summaryrefslogtreecommitdiff
path: root/src/learning_gem5/part2/simple_cache.hh
diff options
context:
space:
mode:
Diffstat (limited to 'src/learning_gem5/part2/simple_cache.hh')
-rw-r--r--src/learning_gem5/part2/simple_cache.hh339
1 files changed, 339 insertions, 0 deletions
diff --git a/src/learning_gem5/part2/simple_cache.hh b/src/learning_gem5/part2/simple_cache.hh
new file mode 100644
index 000000000..7d53ffed0
--- /dev/null
+++ b/src/learning_gem5/part2/simple_cache.hh
@@ -0,0 +1,339 @@
+/*
+ * Copyright (c) 2017 Jason Lowe-Power
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * Authors: Jason Lowe-Power
+ */
+
+#ifndef __LEARNING_GEM5_SIMPLE_CACHE_SIMPLE_CACHE_HH__
+#define __LEARNING_GEM5_SIMPLE_CACHE_SIMPLE_CACHE_HH__
+
+#include <unordered_map>
+
+#include "mem/mem_object.hh"
+#include "params/SimpleCache.hh"
+
+/**
+ * A very simple cache object. Has a fully-associative data store with random
+ * replacement.
+ * This cache is fully blocking (not non-blocking). Only a single request can
+ * be outstanding at a time.
+ * This cache is a writeback cache.
+ */
+class SimpleCache : public MemObject
+{
+ private:
+
+ /**
+ * Port on the CPU-side that receives requests.
+ * Mostly just forwards requests to the cache (owner)
+ */
+ class CPUSidePort : public SlavePort
+ {
+ private:
+ /// Since this is a vector port, need to know what number this one is
+ int id;
+
+ /// The object that owns this object (SimpleCache)
+ SimpleCache *owner;
+
+ /// True if the port needs to send a retry req.
+ bool needRetry;
+
+ /// If we tried to send a packet and it was blocked, store it here
+ PacketPtr blockedPacket;
+
+ public:
+ /**
+ * Constructor. Just calls the superclass constructor.
+ */
+ CPUSidePort(const std::string& name, int id, SimpleCache *owner) :
+ SlavePort(name, owner), id(id), owner(owner), needRetry(false),
+ blockedPacket(nullptr)
+ { }
+
+ /**
+ * Send a packet across this port. This is called by the owner and
+ * all of the flow control is hanled in this function.
+ * This is a convenience function for the SimpleCache to send pkts.
+ *
+ * @param packet to send.
+ */
+ void sendPacket(PacketPtr pkt);
+
+ /**
+ * Get a list of the non-overlapping address ranges the owner is
+ * responsible for. All slave ports must override this function
+ * and return a populated list with at least one item.
+ *
+ * @return a list of ranges responded to
+ */
+ AddrRangeList getAddrRanges() const override;
+
+ /**
+ * Send a retry to the peer port only if it is needed. This is called
+ * from the SimpleCache whenever it is unblocked.
+ */
+ void trySendRetry();
+
+ protected:
+ /**
+ * Receive an atomic request packet from the master port.
+ * No need to implement in this simple cache.
+ */
+ Tick recvAtomic(PacketPtr pkt) override
+ { panic("recvAtomic unimpl."); }
+
+ /**
+ * Receive a functional request packet from the master port.
+ * Performs a "debug" access updating/reading the data in place.
+ *
+ * @param packet the requestor sent.
+ */
+ void recvFunctional(PacketPtr pkt) override;
+
+ /**
+ * Receive a timing request from the master port.
+ *
+ * @param the packet that the requestor sent
+ * @return whether this object can consume to packet. If false, we
+ * will call sendRetry() when we can try to receive this
+ * request again.
+ */
+ bool recvTimingReq(PacketPtr pkt) override;
+
+ /**
+ * Called by the master port if sendTimingResp was called on this
+ * slave port (causing recvTimingResp to be called on the master
+ * port) and was unsuccesful.
+ */
+ void recvRespRetry() override;
+ };
+
+ /**
+ * Port on the memory-side that receives responses.
+ * Mostly just forwards requests to the cache (owner)
+ */
+ class MemSidePort : public MasterPort
+ {
+ private:
+ /// The object that owns this object (SimpleCache)
+ SimpleCache *owner;
+
+ /// If we tried to send a packet and it was blocked, store it here
+ PacketPtr blockedPacket;
+
+ public:
+ /**
+ * Constructor. Just calls the superclass constructor.
+ */
+ MemSidePort(const std::string& name, SimpleCache *owner) :
+ MasterPort(name, owner), owner(owner), blockedPacket(nullptr)
+ { }
+
+ /**
+ * Send a packet across this port. This is called by the owner and
+ * all of the flow control is hanled in this function.
+ * This is a convenience function for the SimpleCache to send pkts.
+ *
+ * @param packet to send.
+ */
+ void sendPacket(PacketPtr pkt);
+
+ protected:
+ /**
+ * Receive a timing response from the slave port.
