summaryrefslogtreecommitdiff
path: root/src/mem/cache/cache.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/mem/cache/cache.cc')
-rw-r--r--src/mem/cache/cache.cc2483
1 files changed, 2475 insertions, 8 deletions
diff --git a/src/mem/cache/cache.cc b/src/mem/cache/cache.cc
index 2bf5a260c..2426a0636 100644
--- a/src/mem/cache/cache.cc
+++ b/src/mem/cache/cache.cc
@@ -1,5 +1,18 @@
/*
- * Copyright (c) 2004-2005 The Regents of The University of Michigan
+ * Copyright (c) 2010-2015 ARM Limited
+ * All rights reserved.
+ *
+ * The license below extends only to copyright in the software and shall
+ * not be construed as granting a license to any other intellectual
+ * property including but not limited to intellectual property relating
+ * to a hardware implementation of the functionality of the software
+ * licensed hereunder. You may use the software subject to the license
+ * terms below provided that you ensure that this notice is replicated
+ * unmodified and in its entirety in all distributions of the software,
+ * modified or unmodified, in source code or in binary form.
+ *
+ * Copyright (c) 2002-2005 The Regents of The University of Michigan
+ * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@@ -26,18 +39,2472 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Erik Hallnor
+ * Dave Greene
+ * Nathan Binkert
* Steve Reinhardt
- * Lisa Hsu
- * Kevin Lim
+ * Ron Dreslinski
+ * Andreas Sandberg
*/
/**
* @file
- * Cache template instantiations.
+ * Cache definitions.
*/
-#include "mem/cache/tags/fa_lru.hh"
-#include "mem/cache/tags/lru.hh"
-#include "mem/cache/tags/random_repl.hh"
-#include "mem/cache/cache_impl.hh"
+#include "mem/cache/cache.hh"
+
+#include "base/misc.hh"
+#include "base/types.hh"
+#include "debug/Cache.hh"
+#include "debug/CachePort.hh"
+#include "debug/CacheTags.hh"
+#include "mem/cache/blk.hh"
+#include "mem/cache/mshr.hh"
+#include "mem/cache/prefetch/base.hh"
+#include "sim/sim_exit.hh"
+
+Cache::Cache(const Params *p)
+ : BaseCache(p),
+ tags(p->tags),
+ prefetcher(p->prefetcher),
+ doFastWrites(true),
+ prefetchOnAccess(p->prefetch_on_access)
+{
+ tempBlock = new CacheBlk();
+ tempBlock->data = new uint8_t[blkSize];
+
+ cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
+ "CpuSidePort");
+ memSidePort = new MemSidePort(p->name + ".mem_side", this,
+ "MemSidePort");
+
+ tags->setCache(this);
+ if (prefetcher)
+ prefetcher->setCache(this);
+}
+
+Cache::~Cache()
+{
+ delete [] tempBlock->data;
+ delete tempBlock;
+
+ delete cpuSidePort;
+ delete memSidePort;
+}
+
+void
+Cache::regStats()
+{
+ BaseCache::regStats();
+}
+
+void
+Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
+{
+ assert(pkt->isRequest());
+
+ uint64_t overwrite_val;
+ bool overwrite_mem;
+ uint64_t condition_val64;
+ uint32_t condition_val32;
+
+ int offset = tags->extractBlkOffset(pkt->getAddr());
+ uint8_t *blk_data = blk->data + offset;
+
+ assert(sizeof(uint64_t) >= pkt->getSize());
+
+ overwrite_mem = true;
+ // keep a copy of our possible write value, and copy what is at the
+ // memory address into the packet
+ pkt->writeData((uint8_t *)&overwrite_val);
+ pkt->setData(blk_data);
+
+ if (pkt->req->isCondSwap()) {
+ if (pkt->getSize() == sizeof(uint64_t)) {
+ condition_val64 = pkt->req->getExtraData();
+ overwrite_mem = !std::memcmp(&condition_val64, blk_data,
+ sizeof(uint64_t));
+ } else if (pkt->getSize() == sizeof(uint32_t)) {
+ condition_val32 = (uint32_t)pkt->req->getExtraData();
+ overwrite_mem = !std::memcmp(&condition_val32, blk_data,
+ sizeof(uint32_t));
+ } else
+ panic("Invalid size for conditional read/write\n");
+ }
+
+ if (overwrite_mem) {
+ std::memcpy(blk_data, &overwrite_val, pkt->getSize());
+ blk->status |= BlkDirty;
+ }
+}
+
+
+void
+Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk,
+ bool deferred_response, bool pending_downgrade)
+{
+ assert(pkt->isRequest());
+
+ assert(blk && blk->isValid());
+ // Occasionally this is not true... if we are a lower-level cache
+ // satisfying a string of Read and ReadEx requests from
+ // upper-level caches, a Read will mark the block as shared but we
+ // can satisfy a following ReadEx anyway since we can rely on the
+ // Read requester(s) to have buffered the ReadEx snoop and to
+ // invalidate their blocks after receiving them.
