summaryrefslogtreecommitdiff
path: root/src/learning_gem5/part3/MSI-cache.sm
diff options
context:
space:
mode:
Diffstat (limited to 'src/learning_gem5/part3/MSI-cache.sm')
-rw-r--r--src/learning_gem5/part3/MSI-cache.sm853
1 files changed, 853 insertions, 0 deletions
diff --git a/src/learning_gem5/part3/MSI-cache.sm b/src/learning_gem5/part3/MSI-cache.sm
new file mode 100644
index 000000000..3847b53a8
--- /dev/null
+++ b/src/learning_gem5/part3/MSI-cache.sm
@@ -0,0 +1,853 @@
+/*
+ * Copyright (c) 2017 Jason Lowe-Power
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/**
+ * This file contains a simple example MSI protocol.
+ *
+ * The protocol in this file is based off of the MSI protocol found in
+ * A Primer on Memory Consistency and Cache Coherence
+ * Daniel J. Sorin, Mark D. Hill, and David A. Wood
+ * Synthesis Lectures on Computer Architecture 2011 6:3, 141-149
+ *
+ * Table 8.1 contains the transitions and actions found in this file and
+ * section 8.2.4 explains the protocol in detail.
+ *
+ * See Learning gem5 Part 3: Ruby for more details.
+ *
+ * Authors: Jason Lowe-Power
+ */
+
+/// Declare a machine with type L1Cache.
+machine(MachineType:L1Cache, "MSI cache")
+ : Sequencer *sequencer; // Incoming request from CPU come from this
+ CacheMemory *cacheMemory; // This stores the data and cache states
+ bool send_evictions; // Needed to support O3 CPU and mwait
+
+ // Other declarations
+ // Message buffers are required to send and receive data from the Ruby
+ // network. The from/to and request/response can be confusing!
+ // Virtual networks are needed to prevent deadlock (e.g., it is bad if a
+ // response gets stuck behind a stalled request). In this protocol, we are
+ // using three virtual networks. The highest priority is responses,
+ // followed by forwarded requests, then requests have the lowest priority.
+
+ // Requests *to* the directory
+ MessageBuffer * requestToDir, network="To", virtual_network="0",
+ vnet_type="request";
+ // Responses *to* the directory or other caches
+ MessageBuffer * responseToDirOrSibling, network="To", virtual_network="2",
+ vnet_type="response";
+
+ // Requests *from* the directory for fwds, invs, and put acks.
+ MessageBuffer * forwardFromDir, network="From", virtual_network="1",
+ vnet_type="forward";
+ // Responses *from* directory and other caches for this cache's reqs.
+ MessageBuffer * responseFromDirOrSibling, network="From",
+ virtual_network="2", vnet_type="response";
+
+ // This is all of the incoming requests from the core via the sequencer
+ MessageBuffer * mandatoryQueue;
+{
+ // Declare the states that this cache will use. These are both stable
+ // states (no underscore) and transient states (with underscore). Letters
+ // after the underscores are superscript in Sorin et al.
+ // Underscores and "desc" are used when generating HTML tables.
+ // Access permissions are used for functional accesses. For reads, the
+ // functional access reads *all* of the blocks with a matching address that
+ // have read-only or read-write permission. For functional writes, all
+ // blocks are updated with new data if they have busy, read-only, or
+ // read-write permission.
