer = (uint32_t)ceil((double)(VSZ * sizeof(uint32_t))
+ / (double)vrfToCoalescerBusWidth);
+
+ numCyclesPerLoadTransfer = (VSZ * sizeof(uint32_t))
+ / coalescerToVrfBusWidth;
+
+ lastVaddrWF.resize(numSIMDs);
+ wfList.resize(numSIMDs);
+
+ for (int j = 0; j < numSIMDs; ++j) {
+ lastVaddrWF[j].resize(p->n_wf);
+
+ for (int i = 0; i < p->n_wf; ++i) {
+ lastVaddrWF[j][i].resize(VSZ);
+
+ wfList[j].push_back(p->wavefronts[j * p->n_wf + i]);
+ wfList[j][i]->setParent(this);
+
+ for (int k = 0; k < VSZ; ++k) {
+ lastVaddrWF[j][i][k] = 0;
+ }
+ }
+ }
+
+ lastVaddrPhase.resize(numSIMDs);
+
+ for (int i = 0; i < numSIMDs; ++i) {
+ lastVaddrPhase[i] = LastVaddrWave();
+ }
+
+ lastVaddrCU = LastVaddrWave();
+
+ lds.setParent(this);
+
+ if (p->execPolicy == "OLDEST-FIRST") {
+ exec_policy = EXEC_POLICY::OLDEST;
+ } else if (p->execPolicy == "ROUND-ROBIN") {
+ exec_policy = EXEC_POLICY::RR;
+ } else {
+ fatal("Invalid WF execution policy (CU)\n");
+ }
+
+ memPort.resize(VSZ);
+
+ // resize the tlbPort vectorArray
+ int tlbPort_width = perLaneTLB ? VSZ : 1;
+ tlbPort.resize(tlbPort_width);
+
+ cuExitCallback = new CUExitCallback(this);
+ registerExitCallback(cuExitCallback);
+
+ xactCasLoadMap.clear();
+ lastExecCycle.resize(numSIMDs, 0);
+
+ for (int i = 0; i < vrf.size(); ++i) {
+ vrf[i]->setParent(this);
+ }
+
+ numVecRegsPerSimd = vrf[0]->numRegs();
+}
+
+ComputeUnit::~ComputeUnit()
+{
+ // Delete wavefront slots
+
+ for (int j = 0; j < numSIMDs; ++j)
+ for (int i = 0; i < shader->n_wf; ++i) {
+ delete wfList[j][i];
+ }
+
+ readyList.clear();
+ waveStatusList.clear();
+ dispatchList.clear();
+ vectorAluInstAvail.clear();
+ delete cuExitCallback;
+ delete ldsPort;
+}
+
+void
+ComputeUnit::FillKernelState(Wavefront *w, NDRange *ndr)
+{
+ w->resizeRegFiles(ndr->q.cRegCount, ndr->q.sRegCount, ndr->q.dRegCount);
+
+ w->workgroupsz[0] = ndr->q.wgSize[0];
+ w->workgroupsz[1] = ndr->q.wgSize[1];
+ w->workgroupsz[2] = ndr->q.wgSize[2];
+ w->wg_sz = w->workgroupsz[0] * w->workgroupsz[1] * w->workgroupsz[2];
+ w->gridsz[0] = ndr->q.gdSize[0];
+ w->gridsz[1] = ndr->q.gdSize[1];
+ w->gridsz[2] = ndr->q.gdSize[2];
+ w->kernelArgs = ndr->q.args;
+ w->privSizePerItem = ndr->q.privMemPerItem;
+ w->spillSizePerItem = ndr->q.spillMemPerItem;
+ w->roBase = ndr->q.roMemStart;
+ w->roSize = ndr->q.roMemTotal;
+}
+
+void
+ComputeUnit::InitializeWFContext(WFContext *wfCtx, NDRange *ndr, int cnt,
+ int trueWgSize[], int trueWgSizeTotal,
+ LdsChunk *ldsChunk, uint64_t origSpillMemStart)
+{
+ wfCtx->cnt = cnt;
+
+ VectorMask init_mask;
+ init_mask.reset();
+
+ for (int k = 0; k < VSZ; ++k) {
+ if (k + cnt * VSZ < trueWgSizeTotal)
+ init_mask[k] = 1;
+ }
+
+ wfCtx->init_mask = init_mask.to_ullong();
+ wfCtx->exec_mask = init_mask.to_ullong();
+
+ for (int i = 0; i < VSZ; ++i) {
+ wfCtx->bar_cnt[i] = 0;
+ }
+
+ wfCtx->max_bar_cnt = 0;
+ wfCtx->old_barrier_cnt = 0;
+ wfCtx->barrier_cnt = 0;
+
+ wfCtx->privBase = ndr->q.privMemStart;
+ ndr->q.privMemStart += ndr->q.privMemPerItem * VSZ;
+
+ wfCtx->spillBase = ndr->q.spillMemStart;
+ ndr->q.spillMemStart += ndr->q.spillMemPerItem * VSZ;
+
+ wfCtx->pc = 0;
+ wfCtx->rpc = UINT32_MAX;
+
+ // set the wavefront context to have a pointer to this section of the LDS
+ wfCtx->ldsChunk = ldsChunk;
+
+ // WG state
+ wfCtx->wg_id = ndr->globalWgId;
+ wfCtx->barrier_id = barrier_id;
+
+ // Kernel wide state
+ wfCtx->ndr = ndr;
+}
+
+void
+ComputeUnit::updateEvents() {
+
+ if (!timestampVec.empty()) {
+ uint32_t vecSize = timestampVec.size();
+ uint32_t i = 0;
+ while (i < vecSize) {
+ if (timestampVec[i] <= shader->tick_cnt) {
+ std::pair<uint32_t, uint32_t> regInfo = regIdxVec[i];
+ vrf[regInfo.first]->markReg(regInfo.second, sizeof(uint32_t),
+ statusVec[i]);
+ timestampVec.erase(timestampVec.begin() + i);
+ regIdxVec.erase(regIdxVec.begin() + i);
+ statusVec.erase(statusVec.begin() + i);
+ --vecSize;
+ --i;
+ }
+ ++i;
+ }
+ }
+
+ for (int i = 0; i< numSIMDs; ++i) {
+ vrf[i]->updateEvents();
+ }
+}
+
+
+void
+ComputeUnit::StartWF(Wavefront *w, WFContext *wfCtx, int trueWgSize[],
+ int trueWgSizeTotal)
+{
+ static int _n_wave = 0;
+ int cnt = wfCtx->cnt;
+ NDRange *ndr = wfCtx->ndr;
+
+ // Fill in Kernel state
+ FillKernelState(w, ndr);
+
+ w->kern_id = ndr->dispatchId;
+ w->dynwaveid = cnt;
+ w->init_mask = wfCtx->init_mask;
+
+ for (int k = 0; k < VSZ; ++k) {
+ w->workitemid[0][k] = (k+cnt*VSZ) % trueWgSize[0];
+ w->workitemid[1][k] = ((k + cnt * VSZ) / trueWgSize[0]) % trueWgSize[1];
+ w->workitemid[2][k] = (k + cnt * VSZ) / (trueWgSize[0] * trueWgSize[1]);
+
+ w->workitemFlatId[k] = w->workitemid[2][k] * trueWgSize[0] *
+ trueWgSize[1] + w->workitemid[1][k] * trueWgSize[0] +
+ w->workitemid[0][k];
+ }
+
+ w->old_barrier_cnt = wfCtx->old_barrier_cnt;
+ w->barrier_cnt = wfCtx->barrier_cnt;
+ w->barrier_slots = divCeil(trueWgSizeTotal, VSZ);
+
+ for (int i = 0; i < VSZ; ++i) {
+ w->bar_cnt[i] = wfCtx->bar_cnt[i];
+ }
+
+ w->max_bar_cnt = wfCtx->max_bar_cnt;
+ w->privBase = wfCtx->privBase;
+ w->spillBase = wfCtx->spillBase;
+
+ w->pushToReconvergenceStack(wfCtx->pc, wfCtx->rpc, wfCtx->exec_mask);
+
+ // WG state
+ w->wg_id = wfCtx->wg_id;
+ w->dispatchid = wfCtx->ndr->dispatchId;
+ w->workgroupid[0] = w->wg_id % ndr->numWg[0];