+ // assert(!pkt->needsExclusive() || blk->isWritable());
+ assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
+
+ // Check RMW operations first since both isRead() and
+ // isWrite() will be true for them
+ if (pkt->cmd == MemCmd::SwapReq) {
+ cmpAndSwap(blk, pkt);
+ } else if (pkt->isWrite()) {
+ assert(blk->isWritable());
+ // Write or WriteLine at the first cache with block in Exclusive
+ if (blk->checkWrite(pkt)) {
+ pkt->writeDataToBlock(blk->data, blkSize);
+ }
+ // Always mark the line as dirty even if we are a failed
+ // StoreCond so we supply data to any snoops that have
+ // appended themselves to this cache before knowing the store
+ // will fail.
+ blk->status |= BlkDirty;
+ DPRINTF(Cache, "%s for %s addr %#llx size %d (write)\n", __func__,
+ pkt->cmdString(), pkt->getAddr(), pkt->getSize());
+ } else if (pkt->isRead()) {
+ if (pkt->isLLSC()) {
+ blk->trackLoadLocked(pkt);
+ }
+ pkt->setDataFromBlock(blk->data, blkSize);
+ // determine if this read is from a (coherent) cache, or not
+ // by looking at the command type; we could potentially add a
+ // packet attribute such as 'FromCache' to make this check a
+ // bit cleaner
+ if (pkt->cmd == MemCmd::ReadExReq ||
+ pkt->cmd == MemCmd::ReadSharedReq ||
+ pkt->cmd == MemCmd::ReadCleanReq ||
+ pkt->cmd == MemCmd::SCUpgradeFailReq) {
+ assert(pkt->getSize() == blkSize);
+ // special handling for coherent block requests from
+ // upper-level caches
+ if (pkt->needsExclusive()) {
+ // sanity check
+ assert(pkt->cmd == MemCmd::ReadExReq ||
+ pkt->cmd == MemCmd::SCUpgradeFailReq);
+
+ // if we have a dirty copy, make sure the recipient
+ // keeps it marked dirty
+ if (blk->isDirty()) {
+ pkt->assertMemInhibit();
+ }
+ // on ReadExReq we give up our copy unconditionally
+ if (blk != tempBlock)
+ tags->invalidate(blk);
+ blk->invalidate();
+ } else if (blk->isWritable() && !pending_downgrade &&
+ !pkt->sharedAsserted() &&
+ pkt->cmd != MemCmd::ReadCleanReq) {
+ // we can give the requester an exclusive copy (by not
+ // asserting shared line) on a read request if:
+ // - we have an exclusive copy at this level (& below)
+ // - we don't have a pending snoop from below
+ // signaling another read request
+ // - no other cache above has a copy (otherwise it
+ // would have asseretd shared line on request)
+ // - we are not satisfying an instruction fetch (this
+ // prevents dirty data in the i-cache)
+
+ if (blk->isDirty()) {
+ // special considerations if we're owner:
+ if (!deferred_response) {
+ // if we are responding immediately and can
+ // signal that we're transferring ownership
+ // along with exclusivity, do so
+ pkt->assertMemInhibit();
+ blk->status &= ~BlkDirty;
+ } else {
+ // if we're responding after our own miss,
+ // there's a window where the recipient didn't
+ // know it was getting ownership and may not
+ // have responded to snoops correctly, so we
+ // can't pass off ownership *or* exclusivity
+ pkt->assertShared();
+ }
+ }
+ } else {
+ // otherwise only respond with a shared copy
+ pkt->assertShared();
+ }
+ }
+ } else {
+ // Upgrade or Invalidate, since we have it Exclusively (E or
+ // M), we ack then invalidate.