+ state_declaration(State, desc="Cache states") {
+ I, AccessPermission:Invalid,
+ desc="Not present/Invalid";
+
+ // States moving out of I
+ IS_D, AccessPermission:Invalid,
+ desc="Invalid, moving to S, waiting for data";
+ IM_AD, AccessPermission:Invalid,
+ desc="Invalid, moving to M, waiting for acks and data";
+ IM_A, AccessPermission:Busy,
+ desc="Invalid, moving to M, waiting for acks";
+
+ S, AccessPermission:Read_Only,
+ desc="Shared. Read-only, other caches may have the block";
+
+ // States moving out of S
+ SM_AD, AccessPermission:Read_Only,
+ desc="Shared, moving to M, waiting for acks and 'data'";
+ SM_A, AccessPermission:Read_Only,
+ desc="Shared, moving to M, waiting for acks";
+
+ M, AccessPermission:Read_Write,
+ desc="Modified. Read & write permissions. Owner of block";
+
+ // States moving to Invalid
+ MI_A, AccessPermission:Busy,
+ desc="Was modified, moving to I, waiting for put ack";
+ SI_A, AccessPermission:Busy,
+ desc="Was shared, moving to I, waiting for put ack";
+ II_A, AccessPermission:Invalid,
+ desc="Sent valid data before receiving put ack. ";
+ //"Waiting for put ack.";
+ }
+
+ // Events that can be triggered on incoming messages. These are the events
+ // that will trigger transitions
+ enumeration(Event, desc="Cache events") {
+ // From the processor/sequencer/mandatory queue
+ Load, desc="Load from processor";
+ Store, desc="Store from processor";
+
+ // Internal event (only triggered from processor requests)
+ Replacement, desc="Triggered when block is chosen as victim";
+
+ // Forwarded reqeust from other cache via dir on the forward network
+ FwdGetS, desc="Directory sent us a request to satisfy GetS. ";
+ //"We must have the block in M to respond to this.";
+ FwdGetM, desc="Directory sent us a request to satisfy GetM. ";
+ //"We must have the block in M to respond to this.";
+ Inv, desc="Invalidate from the directory.";
+ PutAck, desc="Response from directory after we issue a put. ";
+ //"This must be on the fwd network to avoid";
+ //"deadlock.";
+
+ // Responses from directory
+ DataDirNoAcks, desc="Data from directory (acks = 0)";
+ DataDirAcks, desc="Data from directory (acks > 0)";
+
+ // Responses from other caches
+ DataOwner, desc="Data from owner";
+ InvAck, desc="Invalidation ack from other cache after Inv";
+
+ // Special internally triggered event to simplify implementation
+ LastInvAck, desc="Triggered after the last ack is received";
+ }
+
+ // A structure for the cache entry. This stores the cache data and state
+ // as defined above. You can put any other information here you like.
+ // The AbstractCacheEntry is defined in
+ // src/mem/ruby/slic_interface/AbstractCacheEntry.hh
+ // If you want to use any of the functions in the abstract entry declare
+ // them here.
+ structure(Entry, desc="Cache entry", interface="AbstractCacheEntry") {
+ State CacheState, desc="cache state";
+ DataBlock DataBlk, desc="Data in the block";
+ }
+
+ // TBE is the "transaction buffer entry". This stores information needed
+ // during transient states. This is *like* an MSHR. It functions as an MSHR
+ // in this protocol, but the entry is also allocated for other uses.
+ structure(TBE, desc="Entry for transient requests") {
+ State TBEState, desc="State of block";
+ DataBlock DataBlk, desc="Data for the block. Needed for MI_A";
+ int AcksOutstanding, default=0, desc="Number of acks left to receive.";
+ }
+
+ // Table of TBE entries. This is defined externally in
+ // src/mem/ruby/structures/TBETable.hh. It is templatized on the TBE
+ // structure defined above.
+ structure(TBETable, external="yes") {
+ TBE lookup(Addr);
+ void allocate(Addr);
+ void deallocate(Addr);
+ bool isPresent(Addr);
+ }
+
+ /*************************************************************************/
+ // Some declarations of member functions and member variables.
+
+ // The TBE table for this machine. It is templatized under the covers.
+ // NOTE: SLICC mangles names with the machine type. Thus, the TBE declared
+ // above will be L1Cache_TBE in C++.
+ // We also have to pass through a parameter to the machine to the TBETable.
+ TBETable TBEs, template="<L1Cache_TBE>", constructor="m_number_of_TBEs";
+
+ // Declare all of the functions of the AbstractController that we may use
+ // in this file.
+ // Functions from clocked object
+ Tick clockEdge();
+
+ // Functions we must use to set things up for the transitions to execute
+ // correctly.
+ // These next set/unset functions are used to populate the implicit
+ // variables used in actions. This is required when a transition has
+ // multiple actions.
+ void set_cache_entry(AbstractCacheEntry a);
+ void unset_cache_entry();
+ void set_tbe(TBE b);
+ void unset_tbe();
+
+ // Given an address and machine type this queries the network to check
+ // where it should be sent. In a real implementation, this might be fixed
+ // at design time, but this function gives us flexibility at runtime.