+ w->workgroupid[1] = (w->wg_id / ndr->numWg[0]) % ndr->numWg[1];
+ w->workgroupid[2] = w->wg_id / (ndr->numWg[0] * ndr->numWg[1]);
+
+ w->barrier_id = wfCtx->barrier_id;
+ w->stalledAtBarrier = false;
+
+ // move this from the context into the actual wavefront
+ w->ldsChunk = wfCtx->ldsChunk;
+
+ int32_t refCount M5_VAR_USED =
+ lds.increaseRefCounter(w->dispatchid, w->wg_id);
+ DPRINTF(GPUDisp, "CU%d: increase ref ctr wg[%d] to [%d]\n",
+ cu_id, w->wg_id, refCount);
+
+ w->instructionBuffer.clear();
+
+ if (w->pendingFetch)
+ w->dropFetch = true;
+
+ // is this the last wavefront in the workgroup
+ // if set the spillWidth to be the remaining work-items
+ // so that the vector access is correct
+ if ((cnt + 1) * VSZ >= trueWgSizeTotal) {
+ w->spillWidth = trueWgSizeTotal - (cnt * VSZ);
+ } else {
+ w->spillWidth = VSZ;
+ }
+
+ DPRINTF(GPUDisp, "Scheduling wfDynId/barrier_id %d/%d on CU%d: "
+ "WF[%d][%d]\n", _n_wave, barrier_id, cu_id, w->simdId, w->wfSlotId);
+
+ w->start(++_n_wave, ndr->q.code_ptr);
+}
+
+void
+ComputeUnit::StartWorkgroup(NDRange *ndr)
+{
+ // reserve the LDS capacity allocated to the work group
+ // disambiguated by the dispatch ID and workgroup ID, which should be
+ // globally unique
+ LdsChunk *ldsChunk = lds.reserveSpace(ndr->dispatchId, ndr->globalWgId,
+ ndr->q.ldsSize);
+
+ // Send L1 cache acquire
+ // isKernel + isAcquire = Kernel Begin
+ if (shader->impl_kern_boundary_sync) {
+ GPUDynInstPtr gpuDynInst = std::make_shared<GPUDynInst>(nullptr,
+ nullptr,
+ nullptr, 0);
+
+ gpuDynInst->useContinuation = false;
+ gpuDynInst->memoryOrder = Enums::MEMORY_ORDER_SC_ACQUIRE;
+ gpuDynInst->scope = Enums::MEMORY_SCOPE_SYSTEM;
+ injectGlobalMemFence(gpuDynInst, true);
+ }
+
+ // Get true size of workgroup (after clamping to grid size)
+ int trueWgSize[3];
+ int trueWgSizeTotal = 1;
+
+ for (int d = 0; d < 3; ++d) {
+ trueWgSize[d] = std::min(ndr->q.wgSize[d], ndr->q.gdSize[d] -
+ ndr->wgId[d] * ndr->q.wgSize[d]);
+
+ trueWgSizeTotal *= trueWgSize[d];
+ }
+
+ uint64_t origSpillMemStart = ndr->q.spillMemStart;
+ // calculate the number of 32-bit vector registers required by wavefront
+ int vregDemand = ndr->q.sRegCount + (2 * ndr->q.dRegCount);
+ int cnt = 0;
+
+ // Assign WFs by spreading them across SIMDs, 1 WF per SIMD at a time
+ for (int m = 0; m < shader->n_wf * numSIMDs; ++m) {
+ Wavefront *w = wfList[m % numSIMDs][m / numSIMDs];
+ // Check if this wavefront slot is available:
+ // It must be stopped and not waiting
+ // for a release to complete S_RETURNING
+ if (w->status == Wavefront::S_STOPPED) {
+ // if we have scheduled all work items then stop
+ // scheduling wavefronts
+ if (cnt * VSZ >= trueWgSizeTotal)
+ break;
+
+ // reserve vector registers for the scheduled wavefront
+ assert(vectorRegsReserved[m % numSIMDs] <= numVecRegsPerSimd);
+ uint32_t normSize = 0;
+
+ w->startVgprIndex = vrf[m % numSIMDs]->manager->
+ allocateRegion(vregDemand, &normSize);
+
+ w->reservedVectorRegs = normSize;
+ vectorRegsReserved[m % numSIMDs] += w->reservedVectorRegs;
+
+ WFContext wfCtx;
+
+ InitializeWFContext(&wfCtx, ndr, cnt, trueWgSize, trueWgSizeTotal,
+ ldsChunk, origSpillMemStart);
+
+ StartWF(w, &wfCtx, trueWgSize, trueWgSizeTotal);
+ ++cnt;
+ }
+ }
+ ++barrier_id;
+}
+
+int
+ComputeUnit::ReadyWorkgroup(NDRange *ndr)
+{
+ // Get true size of workgroup (after clamping to grid size)
+ int trueWgSize[3];
+ int trueWgSizeTotal = 1;
+
+ for (int d = 0; d < 3; ++d) {
+ trueWgSize[d] = std::min(ndr->q.wgSize[d], ndr->q.gdSize[d] -
+ ndr->wgId[d] * ndr->q.wgSize[d]);
+
+ trueWgSizeTotal *= trueWgSize[d];
+ DPRINTF(GPUDisp, "trueWgSize[%d] = %d\n", d, trueWgSize[d]);
+ }
+
+ DPRINTF(GPUDisp, "trueWgSizeTotal = %d\n", trueWgSizeTotal);
+
+ // calculate the number of 32-bit vector registers required by each
+ // work item of the work group
+ int vregDemandPerWI = ndr->q.sRegCount + (2 * ndr->q.dRegCount);
+ bool vregAvail = true;
+ int numWfs = (trueWgSizeTotal + VSZ - 1) / VSZ;
+ int freeWfSlots = 0;
+ // check if the total number of VGPRs required by all WFs of the WG
+ // fit in the VRFs of all SIMD units
+ assert((numWfs * vregDemandPerWI) <= (numSIMDs * numVecRegsPerSimd));
+ int numMappedWfs = 0;
+ std::vector<int> numWfsPerSimd;
+ numWfsPerSimd.resize(numSIMDs, 0);
+ // find how many free WF slots we have across all SIMDs
+ for (int j = 0; j < shader->n_wf; ++j) {
+ for (int i = 0; i < numSIMDs; ++i) {
+ if (wfList[i][j]->status == Wavefront::S_STOPPED) {
+ // count the number of free WF slots
+ ++freeWfSlots;
+ if (numMappedWfs < numWfs) {
+ // count the WFs to be assigned per SIMD
+ numWfsPerSimd[i]++;
+ }
+ numMappedWfs++;
+ }
+ }
+ }
+
+ // if there are enough free WF slots then find if there are enough
+ // free VGPRs per SIMD based on the WF->SIMD mapping
+ if (freeWfSlots >= numWfs) {
+ for (int j = 0; j < numSIMDs; ++j) {
+ // find if there are enough free VGPR regions in the SIMD's VRF
+ // to accommodate the WFs of the new WG that would be mapped to
+ // this SIMD unit
+ vregAvail = vrf[j]->manager->canAllocate(numWfsPerSimd[j],
+ vregDemandPerWI);
+
+ // stop searching if there is at least one SIMD
+ // whose VRF does not have enough free VGPR pools.