+ */
+ bool recvTimingResp(PacketPtr pkt) override;
+
+ /**
+ * Called by the slave port if sendTimingReq was called on this
+ * master port (causing recvTimingReq to be called on the slave
+ * port) and was unsuccesful.
+ */
+ void recvReqRetry() override;
+
+ /**
+ * Called to receive an address range change from the peer slave
+ * port. The default implementation ignores the change and does
+ * nothing. Override this function in a derived class if the owner
+ * needs to be aware of the address ranges, e.g. in an
+ * interconnect component like a bus.
+ */
+ void recvRangeChange() override;
+ };
+
+ /**
+ * Handle the request from the CPU side. Called from the CPU port
+ * on a timing request.
+ *
+ * @param requesting packet
+ * @param id of the port to send the response
+ * @return true if we can handle the request this cycle, false if the
+ * requestor needs to retry later
+ */
+ bool handleRequest(PacketPtr pkt, int port_id);
+
+ /**
+ * Handle the respone from the memory side. Called from the memory port
+ * on a timing response.
+ *
+ * @param responding packet
+ * @return true if we can handle the response this cycle, false if the
+ * responder needs to retry later
+ */
+ bool handleResponse(PacketPtr pkt);
+
+ /**
+ * Send the packet to the CPU side.
+ * This function assumes the pkt is already a response packet and forwards
+ * it to the correct port. This function also unblocks this object and
+ * cleans up the whole request.
+ *
+ * @param the packet to send to the cpu side
+ */
+ void sendResponse(PacketPtr pkt);
+
+ /**
+ * Handle a packet functionally. Update the data on a write and get the
+ * data on a read. Called from CPU port on a recv functional.
+ *
+ * @param packet to functionally handle
+ */
+ void handleFunctional(PacketPtr pkt);
+
+ /**
+ * Access the cache for a timing access. This is called after the cache
+ * access latency has already elapsed.
+ */
+ void accessTiming(PacketPtr pkt);
+
+ /**
+ * This is where we actually update / read from the cache. This function
+ * is executed on both timing and functional accesses.
+ *
+ * @return true if a hit, false otherwise
+ */
+ bool accessFunctional(PacketPtr pkt);
+
+ /**
+ * Insert a block into the cache. If there is no room left in the cache,
+ * then this function evicts a random entry t make room for the new block.
+ *
+ * @param packet with the data (and address) to insert into the cache
+ */
+ void insert(PacketPtr pkt);
+
+ /**
+ * Return the address ranges this cache is responsible for. Just use the
+ * same as the next upper level of the hierarchy.
+ *
+ * @return the address ranges this cache is responsible for
+ */
+ AddrRangeList getAddrRanges() const;
+
+ /**
+ * Tell the CPU side to ask for our memory ranges.
+ */
+ void sendRangeChange() const;
+
+ /// Latency to check the cache. Number of cycles for both hit and miss
+ const Cycles latency;
+
+ /// The block size for the cache
+ const unsigned blockSize;
+
+ /// Number of blocks in the cache (size of cache / block size)
+ const unsigned capacity;
+
+ /// Instantiation of the CPU-side port
+ std::vector<CPUSidePort> cpuPorts;
+
+ /// Instantiation of the memory-side port
+ MemSidePort memPort;
+
+ /// True if this cache is currently blocked waiting for a response.
+ bool blocked;
+
+ /// Packet that we are currently handling. Used for upgrading to larger
+ /// cache line sizes
+ PacketPtr originalPacket;
+
+ /// The port to send the response when we recieve it back
+ int waitingPortId;
+
+ /// For tracking the miss latency
+ Tick missTime;
+
+ /// An incredibly simple cache storage. Maps block addresses to data
+ std::unordered_map<Addr, uint8_t*> cacheStore;
+
+ /// Cache statistics
+ Stats::Scalar hits;
+ Stats::Scalar misses;
+ Stats::Histogram missLatency;
+ Stats::Formula hitRatio;
+
+ public:
+
+ /** constructor
+ */
+ SimpleCache(SimpleCacheParams *params);
+
+ /**
+ * Get a master port with a given name and index. This is used at
+ * binding time and returns a reference to a protocol-agnostic
+ * base master port.
+ *
+ * @param if_name Port name
+ * @param idx Index in the case of a VectorPort
+ *
+ * @return A reference to the given port
+ */
+ virtual BaseMasterPort& getMasterPort(const std::string& if_name,
+ PortID idx = InvalidPortID) override;
+
+ /**
+ * Get a slave port with a given name and index. This is used at
+ * binding time and returns a reference to a protocol-agnostic
+ * base master port.
+ *
+ * @param if_name Port name
+ * @param idx Index in the case of a VectorPort
+ *
+ * @return A reference to the given port
+ */
+ virtual BaseSlavePort& getSlavePort(const std::string& if_name,
+ PortID idx = InvalidPortID) override;
+
+ /**
+ * Register the stats
+ */
+ void regStats() override;
+};
+
+
+#endif // __LEARNING_GEM5_SIMPLE_CACHE_SIMPLE_CACHE_HH__