+ // For example, if you have multiple memory channels, this function will
+ // tell you which addresses to send to which memory controller.
+ MachineID mapAddressToMachine(Addr addr, MachineType mtype);
+
+ // Convience function to look up the cache entry.
+ // Needs a pointer so it will be a reference and can be updated in actions
+ Entry getCacheEntry(Addr address), return_by_pointer="yes" {
+ return static_cast(Entry, "pointer", cacheMemory.lookup(address));
+ }
+
+ /*************************************************************************/
+ // Functions that we need to define/override to use our specific structures
+ // in this implementation.
+
+ // Required function for getting the current state of the block.
+ // This is called from the transition to know which transition to execute
+ State getState(TBE tbe, Entry cache_entry, Addr addr) {
+ // The TBE state will override the state in cache memory, if valid
+ if (is_valid(tbe)) { return tbe.TBEState; }
+ // Next, if the cache entry is valid, it holds the state
+ else if (is_valid(cache_entry)) { return cache_entry.CacheState; }
+ // If the block isn't present, then it's state must be I.
+ else { return State:I; }
+ }
+
+
+ // Required function for setting the current state of the block.
+ // This is called from the transition to set the ending state.
+ // Needs to set both the TBE and the cache entry state.
+ // This is also called when transitioning to I so it's possible the TBE and/
+ // or the cache_entry is invalid.
+ void setState(TBE tbe, Entry cache_entry, Addr addr, State state) {
+ if (is_valid(tbe)) { tbe.TBEState := state; }
+ if (is_valid(cache_entry)) { cache_entry.CacheState := state; }
+ }
+
+ // Required function to override. Used for functional access to know where
+ // the valid data is. NOTE: L1Cache_State_to_permission is automatically
+ // created based on the access permissions in the state_declaration.
+ // This is mangled by both the MachineType and the name of the state
+ // declaration ("State" in this case)
+ AccessPermission getAccessPermission(Addr addr) {
+ TBE tbe := TBEs[addr];
+ if(is_valid(tbe)) {
+ return L1Cache_State_to_permission(tbe.TBEState);
+ }
+
+ Entry cache_entry := getCacheEntry(addr);
+ if(is_valid(cache_entry)) {
+ return L1Cache_State_to_permission(cache_entry.CacheState);
+ }
+
+ return AccessPermission:NotPresent;
+ }
+
+ // Required function to override. Like above function, but sets thte state.
+ void setAccessPermission(Entry cache_entry, Addr addr, State state) {
+ if (is_valid(cache_entry)) {
+ cache_entry.changePermission(L1Cache_State_to_permission(state));
+ }
+ }
+
+ // Required function to override for functionally reading/writing data.
+ // NOTE: testAndRead/Write defined in src/mem/ruby/slicc_interface/Util.hh
+ void functionalRead(Addr addr, Packet *pkt) {
+ TBE tbe := TBEs[addr];
+ if(is_valid(tbe)) {
+ testAndRead(addr, tbe.DataBlk, pkt);
+ } else {
+ testAndRead(addr, getCacheEntry(addr).DataBlk, pkt);
+ }
+ }
+
+ int functionalWrite(Addr addr, Packet *pkt) {
+ TBE tbe := TBEs[addr];
+ if(is_valid(tbe)) {
+ if (testAndWrite(addr, tbe.DataBlk, pkt)) {
+ return 1;
+ } else {
+ return 0;
+ }
+ } else {
+ if (testAndWrite(addr, getCacheEntry(addr).DataBlk, pkt)) {
+ return 1;
+ } else {
+ return 0;
+ }
+ }
+ }
+
+ /*************************************************************************/
+ // Input/output network definitions
+
+ // Output ports. This defines the message types that will flow ocross the
+ // output buffers as defined above. These must be "to" networks.
+ // "request_out" is the name we'll use later to send requests.
+ // "RequestMsg" is the message type we will send (see MSI-msg.sm)
+ // "requestToDir" is the name of the MessageBuffer declared above that
+ // we are sending these requests out of.
+ out_port(request_out, RequestMsg, requestToDir);
+ out_port(response_out, ResponseMsg, responseToDirOrSibling);
+
+ // Input ports. The order here is/(can be) important. The code in each
+ // in_port is executed in the order specified in this file (or by the rank
+ // parameter). Thus, we must sort these based on the network priority.