+ // This is because a WG is scheduled only if ALL
+ // of its WFs can be scheduled
+ if (!vregAvail)
+ break;
+ }
+ }
+
+ DPRINTF(GPUDisp, "Free WF slots = %d, VGPR Availability = %d\n",
+ freeWfSlots, vregAvail);
+
+ if (!vregAvail) {
+ ++numTimesWgBlockedDueVgprAlloc;
+ }
+
+ // Return true if enough WF slots to submit workgroup and if there are
+ // enough VGPRs to schedule all WFs to their SIMD units
+ if (!lds.canReserve(ndr->q.ldsSize)) {
+ wgBlockedDueLdsAllocation++;
+ }
+
+ // Return true if (a) there are enough free WF slots to submit
+ // workgrounp and (b) if there are enough VGPRs to schedule all WFs to their
+ // SIMD units and (c) if there is enough space in LDS
+ return freeWfSlots >= numWfs && vregAvail && lds.canReserve(ndr->q.ldsSize);
+}
+
+int
+ComputeUnit::AllAtBarrier(uint32_t _barrier_id, uint32_t bcnt, uint32_t bslots)
+{
+ DPRINTF(GPUSync, "CU%d: Checking for All At Barrier\n", cu_id);
+ int ccnt = 0;
+
+ for (int i_simd = 0; i_simd < numSIMDs; ++i_simd) {
+ for (int i_wf = 0; i_wf < shader->n_wf; ++i_wf) {
+ Wavefront *w = wfList[i_simd][i_wf];
+
+ if (w->status == Wavefront::S_RUNNING) {
+ DPRINTF(GPUSync, "Checking WF[%d][%d]\n", i_simd, i_wf);
+
+ DPRINTF(GPUSync, "wf->barrier_id = %d, _barrier_id = %d\n",
+ w->barrier_id, _barrier_id);
+
+ DPRINTF(GPUSync, "wf->barrier_cnt %d, bcnt = %d\n",
+ w->barrier_cnt, bcnt);
+ }
+
+ if (w->status == Wavefront::S_RUNNING &&
+ w->barrier_id == _barrier_id && w->barrier_cnt == bcnt &&
+ !w->outstanding_reqs) {
+ ++ccnt;
+
+ DPRINTF(GPUSync, "WF[%d][%d] at barrier, increment ccnt to "
+ "%d\n", i_simd, i_wf, ccnt);
+ }
+ }
+ }
+
+ DPRINTF(GPUSync, "CU%d: returning allAtBarrier ccnt = %d, bslots = %d\n",
+ cu_id, ccnt, bslots);
+
+ return ccnt == bslots;
+}
+
+// Check if the current wavefront is blocked on additional resources.
+bool
+ComputeUnit::cedeSIMD(int simdId, int wfSlotId)
+{
+ bool cede = false;
+
+ // If --xact-cas-mode option is enabled in run.py, then xact_cas_ld
+ // magic instructions will impact the scheduling of wavefronts
+ if (xact_cas_mode) {
+ /*
+ * When a wavefront calls xact_cas_ld, it adds itself to a per address
+ * queue. All per address queues are managed by the xactCasLoadMap.
+ *
+ * A wavefront is not blocked if: it is not in ANY per address queue or
+ * if it is at the head of a per address queue.
+ */
+ for (auto itMap : xactCasLoadMap) {
+ std::list<waveIdentifier> curWaveIDQueue = itMap.second.waveIDQueue;
+
+ if (!curWaveIDQueue.empty()) {
+ for (auto it : curWaveIDQueue) {
+ waveIdentifier cur_wave = it;
+
+ if (cur_wave.simdId == simdId &&
+ cur_wave.wfSlotId == wfSlotId) {
+ // 2 possibilities
+ // 1: this WF has a green light
+ // 2: another WF has a green light
+ waveIdentifier owner_wave = curWaveIDQueue.front();
+
+ if (owner_wave.simdId != cur_wave.simdId ||
+ owner_wave.wfSlotId != cur_wave.wfSlotId) {
+ // possibility 2
+ cede = true;
+ break;
+ } else {
+ // possibility 1
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ return cede;
+}
+
+// Execute one clock worth of work on the ComputeUnit.
+void
+ComputeUnit::exec()
+{
+ updateEvents();
+ // Execute pipeline stages in reverse order to simulate
+ // the pipeline latency
+ globalMemoryPipe.exec();
+ localMemoryPipe.exec();
+ execStage.exec();
+ scheduleStage.exec();
+ scoreboardCheckStage.exec();
+ fetchStage.exec();
+
+ totalCycles++;
+}
+
+void
+ComputeUnit::init()
+{
+ // Initialize CU Bus models
+ glbMemToVrfBus.init(&shader->tick_cnt, 1);
+ locMemToVrfBus.init(&shader->tick_cnt, 1);
+ nextGlbMemBus = 0;
+ nextLocMemBus = 0;
+ fatal_if(numGlbMemUnits > 1,
+ "No support for multiple Global Memory Pipelines exists!!!");
+ vrfToGlobalMemPipeBus.resize(numGlbMemUnits);
+ for (int j = 0; j < numGlbMemUnits; ++j) {
+ vrfToGlobalMemPipeBus[j] = WaitClass();
+ vrfToGlobalMemPipeBus[j].init(&shader->tick_cnt, 1);
+ }
+
+ fatal_if(numLocMemUnits > 1,
+ "No support for multiple Local Memory Pipelines exists!!!");
+ vrfToLocalMemPipeBus.resize(numLocMemUnits);
+ for (int j = 0; j < numLocMemUnits; ++j) {
+ vrfToLocalMemPipeBus[j] = WaitClass();
+ vrfToLocalMemPipeBus[j].init(&shader->tick_cnt, 1);
+ }
+ vectorRegsReserved.resize(numSIMDs, 0);
+ aluPipe.resize(numSIMDs);
+ wfWait.resize(numSIMDs + numLocMemUnits + numGlbMemUnits);
+
+ for (int i = 0; i < numSIMDs + numLocMemUnits + numGlbMemUnits; ++i) {
+ wfWait[i] = WaitClass();
+ wfWait[i].init(&shader->tick_cnt, 1);
+ }
+
+ for (int i = 0; i < numSIMDs; ++i) {
+ aluPipe[i] = WaitClass();
+ aluPipe[i].init(&shader->tick_cnt, 1);
+ }
+
+ // Setup space for call args
+ for (int j = 0; j < numSIMDs; ++j) {
+ for (int i = 0; i < shader->n_wf; ++i) {
+ wfList[j][i]->initCallArgMem(shader->funcargs_size);
+ }
+ }
+
+ // Initializing pipeline resources
+ readyList.resize(numSIMDs + numGlbMemUnits + numLocMemUnits);
+ waveStatusList.resize(numSIMDs);
+
+ for (int j = 0; j < numSIMDs; ++j) {
+ for (int i = 0; i < shader->n_wf; ++i) {
+ waveStatusList[j].push_back(
+ std::make_pair(wfList[j][i], BLOCKED));
+ }
+ }
+
+ for (int j = 0; j < (numSIMDs + numGlbMemUnits + numLocMemUnits); ++j) {
+ dispatchList.push_back(std::make_pair((Wavefront*)nullptr, EMPTY));
+ }
+
+ fetchStage.init(this);
+ scoreboardCheckStage.init(this);
+ scheduleStage.init(this);
+ execStage.init(this);
+ globalMemoryPipe.init(this);
+ localMemoryPipe.init(this);
+ // initialize state for statistics calculation
+ vectorAluInstAvail.resize(numSIMDs, false);
+ shrMemInstAvail = 0;
+ glbMemInstAvail = 0;
+}
+
+bool
+ComputeUnit::DataPort::recvTimingResp(PacketPtr pkt)
+{
+ // Ruby has completed the memory op. Schedule the mem_resp_event at the
+ // appropriate cycle to process the timing memory response
+ // This delay represents the pipeline delay
+ SenderState *sender_state = safe_cast<SenderState*>(pkt->senderState);
+ int index = sender_state->port_index;
+ GPUDynInstPtr gpuDynInst = sender_state->_gpuDynInst;
+
+ // Is the packet returned a Kernel End or Barrier
+ if (pkt->req->isKernel() && pkt->req->isRelease()) {
+ Wavefront *w =
+ computeUnit->wfList[gpuDynInst->simdId][gpuDynInst->wfSlotId];
+
+ // Check if we are waiting on Kernel End Release
+ if (w->status == Wavefront::S_RETURNING) {
+ DPRINTF(GPUDisp, "CU%d: WF[%d][%d][wv=%d]: WG id completed %d\n",
+ computeUnit->cu_id, w->simdId, w->wfSlotId,
+ w->wfDynId, w->kern_id);
+
+ computeUnit->shader->dispatcher->notifyWgCompl(w);
+ w->status = Wavefront::S_STOPPED;
+ } else {
+ w->outstanding_reqs--;
+ }
+
+ DPRINTF(GPUSync, "CU%d: WF[%d][%d]: barrier_cnt = %d\n",
+ computeUnit->cu_id, gpuDynInst->simdId,