+ assert(pkt->isUpgrade() || pkt->isInvalidate());
+ assert(blk != tempBlock);
+ tags->invalidate(blk);
+ blk->invalidate();
+ DPRINTF(Cache, "%s for %s addr %#llx size %d (invalidation)\n",
+ __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
+ }
+}
+
+
+/////////////////////////////////////////////////////
+//
+// MSHR helper functions
+//
+/////////////////////////////////////////////////////
+
+
+void
+Cache::markInService(MSHR *mshr, bool pending_dirty_resp)
+{
+ markInServiceInternal(mshr, pending_dirty_resp);
+}
+
+
+void
+Cache::squash(int threadNum)
+{
+ bool unblock = false;
+ BlockedCause cause = NUM_BLOCKED_CAUSES;
+
+ if (noTargetMSHR && noTargetMSHR->threadNum == threadNum) {
+ noTargetMSHR = NULL;
+ unblock = true;
+ cause = Blocked_NoTargets;
+ }
+ if (mshrQueue.isFull()) {
+ unblock = true;
+ cause = Blocked_NoMSHRs;
+ }
+ mshrQueue.squash(threadNum);
+ if (unblock && !mshrQueue.isFull()) {
+ clearBlocked(cause);
+ }
+}
+
+/////////////////////////////////////////////////////
+//
+// Access path: requests coming in from the CPU side
+//
+/////////////////////////////////////////////////////
+
+bool
+Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
+ PacketList &writebacks)
+{
+ // sanity check
+ assert(pkt->isRequest());
+
+ chatty_assert(!(isReadOnly && pkt->isWrite()),
+ "Should never see a write in a read-only cache %s\n",
+ name());
+
+ DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
+ pkt->cmdString(), pkt->getAddr(), pkt->getSize());
+
+ if (pkt->req->isUncacheable()) {
+ DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
+ pkt->req->isInstFetch() ? " (ifetch)" : "",
+ pkt->getAddr());
+
+ if (pkt->req->isClearLL())
+ tags->clearLocks();
+
+ // flush and invalidate any existing block
+ CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
+ if (old_blk && old_blk->isValid()) {
+ if (old_blk->isDirty())
+ writebacks.push_back(writebackBlk(old_blk));
+ else
+ writebacks.push_back(cleanEvictBlk(old_blk));
+ tags->invalidate(old_blk);
+ old_blk->invalidate();
+ }
+
+ blk = NULL;
+ // lookupLatency is the latency in case the request is uncacheable.
+ lat = lookupLatency;
+ return false;
+ }
+
+ ContextID id = pkt->req->hasContextId() ?
+ pkt->req->contextId() : InvalidContextID;
+ // Here lat is the value passed as parameter to accessBlock() function
+ // that can modify its value.
+ blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
+
+ DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
+ pkt->req->isInstFetch() ? " (ifetch)" : "",
+ pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
+ blk ? "hit " + blk->print() : "miss");
+
+
+ if (pkt->evictingBlock()) {
+ // We check for presence of block in above caches before issuing
+ // Writeback or CleanEvict to write buffer. Therefore the only
+ // possible cases can be of a CleanEvict packet coming from above
+ // encountering a Writeback generated in this cache peer cache and
+ // waiting in the write buffer. Cases of upper level peer caches
+ // generating CleanEvict and Writeback or simply CleanEvict and
+ // CleanEvict almost simultaneously will be caught by snoops sent out
+ // by crossbar.
+ std::vector<MSHR *> outgoing;
+ if (writeBuffer.findMatches(pkt->getAddr(), pkt->isSecure(),
+ outgoing)) {
+ assert(outgoing.size() == 1);
+ PacketPtr wbPkt = outgoing[0]->getTarget()->pkt;
+ assert(pkt->cmd == MemCmd::CleanEvict &&
+ wbPkt->cmd == MemCmd::Writeback);
+ // As the CleanEvict is coming from above, it would have snooped
+ // into other peer caches of the same level while traversing the
+ // crossbar. If a copy of the block had been found, the CleanEvict
+ // would have been deleted in the crossbar. Now that the
+ // CleanEvict is here we can be sure none of the other upper level
+ // caches connected to this cache have the block, so we can clear
+ // the BLOCK_CACHED flag in the Writeback if set and discard the
+ // CleanEvict by returning true.
+ wbPkt->clearBlockCached();
+ return true;
+ }
+ }
+
+ // Writeback handling is special case. We can write the block into
+ // the cache without having a writeable copy (or any copy at all).
+ if (pkt->cmd == MemCmd::Writeback) {
+ assert(blkSize == pkt->getSize());
+ if (blk == NULL) {
+ // need to do a replacement
+ blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
+ if (blk == NULL) {
+ // no replaceable block available: give up, fwd to next level.
+ incMissCount(pkt);
+ return false;
+ }
+ tags->insertBlock(pkt, blk);
+
+ blk->status = (BlkValid | BlkReadable);
+ if (pkt->isSecure()) {
+ blk->status |= BlkSecure;
+ }
+ }
+ blk->status |= BlkDirty;
+ // if shared is not asserted we got the writeback in modified
+ // state, if it is asserted we are in the owned state
+ if (!pkt->sharedAsserted()) {
+ blk->status |= BlkWritable;
+ }
+ // nothing else to do; writeback doesn't expect response
+ assert(!pkt->needsResponse());
+ std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
+ DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
+ incHitCount(pkt);
+ return true;
+ } else if (pkt->cmd == MemCmd::CleanEvict) {
+ if (blk != NULL) {
+ // Found the block in the tags, need to stop CleanEvict from
+ // propagating further down the hierarchy. Returning true will
+ // treat the CleanEvict like a satisfied write request and delete
+ // it.