+ // In this cache, the order is responses from other caches, forwards, then
+ // requests from the CPU.
+
+ // Like the out_port above
+ // "response_in" is the name we'll use later when we refer to this port
+ // "ResponseMsg" is the type of message we expect on this port
+ // "responseFromDirOrSibling" is the name of the buffer this in_port is
+ // connected to for responses from other caches and the directory.
+ in_port(response_in, ResponseMsg, responseFromDirOrSibling) {
+ // NOTE: You have to check to make sure the message buffer has a valid
+ // message at the head. The code in in_port is executed either way.
+ if (response_in.isReady(clockEdge())) {
+ // Peek is a special function. Any code inside a peek statement has
+ // a special variable declared and populated: in_msg. This contains
+ // the message (of type RequestMsg in this case) at the head.
+ // "forward_in" is the port we want to peek into
+ // "RequestMsg" is the type of message we expect.
+ peek(response_in, ResponseMsg) {
+ // Grab the entry and tbe if they exist.
+ Entry cache_entry := getCacheEntry(in_msg.addr);
+ TBE tbe := TBEs[in_msg.addr];
+ // The TBE better exist since this is a response and we need to
+ // be able to check the remaining acks.
+ assert(is_valid(tbe));
+
+ // If it's from the directory...
+ if (machineIDToMachineType(in_msg.Sender) ==
+ MachineType:Directory) {
+ if (in_msg.Type != CoherenceResponseType:Data) {
+ error("Directory should only reply with data");
+ }
+ // Take the in_msg acks and add (sub) the Acks we've seen.
+ // The InvAck will decrement the acks we're waiting for in
+ // tbe.AcksOutstanding to below 0 if we haven't gotten the
+ // dir resp yet. So, if this is 0 we don't need to wait
+ assert(in_msg.Acks + tbe.AcksOutstanding >= 0);
+ if (in_msg.Acks + tbe.AcksOutstanding == 0) {
+ trigger(Event:DataDirNoAcks, in_msg.addr, cache_entry,
+ tbe);
+ } else {
+ // If it's not 0, then we need to wait for more acks
+ // and we'll trigger LastInvAck later.
+ trigger(Event:DataDirAcks, in_msg.addr, cache_entry,
+ tbe);
+ }
+ } else {
+ // This is from another cache.
+ if (in_msg.Type == CoherenceResponseType:Data) {
+ trigger(Event:DataOwner, in_msg.addr, cache_entry,
+ tbe);
+ } else if (in_msg.Type == CoherenceResponseType:InvAck) {
+ DPRINTF(RubySlicc, "Got inv ack. %d left\n",
+ tbe.AcksOutstanding);
+ if (tbe.AcksOutstanding == 1) {
+ // If there is exactly one ack remaining then we
+ // know it is the last ack.
+ trigger(Event:LastInvAck, in_msg.addr, cache_entry,
+ tbe);
+ } else {
+ trigger(Event:InvAck, in_msg.addr, cache_entry,
+ tbe);
+ }
+ } else {
+ error("Unexpected response from other cache");
+ }
+ }
+ }
+ }
+ }
+
+ // Forward requests for other caches.
+ in_port(forward_in, RequestMsg, forwardFromDir) {
+ if (forward_in.isReady(clockEdge())) {
+ peek(forward_in, RequestMsg) {
+ // Grab the entry and tbe if they exist.
+ Entry cache_entry := getCacheEntry(in_msg.addr);
+ TBE tbe := TBEs[in_msg.addr];
+
+ if (in_msg.Type == CoherenceRequestType:GetS) {
+ // This is a special function that will trigger a
+ // transition (as defined below). It *must* have these
+ // parameters.
+ trigger(Event:FwdGetS, in_msg.addr, cache_entry, tbe);
+ } else if (in_msg.Type == CoherenceRequestType:GetM) {
+ trigger(Event:FwdGetM, in_msg.addr, cache_entry, tbe);
+ } else if (in_msg.Type == CoherenceRequestType:Inv) {
+ trigger(Event:Inv, in_msg.addr, cache_entry, tbe);
+ } else if (in_msg.Type == CoherenceRequestType:PutAck) {
+ trigger(Event:PutAck, in_msg.addr, cache_entry, tbe);
+ } else {
+ error("Unexpected forward message!");
+ }
+ }
+ }
+ }
+
+ // The "mandatory queue" is the port/queue from the CPU or other processor.