+ gpuDynInst->wfSlotId, w->barrier_cnt);
+
+ if (gpuDynInst->useContinuation) {
+ assert(gpuDynInst->scope != Enums::MEMORY_SCOPE_NONE);
+ gpuDynInst->execContinuation(gpuDynInst->staticInstruction(),
+ gpuDynInst);
+ }
+
+ delete pkt->senderState;
+ delete pkt->req;
+ delete pkt;
+ return true;
+ } else if (pkt->req->isKernel() && pkt->req->isAcquire()) {
+ if (gpuDynInst->useContinuation) {
+ assert(gpuDynInst->scope != Enums::MEMORY_SCOPE_NONE);
+ gpuDynInst->execContinuation(gpuDynInst->staticInstruction(),
+ gpuDynInst);
+ }
+
+ delete pkt->senderState;
+ delete pkt->req;
+ delete pkt;
+ return true;
+ }
+
+ ComputeUnit::DataPort::MemRespEvent *mem_resp_event =
+ new ComputeUnit::DataPort::MemRespEvent(computeUnit->memPort[index],
+ pkt);
+
+ DPRINTF(GPUPort, "CU%d: WF[%d][%d]: index %d, addr %#x received!\n",
+ computeUnit->cu_id, gpuDynInst->simdId, gpuDynInst->wfSlotId,
+ index, pkt->req->getPaddr());
+
+ computeUnit->schedule(mem_resp_event,
+ curTick() + computeUnit->resp_tick_latency);
+ return true;
+}
+
+void
+ComputeUnit::DataPort::recvReqRetry()
+{
+ int len = retries.size();
+
+ assert(len > 0);
+
+ for (int i = 0; i < len; ++i) {
+ PacketPtr pkt = retries.front().first;
+ GPUDynInstPtr gpuDynInst M5_VAR_USED = retries.front().second;
+ DPRINTF(GPUMem, "CU%d: WF[%d][%d]: retry mem inst addr %#x\n",
+ computeUnit->cu_id, gpuDynInst->simdId, gpuDynInst->wfSlotId,
+ pkt->req->getPaddr());
+
+ /** Currently Ruby can return false due to conflicts for the particular
+ * cache block or address. Thus other requests should be allowed to
+ * pass and the data port should expect multiple retries. */
+ if (!sendTimingReq(pkt)) {
+ DPRINTF(GPUMem, "failed again!\n");
+ break;
+ } else {
+ DPRINTF(GPUMem, "successful!\n");
+ retries.pop_front();
+ }
+ }
+}
+
+bool
+ComputeUnit::SQCPort::recvTimingResp(PacketPtr pkt)
+{
+ computeUnit->fetchStage.processFetchReturn(pkt);
+
+ return true;
+}
+
+void
+ComputeUnit::SQCPort::recvReqRetry()
+{
+ int len = retries.size();
+
+ assert(len > 0);
+
+ for (int i = 0; i < len; ++i) {
+ PacketPtr pkt = retries.front().first;
+ Wavefront *wavefront M5_VAR_USED = retries.front().second;
+ DPRINTF(GPUFetch, "CU%d: WF[%d][%d]: retrying FETCH addr %#x\n",
+ computeUnit->cu_id, wavefront->simdId, wavefront->wfSlotId,
+ pkt->req->getPaddr());
+ if (!sendTimingReq(pkt)) {
+ DPRINTF(GPUFetch, "failed again!\n");
+ break;
+ } else {
+ DPRINTF(GPUFetch, "successful!\n");
+ retries.pop_front();
+ }
+ }
+}
+
+void
+ComputeUnit::sendRequest(GPUDynInstPtr gpuDynInst, int index, PacketPtr pkt)
+{
+ // There must be a way around this check to do the globalMemStart...
+ Addr tmp_vaddr = pkt->req->getVaddr();
+
+ updatePageDivergenceDist(tmp_vaddr);
+
+ pkt->req->setVirt(pkt->req->getAsid(), tmp_vaddr, pkt->req->getSize(),
+ pkt->req->getFlags(), pkt->req->masterId(),
+ pkt->req->getPC());
+
+ // figure out the type of the request to set read/write
+ BaseTLB::Mode TLB_mode;
+ assert(pkt->isRead() || pkt->isWrite());
+
+ // Check write before read for atomic operations
+ // since atomic operations should use BaseTLB::Write
+ if (pkt->isWrite()){
+ TLB_mode = BaseTLB::Write;
+ } else if (pkt->isRead()) {
+ TLB_mode = BaseTLB::Read;
+ } else {
+ fatal("pkt is not a read nor a write\n");
+ }
+
+ tlbCycles -= curTick();
+ ++tlbRequests;
+
+ int tlbPort_index = perLaneTLB ? index : 0;
+
+ if (shader->timingSim) {
+ if (debugSegFault) {
+ Process *p = shader->gpuTc->getProcessPtr();
+ Addr vaddr = pkt->req->getVaddr();
+ unsigned size = pkt->getSize();
+
+ if ((vaddr + size - 1) % 64 < vaddr % 64) {
+ panic("CU%d: WF[%d][%d]: Access to addr %#x is unaligned!\n",
+ cu_id, gpuDynInst->simdId, gpuDynInst->wfSlotId, vaddr);
+ }
+
+ Addr paddr;
+
+ if (!p->pTable->translate(vaddr, paddr)) {
+ if (!p->fixupStackFault(vaddr)) {
+ panic("CU%d: WF[%d][%d]: Fault on addr %#x!\n",
+ cu_id, gpuDynInst->simdId, gpuDynInst->wfSlotId,
+ vaddr);
+ }
+ }
+ }
+
+ // This is the SenderState needed upon return
+ pkt->senderState = new DTLBPort::SenderState(gpuDynInst, index);
+
+ // This is the senderState needed by the TLB hierarchy to function
+ TheISA::GpuTLB::TranslationState *translation_state =
+ new TheISA::GpuTLB::TranslationState(TLB_mode, shader->gpuTc, false,
+ pkt->senderState);
+
+ pkt->senderState = translation_state;
+
+ if (functionalTLB) {
+ tlbPort[tlbPort_index]->sendFunctional(pkt);
+
+ // update the hitLevel distribution
+ int hit_level = translation_state->hitLevel;
+ assert(hit_level != -1);
+ hitsPerTLBLevel[hit_level]++;
+
+ // New SenderState for the memory access
+ X86ISA::GpuTLB::TranslationState *sender_state =
+ safe_cast<X86ISA::GpuTLB::TranslationState*>(pkt->senderState);
+
+ delete sender_state->tlbEntry;
+ delete sender_state->saved;
+ delete sender_state;
+
+ assert(pkt->req->hasPaddr());
+ assert(pkt->req->hasSize());
+
+ uint8_t *tmpData = pkt->getPtr<uint8_t>();
+
+ // this is necessary because the GPU TLB receives packets instead
+ // of requests. when the translation is complete, all relevent
+ // fields in the request will be populated, but not in the packet.
+ // here we create the new packet so we can set the size, addr,
+ // and proper flags.
+ PacketPtr oldPkt = pkt;
+ pkt = new Packet(oldPkt->req, oldPkt->cmd);
+ delete oldPkt;
+ pkt->dataStatic(tmpData);
+
+
+ // New SenderState for the memory access
+ pkt->senderState = new ComputeUnit::DataPort::SenderState(gpuDynInst,
+ index, nullptr);
+
+ gpuDynInst->memStatusVector[pkt->getAddr()].push_back(index);
+ gpuDynInst->tlbHitLevel[index] = hit_level;
+
+
+ // translation is done. Schedule the mem_req_event at the
+ // appropriate cycle to send the timing memory request to ruby
+ ComputeUnit::DataPort::MemReqEvent *mem_req_event =
+ new ComputeUnit::DataPort::MemReqEvent(memPort[index], pkt);
+
+ DPRINTF(GPUPort, "CU%d: WF[%d][%d]: index %d, addr %#x data "
+ "scheduled\n", cu_id, gpuDynInst->simdId,
+ gpuDynInst->wfSlotId, index, pkt->req->getPaddr());
+
+ schedule(mem_req_event, curTick() + req_tick_latency);
+ } else if (tlbPort[tlbPort_index]->isStalled()) {
+ assert(tlbPort[tlbPort_index]->retries.size() > 0);
+
+ DPRINTF(GPUTLB, "CU%d: WF[%d][%d]: Translation for addr %#x "
+ "failed!\n", cu_id, gpuDynInst->simdId, gpuDynInst->wfSlotId,
+ tmp_vaddr);
+
+ tlbPort[tlbPort_index]->retries.push_back(pkt);
+ } else if (!tlbPort[tlbPort_index]->sendTimingReq(pkt)) {
+ // Stall the data port;
+ // No more packet will be issued till
+ // ruby indicates resources are freed by
+ // a recvReqRetry() call back on this port.