+ // This is *always* a RubyRequest
+ in_port(mandatory_in, RubyRequest, mandatoryQueue) {
+ if (mandatory_in.isReady(clockEdge())) {
+ // Block all requests if there is already an outstanding request
+ // that has the same line address. This is unblocked when we
+ // finally respond to the request.
+ peek(mandatory_in, RubyRequest, block_on="LineAddress") {
+ // NOTE: Using LineAddress here to promote smaller requests to
+ // full cache block requests.
+ Entry cache_entry := getCacheEntry(in_msg.LineAddress);
+ TBE tbe := TBEs[in_msg.LineAddress];
+ // If there isn't a matching entry and no room in the cache,
+ // then we need to find a victim.
+ if (is_invalid(cache_entry) &&
+ cacheMemory.cacheAvail(in_msg.LineAddress) == false ) {
+ // make room for the block
+ // The "cacheProbe" function looks at the cache set for
+ // the address and queries the replacement protocol for
+ // the address to replace. It returns the address to repl.
+ Addr addr := cacheMemory.cacheProbe(in_msg.LineAddress);
+ Entry victim_entry := getCacheEntry(addr);
+ TBE victim_tbe := TBEs[addr];
+ trigger(Event:Replacement, addr, victim_entry, victim_tbe);
+ } else {
+ if (in_msg.Type == RubyRequestType:LD ||
+ in_msg.Type == RubyRequestType:IFETCH) {
+ trigger(Event:Load, in_msg.LineAddress, cache_entry,
+ tbe);
+ } else if (in_msg.Type == RubyRequestType:ST) {
+ trigger(Event:Store, in_msg.LineAddress, cache_entry,
+ tbe);
+ } else {
+ error("Unexpected type from processor");
+ }
+ }
+ }
+ }
+ }
+
+
+ /*************************************************************************/
+ // Below are all of the actions that might be taken on a transition.
+
+ // Each actions has a name, a shorthand, and a description.
+ // The shorthand is used when generating the HTML tables for the protocol.
+ // "\" in the shorthand cause that letter to be bold. Underscores insert a
+ // space, ^ makes the rest of the letters superscript.
+ // The description is also shown in the HTML table when clicked
+
+ // The first set of actions are things we will do to interact with the
+ // rest of the system. Things like sending requests/responses.
+
+ // Action blocks define a number of implicit variables that are useful.
+ // These variables come straight from the trigger() call in the in_port
+ // blocks.
+ // address: The address passed in the trigger (usually the in_msg.addr,
+ // though it can be different. E.g., on a replacement it is the
+ // victim address).
+ // cache_entry: The cache entry passed in the trigger call
+ // tbe: The TBE passed in the trigger call
+ action(sendGetS, 'gS', desc="Send GetS to the directory") {
+ // The syntax for enqueue is a lot like peek. Instead of populating
+ // in_msg, enqueue has an out_msg reference. Whatever you set on out_msg
+ // is sent through the out port specified. "request_out" is the port
+ // we're sending the message out of "RequestMsg" is the type of message
+ // we're sending "1" is the latency (in cycles) the port waits before
+ // sending the message.
+ enqueue(request_out, RequestMsg, 1) {
+ out_msg.addr := address;
+ // This type is defined in MSI-msg.sm for this protocol.
+ out_msg.Type := CoherenceRequestType:GetS;
+ // The destination may change depending on the address striping
+ // across different directories, so query the network.
+ out_msg.Destination.add(mapAddressToMachine(address,
+ MachineType:Directory));
+ // See mem/protocol/RubySlicc_Exports.sm for possible sizes.
+ out_msg.MessageSize := MessageSizeType:Control;
+ // Set that the reqeustor is this machine so we get the response.