+ tlbPort[tlbPort_index]->stallPort();
+
+ DPRINTF(GPUTLB, "CU%d: WF[%d][%d]: Translation for addr %#x "
+ "failed!\n", cu_id, gpuDynInst->simdId, gpuDynInst->wfSlotId,
+ tmp_vaddr);
+
+ tlbPort[tlbPort_index]->retries.push_back(pkt);
+ } else {
+ DPRINTF(GPUTLB,
+ "CU%d: WF[%d][%d]: Translation for addr %#x sent!\n",
+ cu_id, gpuDynInst->simdId, gpuDynInst->wfSlotId, tmp_vaddr);
+ }
+ } else {
+ if (pkt->cmd == MemCmd::MemFenceReq) {
+ gpuDynInst->statusBitVector = VectorMask(0);
+ } else {
+ gpuDynInst->statusBitVector &= (~(1ll << index));
+ }
+
+ // New SenderState for the memory access
+ delete pkt->senderState;
+
+ // Because it's atomic operation, only need TLB translation state
+ pkt->senderState = new TheISA::GpuTLB::TranslationState(TLB_mode,
+ shader->gpuTc);
+
+ tlbPort[tlbPort_index]->sendFunctional(pkt);
+
+ // the addr of the packet is not modified, so we need to create a new
+ // packet, or otherwise the memory access will have the old virtual
+ // address sent in the translation packet, instead of the physical
+ // address returned by the translation.
+ PacketPtr new_pkt = new Packet(pkt->req, pkt->cmd);
+ new_pkt->dataStatic(pkt->getPtr<uint8_t>());
+
+ // Translation is done. It is safe to send the packet to memory.
+ memPort[0]->sendFunctional(new_pkt);
+
+ DPRINTF(GPUMem, "CU%d: WF[%d][%d]: index %d: addr %#x\n", cu_id,
+ gpuDynInst->simdId, gpuDynInst->wfSlotId, index,
+ new_pkt->req->getPaddr());
+
+ // safe_cast the senderState
+ TheISA::GpuTLB::TranslationState *sender_state =
+ safe_cast<TheISA::GpuTLB::TranslationState*>(pkt->senderState);
+
+ delete sender_state->tlbEntry;
+ delete new_pkt;
+ delete pkt->senderState;
+ delete pkt->req;
+ delete pkt;
+ }
+}
+
+void
+ComputeUnit::sendSyncRequest(GPUDynInstPtr gpuDynInst, int index, PacketPtr pkt)
+{
+ ComputeUnit::DataPort::MemReqEvent *mem_req_event =
+ new ComputeUnit::DataPort::MemReqEvent(memPort[index], pkt);
+
+
+ // New SenderState for the memory access
+ pkt->senderState = new ComputeUnit::DataPort::SenderState(gpuDynInst, index,
+ nullptr);
+
+ DPRINTF(GPUPort, "CU%d: WF[%d][%d]: index %d, addr %#x sync scheduled\n",
+ cu_id, gpuDynInst->simdId, gpuDynInst->wfSlotId, index,
+ pkt->req->getPaddr());
+
+ schedule(mem_req_event, curTick() + req_tick_latency);
+}
+
+void
+ComputeUnit::injectGlobalMemFence(GPUDynInstPtr gpuDynInst, bool kernelLaunch,
+ Request* req)
+{
+ if (!req) {
+ req = new Request(0, 0, 0, 0, masterId(), 0, gpuDynInst->wfDynId, -1);
+ }
+ req->setPaddr(0);
+ if (kernelLaunch) {
+ req->setFlags(Request::KERNEL);
+ }
+
+ gpuDynInst->s_type = SEG_GLOBAL;
+
+ // for non-kernel MemFence operations, memorder flags are set depending
+ // on which type of request is currently being sent, so this
+ // should be set by the caller (e.g. if an inst has acq-rel
+ // semantics, it will send one acquire req an one release req)
+ gpuDynInst->setRequestFlags(req, kernelLaunch);
+
+ // a mem fence must correspond to an acquire/release request
+ assert(req->isAcquire() || req->isRelease());
+
+ // create packet
+ PacketPtr pkt = new Packet(req, MemCmd::MemFenceReq);
+
+ // set packet's sender state
+ pkt->senderState =
+ new ComputeUnit::DataPort::SenderState(gpuDynInst, 0, nullptr);
+
+ // send the packet
+ sendSyncRequest(gpuDynInst, 0, pkt);
+}
+
+const char*
+ComputeUnit::DataPort::MemRespEvent::description() const
+{
+ return "ComputeUnit memory response event";
+}
+
+void
+ComputeUnit::DataPort::MemRespEvent::process()
+{
+ DataPort::SenderState *sender_state =
+ safe_cast<DataPort::SenderState*>(pkt->senderState);
+
+ GPUDynInstPtr gpuDynInst = sender_state->_gpuDynInst;
+ ComputeUnit *compute_unit = dataPort->computeUnit;
+
+ assert(gpuDynInst);
+
+ DPRINTF(GPUPort, "CU%d: WF[%d][%d]: Response for addr %#x, index %d\n",
+ compute_unit->cu_id, gpuDynInst->simdId, gpuDynInst->wfSlotId,
+ pkt->req->getPaddr(), dataPort->index);
+
+ Addr paddr = pkt->req->getPaddr();
+
+ if (pkt->cmd != MemCmd::MemFenceResp) {
+ int index = gpuDynInst->memStatusVector[paddr].back();
+
+ DPRINTF(GPUMem, "Response for addr %#x, index %d\n",
+ pkt->req->getPaddr(), index);
+
+ gpuDynInst->memStatusVector[paddr].pop_back();
+ gpuDynInst->pAddr = pkt->req->getPaddr();
+
+ if (pkt->isRead() || pkt->isWrite()) {
+
+ if (gpuDynInst->n_reg <= MAX_REGS_FOR_NON_VEC_MEM_INST) {
+ gpuDynInst->statusBitVector &= (~(1ULL << index));
+ } else {
+ assert(gpuDynInst->statusVector[index] > 0);
+ gpuDynInst->statusVector[index]--;
+
+ if (!gpuDynInst->statusVector[index])
+ gpuDynInst->statusBitVector &= (~(1ULL << index));
+ }
+
+ DPRINTF(GPUMem, "bitvector is now %#x\n",
+ gpuDynInst->statusBitVector);
+
+ if (gpuDynInst->statusBitVector == VectorMask(0)) {
+ auto iter = gpuDynInst->memStatusVector.begin();
+ auto end = gpuDynInst->memStatusVector.end();
+
+ while (iter != end) {
+ assert(iter->second.empty());
+ ++iter;
+ }
+
+ gpuDynInst->memStatusVector.clear();
+
+ if (gpuDynInst->n_reg > MAX_REGS_FOR_NON_VEC_MEM_INST)
+ gpuDynInst->statusVector.clear();
+
+ if (gpuDynInst->m_op == Enums::MO_LD || MO_A(gpuDynInst->m_op)
+ || MO_ANR(gpuDynInst->m_op)) {
+ assert(compute_unit->globalMemoryPipe.isGMLdRespFIFOWrRdy());
+
+ compute_unit->globalMemoryPipe.getGMLdRespFIFO()
+ .push(gpuDynInst);
+ } else {
+ assert(compute_unit->globalMemoryPipe.isGMStRespFIFOWrRdy());
+
+ compute_unit->globalMemoryPipe.getGMStRespFIFO()
+ .push(gpuDynInst);
+ }
+
+ DPRINTF(GPUMem, "CU%d: WF[%d][%d]: packet totally complete\n",
+ compute_unit->cu_id, gpuDynInst->simdId,
+ gpuDynInst->wfSlotId);
+
+ // after clearing the status vectors,
+ // see if there is a continuation to perform
+ // the continuation may generate more work for
+ // this memory request
+ if (gpuDynInst->useContinuation) {
+ assert(gpuDynInst->scope != Enums::MEMORY_SCOPE_NONE);
+ gpuDynInst->execContinuation(gpuDynInst->staticInstruction(),
+ gpuDynInst);
+ }
+ }
+ }
+ } else {
+ gpuDynInst->statusBitVector = VectorMask(0);
+
+ if (gpuDynInst->useContinuation) {
+ assert(gpuDynInst->scope != Enums::MEMORY_SCOPE_NONE);
+ gpuDynInst->execContinuation(gpuDynInst->staticInstruction(),
+ gpuDynInst);
+ }
+ }
+
+ delete pkt->senderState;
+ delete pkt->req;
+ delete pkt;
+}
+
+ComputeUnit*
+ComputeUnitParams::create()
+{
+ return new ComputeUnit(this);
+}
+
+bool
+ComputeUnit::DTLBPort::recvTimingResp(PacketPtr pkt)
+{
+ Addr line = pkt->req->getPaddr();
+
+ DPRINTF(GPUTLB, "CU%d: DTLBPort received %#x->%#x\n", computeUnit->cu_id,
+ pkt->req->getVaddr(), line);
+
+ assert(pkt->senderState);
+ computeUnit->tlbCycles += curTick();
+
+ // pop off the TLB translation state
+ TheISA::GpuTLB::TranslationState *translation_state =
+ safe_cast<TheISA::GpuTLB::TranslationState*>(pkt->senderState);
+
+ // no PageFaults are permitted for data accesses
+ if (!translation_state->tlbEntry->valid) {
+ DTLBPort::SenderState *sender_state =
+ safe_cast<DTLBPort::SenderState*>(translation_state->saved);
+
+ Wavefront *w M5_VAR_USED =
+ computeUnit->wfList[sender_state->_gpuDynInst->simdId]
+ [sender_state->_gpuDynInst->wfSlotId];
+
+ DPRINTFN("Wave %d couldn't tranlate vaddr %#x\n", w->wfDynId,
+ pkt->req->getVaddr());
+ }
+
+ assert(translation_state->tlbEntry->valid);
+
+ // update the hitLevel distribution
+ int hit_level = translation_state->hitLevel;
+ computeUnit->hitsPerTLBLevel[hit_level]++;
+
+ delete translation_state->tlbEntry;
+ assert(!translation_state->ports.size());
+ pkt->senderState = translation_state->saved;
+
+ // for prefetch pkt
+ BaseTLB::Mode TLB_mode = translation_state->tlbMode;
+
+ delete translation_state;
+
+ // use the original sender state to know how to close this transaction
+ DTLBPort::SenderState *sender_state =
+ safe_cast<DTLBPort::SenderState*>(pkt->senderState);
+
+ GPUDynInstPtr gpuDynInst = sender_state->_gpuDynInst;
+ int mp_index = sender_state->portIndex;
+ Addr vaddr = pkt->req->getVaddr();
+ gpuDynInst->memStatusVector[line].push_back(mp_index);
+ gpuDynInst->tlbHitLevel[mp_index] = hit_level;
+
+ MemCmd requestCmd;
+
+ if (pkt->cmd == MemCmd::ReadResp) {
+ requestCmd = MemCmd::ReadReq;
+ } else if (pkt->cmd == MemCmd::WriteResp) {
+ requestCmd = MemCmd::WriteReq;
+ } else if (pkt->cmd == MemCmd::SwapResp) {
+ requestCmd = MemCmd::SwapReq;
+ } else {
+ panic("unsupported response to request conversion %s\n",
+ pkt->cmd.toString());
+ }
+
+ if (computeUnit->prefetchDepth) {
+ int simdId = gpuDynInst->simdId;
+ int wfSlotId = gpuDynInst->wfSlotId;
+ Addr last = 0;
+
+ switch(computeUnit->prefetchType) {
+ case Enums::PF_CU:
+ last = computeUnit->lastVaddrCU[mp_index];
+ break;
+ case Enums::PF_PHASE:
+ last = computeUnit->lastVaddrPhase[simdId][mp_index];
+ break;
+ case Enums::PF_WF:
+ last = computeUnit->lastVaddrWF[simdId][wfSlotId][mp_index];
+ default:
+ break;
+ }
+
+ DPRINTF(GPUPrefetch, "CU[%d][%d][%d][%d]: %#x was last\n",
+ computeUnit->cu_id, simdId, wfSlotId, mp_index, last);
+
+ int stride = last ? (roundDown(vaddr, TheISA::PageBytes) -
+ roundDown(last, TheISA::PageBytes)) >> TheISA::PageShift
+ : 0;
+
+ DPRINTF(GPUPrefetch, "Stride is %d\n", stride);
+
+ computeUnit->lastVaddrCU[mp_index] = vaddr;
+ computeUnit->lastVaddrPhase[simdId][mp_index] = vaddr;
+ computeUnit->lastVaddrWF[simdId][wfSlotId][mp_index] = vaddr;
+
+ stride = (computeUnit->prefetchType == Enums::PF_STRIDE) ?
+ computeUnit->prefetchStride: stride;
+
+ DPRINTF(GPUPrefetch, "%#x to: CU[%d][%d][%d][%d]\n", vaddr,
+ computeUnit->cu_id, simdId, wfSlotId, mp_index);
+
+ DPRINTF(GPUPrefetch, "Prefetching from %#x:", vaddr);
+
+ // Prefetch Next few pages atomically
+ for (int pf = 1; pf <= computeUnit->prefetchDepth; ++pf) {
+ DPRINTF(GPUPrefetch, "%d * %d: %#x\n", pf, stride,
+ vaddr+stride*pf*TheISA::PageBytes);
+
+ if (!stride)
+ break;
+
+ Request *prefetch_req = new Request(0, vaddr + stride * pf *
+ TheISA::PageBytes,
+ sizeof(uint8_t), 0,
+ computeUnit->masterId(),
+ 0, 0, 0);
+
+ PacketPtr prefetch_pkt = new Packet(prefetch_req, requestCmd);
+ uint8_t foo = 0;
+ prefetch_pkt->dataStatic(&foo);
+
+ // Because it's atomic operation, only need TLB translation state
+ prefetch_pkt->senderState =
+ new TheISA::GpuTLB::TranslationState(TLB_mode,
+ computeUnit->shader->gpuTc,
+ true);
+
+ // Currently prefetches are zero-latency, hence the sendFunctional
+ sendFunctional(prefetch_pkt);
+
+ /* safe_cast the senderState */
+ TheISA::GpuTLB::TranslationState *tlb_state =
+ safe_cast<TheISA::GpuTLB::TranslationState*>(
+ prefetch_pkt->senderState);
+
+
+ delete tlb_state->tlbEntry;
+ delete tlb_state;
+ delete prefetch_pkt->req;
+ delete prefetch_pkt;
+ }
+ }
+
+ // First we must convert the response cmd back to a request cmd so that
+ // the request can be sent through the cu's master port
+ PacketPtr new_pkt = new Packet(pkt->req, requestCmd);
+ new_pkt->dataStatic(pkt->getPtr<uint8_t>());
+ delete pkt->senderState;
+ delete pkt;
+
+ // New SenderState for the memory access
+ new_pkt->senderState =
+ new ComputeUnit::DataPort::SenderState(gpuDynInst, mp_index,
+ nullptr);
+
+ // translation is done. Schedule the mem_req_event at the appropriate
+ // cycle to send the timing memory request to ruby
+ ComputeUnit::DataPort::MemReqEvent *mem_req_event =
+ new ComputeUnit::DataPort::MemReqEvent(computeUnit->memPort[mp_index],
+ new_pkt);
+
+ DPRINTF(GPUPort, "CU%d: WF[%d][%d]: index %d, addr %#x data scheduled\n",
+ computeUnit->cu_id, gpuDynInst->simdId,
+ gpuDynInst->wfSlotId, mp_index, new_pkt->req->getPaddr());
+
+ computeUnit->schedule(mem_req_event, curTick() +
+ computeUnit->req_tick_latency);
+
+ return true;
+}
+
+const char*
+ComputeUnit::DataPort::MemReqEvent::description() const
+{
+ return "ComputeUnit memory request event";
+}
+
+void
+ComputeUnit::DataPort::MemReqEvent::process()
+{
+ SenderState *sender_state = safe_cast<SenderState*>(pkt->senderState);
+ GPUDynInstPtr gpuDynInst = sender_state->_gpuDynInst;
+ ComputeUnit *compute_unit M5_VAR_USED = dataPort->computeUnit;
+
+ if (!(dataPort->sendTimingReq(pkt))) {
+ dataPort->retries.push_back(std::make_pair(pkt, gpuDynInst));
+
+ DPRINTF(GPUPort,
+ "CU%d: WF[%d][%d]: index %d, addr %#x data req failed!\n",
+ compute_unit->cu_id, gpuDynInst->simdId,
+ gpuDynInst->wfSlotId, dataPort->index,
+ pkt->req->getPaddr());
+ } else {
+ DPRINTF(GPUPort,
+ "CU%d: WF[%d][%d]: index %d, addr %#x data req sent!\n",
+ compute_unit->cu_id, gpuDynInst->simdId,
+ gpuDynInst->wfSlotId, dataPort->index,
+ pkt->req->getPaddr());
+ }
+}
+
+/*
+ * The initial translation request could have been rejected,
+ * if <retries> queue is not Retry sending the translation
+ * request. sendRetry() is called from the peer port whenever
+ * a translation completes.