+ out_msg.Requestor := machineID;
+ }
+ }
+
+ action(sendGetM, "gM", desc="Send GetM to the directory") {
+ enqueue(request_out, RequestMsg, 1) {
+ out_msg.addr := address;
+ out_msg.Type := CoherenceRequestType:GetM;
+ out_msg.Destination.add(mapAddressToMachine(address,
+ MachineType:Directory));
+ out_msg.MessageSize := MessageSizeType:Control;
+ out_msg.Requestor := machineID;
+ }
+ }
+
+ // NOTE: Clean evict. Required to keep the directory state up-to-date
+ action(sendPutS, "pS", desc="Send PutS to the directory") {
+ enqueue(request_out, RequestMsg, 1) {
+ out_msg.addr := address;
+ out_msg.Type := CoherenceRequestType:PutS;
+ out_msg.Destination.add(mapAddressToMachine(address,
+ MachineType:Directory));
+ out_msg.MessageSize := MessageSizeType:Control;
+ out_msg.Requestor := machineID;
+ }
+ }
+
+ action(sendPutM, "pM", desc="Send putM+data to the directory") {
+ enqueue(request_out, RequestMsg, 1) {
+ out_msg.addr := address;
+ out_msg.Type := CoherenceRequestType:PutM;
+ out_msg.Destination.add(mapAddressToMachine(address,
+ MachineType:Directory));
+ out_msg.DataBlk := cache_entry.DataBlk;
+ out_msg.MessageSize := MessageSizeType:Data;
+ out_msg.Requestor := machineID;
+ }
+ }
+
+ action(sendCacheDataToReq, "cdR", desc="Send cache data to requestor") {
+ // We have to peek into the request to see who to send to.
+ // If we are in both the peek and the enqueue block then we have access
+ // to both in_msg and out_msg.
+ assert(is_valid(cache_entry));
+ peek(forward_in, RequestMsg) {
+ enqueue(response_out, ResponseMsg, 1) {
+ out_msg.addr := address;
+ out_msg.Type := CoherenceResponseType:Data;
+ out_msg.Destination.add(in_msg.Requestor);
+ out_msg.DataBlk := cache_entry.DataBlk;
+ out_msg.MessageSize := MessageSizeType:Data;
+ out_msg.Sender := machineID;
+ }
+ }
+ }
+
+ action(sendCacheDataToDir, "cdD", desc="Send the cache data to the dir") {
+ enqueue(response_out, ResponseMsg, 1) {
+ out_msg.addr := address;
+ out_msg.Type := CoherenceResponseType:Data;
+ out_msg.Destination.add(mapAddressToMachine(address,
+ MachineType:Directory));
+ out_msg.DataBlk := cache_entry.DataBlk;
+ out_msg.MessageSize := MessageSizeType:Data;
+ out_msg.Sender := machineID;
+ }
+ }
+
+ action(sendInvAcktoReq, "iaR", desc="Send inv-ack to requestor") {
+ peek(forward_in, RequestMsg) {
+ enqueue(response_out, ResponseMsg, 1) {
+ out_msg.addr := address;
+ out_msg.Type := CoherenceResponseType:InvAck;
+ out_msg.Destination.add(in_msg.Requestor);
+ out_msg.DataBlk := cache_entry.DataBlk;
+ out_msg.MessageSize := MessageSizeType:Control;
+ out_msg.Sender := machineID;
+ }
+ }
+ }
+
+ action(decrAcks, "da", desc="Decrement the number of acks") {
+ assert(is_valid(tbe));
+ tbe.AcksOutstanding := tbe.AcksOutstanding - 1;
+ // This annotates the protocol trace
+ APPEND_TRANSITION_COMMENT("Acks: ");
+ APPEND_TRANSITION_COMMENT(tbe.AcksOutstanding);
+ }
+
+ action(storeAcks, "sa", desc="Store the needed acks to the TBE") {
+ assert(is_valid(tbe));
+ peek(response_in, ResponseMsg) {
+ tbe.AcksOutstanding := in_msg.Acks + tbe.AcksOutstanding;
+ }
+ assert(tbe.AcksOutstanding > 0);
+ }
+
+ // Responses to CPU requests (e.g., hits and store acks)
+
+ action(loadHit, "Lh", desc="Load hit") {
+ assert(is_valid(cache_entry));
+ // Set this entry as the most recently used for the replacement policy
+ cacheMemory.setMRU(cache_entry);
+ // Send the data back to the sequencer/CPU. NOTE: False means it was
+ // not an "external hit", but hit in this local cache.