+ */
+void
+ComputeUnit::DTLBPort::recvReqRetry()
+{
+ int len = retries.size();
+
+ DPRINTF(GPUTLB, "CU%d: DTLB recvReqRetry - %d pending requests\n",
+ computeUnit->cu_id, len);
+
+ assert(len > 0);
+ assert(isStalled());
+ // recvReqRetry is an indication that the resource on which this
+ // port was stalling on is freed. So, remove the stall first
+ unstallPort();
+
+ for (int i = 0; i < len; ++i) {
+ PacketPtr pkt = retries.front();
+ Addr vaddr M5_VAR_USED = pkt->req->getVaddr();
+ DPRINTF(GPUTLB, "CU%d: retrying D-translaton for address%#x", vaddr);
+
+ if (!sendTimingReq(pkt)) {
+ // Stall port
+ stallPort();
+ DPRINTF(GPUTLB, ": failed again\n");
+ break;
+ } else {
+ DPRINTF(GPUTLB, ": successful\n");
+ retries.pop_front();
+ }
+ }
+}
+
+bool
+ComputeUnit::ITLBPort::recvTimingResp(PacketPtr pkt)
+{
+ Addr line M5_VAR_USED = pkt->req->getPaddr();
+ DPRINTF(GPUTLB, "CU%d: ITLBPort received %#x->%#x\n",
+ computeUnit->cu_id, pkt->req->getVaddr(), line);
+
+ assert(pkt->senderState);
+
+ // pop off the TLB translation state
+ TheISA::GpuTLB::TranslationState *translation_state =
+ safe_cast<TheISA::GpuTLB::TranslationState*>(pkt->senderState);
+
+ bool success = translation_state->tlbEntry->valid;
+ delete translation_state->tlbEntry;
+ assert(!translation_state->ports.size());
+ pkt->senderState = translation_state->saved;
+ delete translation_state;
+
+ // use the original sender state to know how to close this transaction
+ ITLBPort::SenderState *sender_state =
+ safe_cast<ITLBPort::SenderState*>(pkt->senderState);
+
+ // get the wavefront associated with this translation request
+ Wavefront *wavefront = sender_state->wavefront;
+ delete pkt->senderState;
+
+ if (success) {
+ // pkt is reused in fetch(), don't delete it here. However, we must
+ // reset the command to be a request so that it can be sent through
+ // the cu's master port
+ assert(pkt->cmd == MemCmd::ReadResp);
+ pkt->cmd = MemCmd::ReadReq;
+
+ computeUnit->fetchStage.fetch(pkt, wavefront);
+ } else {
+ if (wavefront->dropFetch) {
+ assert(wavefront->instructionBuffer.empty());
+ wavefront->dropFetch = false;
+ }
+
+ wavefront->pendingFetch = 0;
+ }
+
+ return true;
+}
+
+/*
+ * The initial translation request could have been rejected, if
+ * <retries> queue is not empty. Retry sending the translation
+ * request. sendRetry() is called from the peer port whenever
+ * a translation completes.
+ */
+void
+ComputeUnit::ITLBPort::recvReqRetry()
+{
+
+ int len = retries.size();
+ DPRINTF(GPUTLB, "CU%d: ITLB recvReqRetry - %d pending requests\n", len);
+
+ assert(len > 0);
+ assert(isStalled());
+
+ // recvReqRetry is an indication that the resource on which this
+ // port was stalling on is freed. So, remove the stall first
+ unstallPort();
+
+ for (int i = 0; i < len; ++i) {
+ PacketPtr pkt = retries.front();
+ Addr vaddr M5_VAR_USED = pkt->req->getVaddr();
+ DPRINTF(GPUTLB, "CU%d: retrying I-translaton for address%#x", vaddr);
+
+ if (!sendTimingReq(pkt)) {
+ stallPort(); // Stall port
+ DPRINTF(GPUTLB, ": failed again\n");
+ break;
+ } else {
+ DPRINTF(GPUTLB, ": successful\n");
+ retries.pop_front();
+ }
+ }
+}
+
+void
+ComputeUnit::regStats()
+{
+ tlbCycles
+ .name(name() + ".tlb_cycles")
+ .desc("total number of cycles for all uncoalesced requests")
+ ;
+
+ tlbRequests
+ .name(name() + ".tlb_requests")
+ .desc("number of uncoalesced requests")
+ ;
+
+ tlbLatency
+ .name(name() + ".avg_translation_latency")
+ .desc("Avg. translation latency for data translations")
+ ;
+
+ tlbLatency = tlbCycles / tlbRequests;
+
+ hitsPerTLBLevel
+ .init(4)
+ .name(name() + ".TLB_hits_distribution")
+ .desc("TLB hits distribution (0 for page table, x for Lx-TLB")
+ ;
+
+ // fixed number of TLB levels
+ for (int i = 0; i < 4; ++i) {
+ if (!i)
+ hitsPerTLBLevel.subname(i,"page_table");
+ else
+ hitsPerTLBLevel.subname(i, csprintf("L%d_TLB",i));
+ }
+
+ execRateDist
+ .init(0, 10, 2)
+ .name(name() + ".inst_exec_rate")
+ .desc("Instruction Execution Rate: Number of executed vector "
+ "instructions per cycle")
+ ;
+
+ ldsBankConflictDist
+ .init(0, VSZ, 2)
+ .name(name() + ".lds_bank_conflicts")
+ .desc("Number of bank conflicts per LDS memory packet")
+ ;
+
+ ldsBankAccesses
+ .name(name() + ".lds_bank_access_cnt")
+ .desc("Total number of LDS bank accesses")
+ ;
+
+ pageDivergenceDist
+ // A wavefront can touch 1 to VSZ pages per memory instruction.
+ // The number of pages per bin can be configured (here it's 4).
+ .init(1, VSZ, 4)
+ .name(name() + ".page_divergence_dist")
+ .desc("pages touched per wf (over all mem. instr.)")