+ sequencer.readCallback(address, cache_entry.DataBlk, false);
+ }
+
+ action(externalLoadHit, "xLh", desc="External load hit (was a miss)") {
+ assert(is_valid(cache_entry));
+ peek(response_in, ResponseMsg) {
+ cacheMemory.setMRU(cache_entry);
+ // Forward the type of machine that responded to this request
+ // E.g., another cache or the directory. This is used for tracking
+ // statistics.
+ sequencer.readCallback(address, cache_entry.DataBlk, true,
+ machineIDToMachineType(in_msg.Sender));
+ }
+ }
+
+ action(storeHit, "Sh", desc="Store hit") {
+ assert(is_valid(cache_entry));
+ cacheMemory.setMRU(cache_entry);
+ // The same as the read callback above.
+ sequencer.writeCallback(address, cache_entry.DataBlk, false);
+ }
+
+ action(externalStoreHit, "xSh", desc="External store hit (was a miss)") {
+ assert(is_valid(cache_entry));
+ peek(response_in, ResponseMsg) {
+ cacheMemory.setMRU(cache_entry);
+ sequencer.writeCallback(address, cache_entry.DataBlk, true,
+ // Note: this could be the last ack.
+ machineIDToMachineType(in_msg.Sender));
+ }
+ }
+
+ action(forwardEviction, "e", desc="sends eviction notification to CPU") {
+ if (send_evictions) {
+ sequencer.evictionCallback(address);
+ }
+ }
+
+ // Cache management actions
+
+ action(allocateCacheBlock, "a", desc="Allocate a cache block") {
+ assert(is_invalid(cache_entry));
+ assert(cacheMemory.cacheAvail(address));
+ // Create a new entry and update cache_entry to the new entry
+ set_cache_entry(cacheMemory.allocate(address, new Entry));
+ }
+
+ action(deallocateCacheBlock, "d", desc="Deallocate a cache block") {
+ assert(is_valid(cache_entry));
+ cacheMemory.deallocate(address);
+ // clear the cache_entry variable (now it's invalid)
+ unset_cache_entry();
+ }
+
+ action(writeDataToCache, "wd", desc="Write data to the cache") {
+ peek(response_in, ResponseMsg) {
+ assert(is_valid(cache_entry));
+ cache_entry.DataBlk := in_msg.DataBlk;
+ }
+ }
+
+ action(allocateTBE, "aT", desc="Allocate TBE") {
+ assert(is_invalid(tbe));
+ TBEs.allocate(address);
+ // this updates the tbe variable for other actions
+ set_tbe(TBEs[address]);
+ }
+
+ action(deallocateTBE, "dT", desc="Deallocate TBE") {
+ assert(is_valid(tbe));
+ TBEs.deallocate(address);
+ // this makes the tbe varible invalid
+ unset_tbe();
+ }
+
+ // Queue management actions
+
+ action(popMandatoryQueue, "pQ", desc="Pop the mandatory queue") {
+ mandatory_in.dequeue(clockEdge());
+ }
+
+ action(popResponseQueue, "pR", desc="Pop the response queue") {
+ response_in.dequeue(clockEdge());
+ }
+
+ action(popForwardQueue, "pF", desc="Pop the forward queue") {
+ forward_in.dequeue(clockEdge());
+ }
+
+ // Stalling actions
+
+ action(stall, "z", desc="Stall the incoming request") {
+ // Do nothing. However, the transition must have some action to be
+ // valid which is why this is needed.
+ // NOTE: There are other more complicated but higher performing stalls
+ // in Ruby like recycle() or stall_and_wait.
+ // z_stall stalls everything in the queue behind this request.
+ }
+
+
+ /*************************************************************************/
+ // These are the transition definition. These are simply each cell in the
+ // table from Sorin et al. These are mostly in upper-left to bottom-right
+ // order
+
+ // Each transtiion has (up to) 3 parameters, the current state, the
+ // triggering event and the final state. Thus, the below transition reads
+ // "Move from state I on a Load event to state IS_D". Below are other
+ // examples of transition statements.
+ // Within the transition statement is a set of action to take during the
+ // transition. These actions are executed atomically (i.e., all or nothing)
+ transition(I, Load, IS_D) {
+ // Make sure there is room in the cache to put the block whenever the
+ // miss returns. Otherwise we could deadlock.
+ allocateCacheBlock;
+ // We may need to track acks for this block and only the TBE holds an
+ // ack count. Thus, we need to allocate both a TBE and cache block.
+ allocateTBE;
+ // Actually send the request to the directory
+ sendGetS;
+ // Since we have handled this request on the mandatory queue, we can pop
+ popMandatoryQueue;
+ }
+
+ transition(I, Store, IM_AD) {
+ allocateCacheBlock;
+ allocateTBE;
+ sendGetM;
+ popMandatoryQueue;
+ }
+
+ // You can use {} to specify multiple states or events for which the
+ // transition applies. For instance, below. If we are in IS_D, then on any
+ // of the following Events (Load, Store, Replacement, Inv) we should stall
+ // When there is no third parameter to transition, it means that we want
+ // to stay in the initial state.
+ transition(IS_D, {Load, Store, Replacement, Inv}) {
+ stall;
+ }
+
+ // Similarly, on either DataDirNoAcks or DataOwner we should go to S
+ transition(IS_D, {DataDirNoAcks, DataOwner}, S) {
+ writeDataToCache;
+ deallocateTBE;
+ externalLoadHit;
+ popResponseQueue;
+ }
+
+ transition({IM_AD, IM_A}, {Load, Store, Replacement, FwdGetS, FwdGetM}) {
+ stall;
+ }
+
+ transition({IM_AD, SM_AD}, {DataDirNoAcks, DataOwner}, M) {
+ writeDataToCache;
+ deallocateTBE;
+ externalStoreHit;
+ popResponseQueue;
+ }
+
+ transition(IM_AD, DataDirAcks, IM_A) {
+ writeDataToCache;
+ storeAcks;
+ popResponseQueue;
+ }
+
+ transition({IM_AD, IM_A, SM_AD, SM_A}, InvAck) {
+ decrAcks;
+ popResponseQueue;
+ }
+
+ transition({IM_A, SM_A}, LastInvAck, M) {
+ deallocateTBE;
+ externalStoreHit;
+ popResponseQueue;
+ }
+
+ transition({S, SM_AD, SM_A, M}, Load) {
+ loadHit;
+ popMandatoryQueue;
+ }
+
+ transition(S, Store, SM_AD) {
+ allocateTBE;
+ sendGetM;
+ popMandatoryQueue;
+ }
+
+ transition(S, Replacement, SI_A) {
+ sendPutS;
+ }
+
+ transition(S, Inv, I) {
+ sendInvAcktoReq;
+ forwardEviction;
+ deallocateCacheBlock;
+ popForwardQueue;
+ }
+
+ transition({SM_AD, SM_A}, {Store, Replacement, FwdGetS, FwdGetM}) {
+ stall;
+ }
+
+ transition(SM_AD, Inv, IM_AD) {
+ sendInvAcktoReq;
+ popForwardQueue;
+ }
+
+ transition(SM_AD, DataDirAcks, SM_A) {
+ writeDataToCache;
+ storeAcks;
+ popResponseQueue;
+ }
+
+ transition(M, Store) {
+ storeHit;
+ forwardEviction;
+ popMandatoryQueue;
+ }
+
+ transition(M, Replacement, MI_A) {
+ sendPutM;
+ }
+
+ transition(M, FwdGetS, S) {
+ sendCacheDataToReq;
+ sendCacheDataToDir;
+ popForwardQueue;
+ }
+
+ transition(M, FwdGetM, I) {
+ sendCacheDataToReq;
+ deallocateCacheBlock;
+ popForwardQueue;
+ }
+
+ transition({MI_A, SI_A, II_A}, {Load, Store, Replacement}) {
+ stall;
+ }
+
+ transition(MI_A, FwdGetS, SI_A) {
+ sendCacheDataToReq;
+ sendCacheDataToDir;
+ popForwardQueue;
+ }
+
+ transition(MI_A, FwdGetM, II_A) {
+ sendCacheDataToReq;
+ popForwardQueue;
+ }
+
+ transition({MI_A, SI_A, II_A}, PutAck, I) {
+ deallocateCacheBlock;
+ popForwardQueue;
+ }
+
+ transition(SI_A, Inv, II_A) {
+ sendInvAcktoReq;
+ popForwardQueue;
+ }
+
+}