+ ;
+
+ controlFlowDivergenceDist
+ .init(1, VSZ, 4)
+ .name(name() + ".warp_execution_dist")
+ .desc("number of lanes active per instruction (oval all instructions)")
+ ;
+
+ activeLanesPerGMemInstrDist
+ .init(1, VSZ, 4)
+ .name(name() + ".gmem_lanes_execution_dist")
+ .desc("number of active lanes per global memory instruction")
+ ;
+
+ activeLanesPerLMemInstrDist
+ .init(1, VSZ, 4)
+ .name(name() + ".lmem_lanes_execution_dist")
+ .desc("number of active lanes per local memory instruction")
+ ;
+
+ numInstrExecuted
+ .name(name() + ".num_instr_executed")
+ .desc("number of instructions executed")
+ ;
+
+ numVecOpsExecuted
+ .name(name() + ".num_vec_ops_executed")
+ .desc("number of vec ops executed (e.g. VSZ/inst)")
+ ;
+
+ totalCycles
+ .name(name() + ".num_total_cycles")
+ .desc("number of cycles the CU ran for")
+ ;
+
+ ipc
+ .name(name() + ".ipc")
+ .desc("Instructions per cycle (this CU only)")
+ ;
+
+ vpc
+ .name(name() + ".vpc")
+ .desc("Vector Operations per cycle (this CU only)")
+ ;
+
+ numALUInstsExecuted
+ .name(name() + ".num_alu_insts_executed")
+ .desc("Number of dynamic non-GM memory insts executed")
+ ;
+
+ wgBlockedDueLdsAllocation
+ .name(name() + ".wg_blocked_due_lds_alloc")
+ .desc("Workgroup blocked due to LDS capacity")
+ ;
+
+ ipc = numInstrExecuted / totalCycles;
+ vpc = numVecOpsExecuted / totalCycles;
+
+ numTimesWgBlockedDueVgprAlloc
+ .name(name() + ".times_wg_blocked_due_vgpr_alloc")
+ .desc("Number of times WGs are blocked due to VGPR allocation per SIMD")
+ ;
+
+ dynamicGMemInstrCnt
+ .name(name() + ".global_mem_instr_cnt")
+ .desc("dynamic global memory instructions count")
+ ;
+
+ dynamicLMemInstrCnt
+ .name(name() + ".local_mem_instr_cnt")
+ .desc("dynamic local memory intruction count")
+ ;
+
+ numALUInstsExecuted = numInstrExecuted - dynamicGMemInstrCnt -
+ dynamicLMemInstrCnt;
+
+ completedWfs
+ .name(name() + ".num_completed_wfs")
+ .desc("number of completed wavefronts")
+ ;
+
+ numCASOps
+ .name(name() + ".num_CAS_ops")
+ .desc("number of compare and swap operations")
+ ;
+
+ numFailedCASOps
+ .name(name() + ".num_failed_CAS_ops")
+ .desc("number of compare and swap operations that failed")
+ ;
+
+ // register stats of pipeline stages
+ fetchStage.regStats();
+ scoreboardCheckStage.regStats();
+ scheduleStage.regStats();
+ execStage.regStats();
+
+ // register stats of memory pipeline
+ globalMemoryPipe.regStats();
+ localMemoryPipe.regStats();
+}
+
+void
+ComputeUnit::updatePageDivergenceDist(Addr addr)
+{
+ Addr virt_page_addr = roundDown(addr, TheISA::PageBytes);
+
+ if (!pagesTouched.count(virt_page_addr))
+ pagesTouched[virt_page_addr] = 1;
+ else
+ pagesTouched[virt_page_addr]++;
+}
+
+void
+ComputeUnit::CUExitCallback::process()
+{
+ if (computeUnit->countPages) {
+ std::ostream *page_stat_file =
+ simout.create(computeUnit->name().c_str());
+
+ *page_stat_file << "page, wavefront accesses, workitem accesses" <<
+ std::endl;
+
+ for (auto iter : computeUnit->pageAccesses) {
+ *page_stat_file << std::hex << iter.first << ",";
+ *page_stat_file << std::dec << iter.second.first << ",";
+ *page_stat_file << std::dec << iter.second.second << std::endl;
+ }
+ }
+ }
+
+bool
+ComputeUnit::isDone() const
+{
+ for (int i = 0; i < numSIMDs; ++i) {
+ if (!isSimdDone(i)) {
+ return false;
+ }
+ }
+
+ bool glbMemBusRdy = true;
+ for (int j = 0; j < numGlbMemUnits; ++j) {
+ glbMemBusRdy &= vrfToGlobalMemPipeBus[j].rdy();
+ }
+ bool locMemBusRdy = true;
+ for (int j = 0; j < numLocMemUnits; ++j) {
+ locMemBusRdy &= vrfToLocalMemPipeBus[j].rdy();
+ }
+
+ if (!globalMemoryPipe.isGMLdRespFIFOWrRdy() ||
+ !globalMemoryPipe.isGMStRespFIFOWrRdy() ||
+ !globalMemoryPipe.isGMReqFIFOWrRdy() || !localMemoryPipe.isLMReqFIFOWrRdy()
+ || !localMemoryPipe.isLMRespFIFOWrRdy() || !locMemToVrfBus.rdy() ||
+ !glbMemToVrfBus.rdy() || !locMemBusRdy || !glbMemBusRdy) {
+ return false;
+ }
+
+ return true;
+}
+
+int32_t
+ComputeUnit::getRefCounter(const uint32_t dispatchId, const uint32_t wgId) const
+{
+ return lds.getRefCounter(dispatchId, wgId);
+}
+
+bool
+ComputeUnit::isSimdDone(uint32_t simdId) const
+{
+ assert(simdId < numSIMDs);
+
+ for (int i=0; i < numGlbMemUnits; ++i) {
+ if (!vrfToGlobalMemPipeBus[i].rdy())
+ return false;
+ }
+ for (int i=0; i < numLocMemUnits; ++i) {
+ if (!vrfToLocalMemPipeBus[i].rdy())
+ return false;
+ }
+ if (!aluPipe[simdId].rdy()) {
+ return false;
+ }
+
+ for (int i_wf = 0; i_wf < shader->n_wf; ++i_wf){
+ if (wfList[simdId][i_wf]->status != Wavefront::S_STOPPED) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/**
+ * send a general request to the LDS
+ * make sure to look at the return value here as your request might be
+ * NACK'd and returning false means that you have to have some backup plan
+ */
+bool
+ComputeUnit::sendToLds(GPUDynInstPtr gpuDynInst)
+{
+ // this is just a request to carry the GPUDynInstPtr
+ // back and forth
+ Request *newRequest = new Request();
+ newRequest->setPaddr(0x0);
+
+ // ReadReq is not evaluted by the LDS but the Packet ctor requires this
+ PacketPtr newPacket = new Packet(newRequest, MemCmd::ReadReq);
+
+ // This is the SenderState needed upon return
+ newPacket->senderState = new LDSPort::SenderState(gpuDynInst);
+
+ return ldsPort->sendTimingReq(newPacket);
+}
+
+/**
+ * get the result of packets sent to the LDS when they return
+ */
+bool
+ComputeUnit::LDSPort::recvTimingResp(PacketPtr packet)
+{
+ const ComputeUnit::LDSPort::SenderState *senderState =
+ dynamic_cast<ComputeUnit::LDSPort::SenderState *>(packet->senderState);
+
+ fatal_if(!senderState, "did not get the right sort of sender state");
+
+ GPUDynInstPtr gpuDynInst = senderState->getMemInst();
+
+ delete packet->senderState;
+ delete packet->req;
+ delete packet;
+
+ computeUnit->localMemoryPipe.getLMRespFIFO().push(gpuDynInst);
+ return true;
+}
+
+/**
+ * attempt to send this packet, either the port is already stalled, the request
+ * is nack'd and must stall or the request goes through
+ * when a request cannot be sent, add it to the retries queue
+ */
+bool
+ComputeUnit::LDSPort::sendTimingReq(PacketPtr pkt)
+{
+ ComputeUnit::LDSPort::SenderState *sender_state =
+ dynamic_cast<ComputeUnit::LDSPort::SenderState*>(pkt->senderState);
+ fatal_if(!sender_state, "packet without a valid sender state");
+
+ GPUDynInstPtr gpuDynInst M5_VAR_USED = sender_state->getMemInst();
+
+ if (isStalled()) {
+ fatal_if(retries.empty(), "must have retries waiting to be stalled");
+
+ retries.push(pkt);
+
+ DPRINTF(GPUPort, "CU%d: WF[%d][%d]: LDS send failed!\n",
+ computeUnit->cu_id, gpuDynInst->simdId,
+ gpuDynInst->wfSlotId);
+ return false;
+ } else if (!MasterPort::sendTimingReq(pkt)) {
+ // need to stall the LDS port until a recvReqRetry() is received
+ // this indicates that there is more space
+ stallPort();
+ retries.push(pkt);
+
+ DPRINTF(GPUPort, "CU%d: WF[%d][%d]: addr %#x lds req failed!\n",
+ computeUnit->cu_id, gpuDynInst->simdId,
+ gpuDynInst->wfSlotId, pkt->req->getPaddr());
+ return false;
+ } else {
+ DPRINTF(GPUPort, "CU%d: WF[%d][%d]: addr %#x lds req sent!\n",
+ computeUnit->cu_id, gpuDynInst->simdId,
+ gpuDynInst->wfSlotId, pkt->req->getPaddr());
+ return true;
+ }
+}
+
+/**
+ * the bus is telling the port that there is now space so retrying stalled
+ * requests should work now
+ * this allows the port to have a request be nack'd and then have the receiver
+ * say when there is space, rather than simply retrying the send every cycle
+ */
+void
+ComputeUnit::LDSPort::recvReqRetry()
+{
+ auto queueSize = retries.size();
+
+ DPRINTF(GPUPort, "CU%d: LDSPort recvReqRetry - %d pending requests\n",
+ computeUnit->cu_id, queueSize);
+
+ fatal_if(queueSize < 1,
+ "why was there a recvReqRetry() with no pending reqs?");
+ fatal_if(!isStalled(),
+ "recvReqRetry() happened when the port was not stalled");
+
+ unstallPort();
+
+ while (!retries.empty()) {
+ PacketPtr packet = retries.front();
+
+ DPRINTF(GPUPort, "CU%d: retrying LDS send\n", computeUnit->cu_id);
+
+ if (!MasterPort::sendTimingReq(packet)) {
+ // Stall port
+ stallPort();
+ DPRINTF(GPUPort, ": LDS send failed again\n");
+ break;
+ } else {
+ DPRINTF(GPUTLB, ": LDS send successful\n");
+ retries.pop();
+ }
+ }
+}