+ return true;
+ }
+ // We didn't find the block here, propagate the CleanEvict further
+ // down the memory hierarchy. Returning false will treat the CleanEvict
+ // like a Writeback which could not find a replaceable block so has to
+ // go to next level.
+ return false;
+ } else if ((blk != NULL) &&
+ (pkt->needsExclusive() ? blk->isWritable()
+ : blk->isReadable())) {
+ // OK to satisfy access
+ incHitCount(pkt);
+ satisfyCpuSideRequest(pkt, blk);
+ return true;
+ }
+
+ // Can't satisfy access normally... either no block (blk == NULL)
+ // or have block but need exclusive & only have shared.
+
+ incMissCount(pkt);
+
+ if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) {
+ // complete miss on store conditional... just give up now
+ pkt->req->setExtraData(0);
+ return true;
+ }
+
+ return false;
+}
+
+
+class ForwardResponseRecord : public Packet::SenderState
+{
+ public:
+
+ ForwardResponseRecord() {}
+};
+
+void
+Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
+{
+ while (!writebacks.empty()) {
+ PacketPtr wbPkt = writebacks.front();
+ // We use forwardLatency here because we are copying writebacks to
+ // write buffer. Call isCachedAbove for both Writebacks and
+ // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
+ // in Writebacks and discard CleanEvicts.
+ if (isCachedAbove(wbPkt)) {
+ if (wbPkt->cmd == MemCmd::CleanEvict) {
+ // Delete CleanEvict because cached copies exist above. The
+ // packet destructor will delete the request object because
+ // this is a non-snoop request packet which does not require a
+ // response.
+ delete wbPkt;
+ } else {
+ // Set BLOCK_CACHED flag in Writeback and send below, so that
+ // the Writeback does not reset the bit corresponding to this
+ // address in the snoop filter below.
+ wbPkt->setBlockCached();
+ allocateWriteBuffer(wbPkt, forward_time);
+ }
+ } else {
+ // If the block is not cached above, send packet below. Both
+ // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
+ // reset the bit corresponding to this address in the snoop filter
+ // below.
+ allocateWriteBuffer(wbPkt, forward_time);
+ }
+ writebacks.pop_front();
+ }
+}
+
+
+void
+Cache::recvTimingSnoopResp(PacketPtr pkt)
+{
+ DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
+ pkt->cmdString(), pkt->getAddr(), pkt->getSize());
+
+ assert(pkt->isResponse());
+
+ // must be cache-to-cache response from upper to lower level
+ ForwardResponseRecord *rec =
+ dynamic_cast<ForwardResponseRecord *>(pkt->senderState);
+ assert(!system->bypassCaches());
+
+ if (rec == NULL) {
+ // @todo What guarantee do we have that this HardPFResp is
+ // actually for this cache, and not a cache closer to the
+ // memory?
+ assert(pkt->cmd == MemCmd::HardPFResp);
+ // Check if it's a prefetch response and handle it. We shouldn't
+ // get any other kinds of responses without FRRs.
+ DPRINTF(Cache, "Got prefetch response from above for addr %#llx (%s)\n",
+ pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
+ recvTimingResp(pkt);
+ return;
+ }
+
+ pkt->popSenderState();
+ delete rec;
+ // forwardLatency is set here because there is a response from an
+ // upper level cache.
+ // To pay the delay that occurs if the packet comes from the bus,
+ // we charge also headerDelay.
+ Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
+ // Reset the timing of the packet.
+ pkt->headerDelay = pkt->payloadDelay = 0;
+ memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
+}
+
+void
+Cache::promoteWholeLineWrites(PacketPtr pkt)
+{
+ // Cache line clearing instructions
+ if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
+ (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
+ pkt->cmd = MemCmd::WriteLineReq;
+ DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
+ }
+}
+
+bool
+Cache::recvTimingReq(PacketPtr pkt)
+{
+ DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
+//@todo Add back in MemDebug Calls
+// MemDebug::cacheAccess(pkt);
+
+
+ /// @todo temporary hack to deal with memory corruption issue until
+ /// 4-phase transactions are complete
+ for (int x = 0; x < pendingDelete.size(); x++)
+ delete pendingDelete[x];
+ pendingDelete.clear();
+
+ assert(pkt->isRequest());
+
+ // Just forward the packet if caches are disabled.
+ if (system->bypassCaches()) {
+ // @todo This should really enqueue the packet rather
+ bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
+ assert(success);
+ return true;
+ }
+
+ promoteWholeLineWrites(pkt);
+
+ if (pkt->memInhibitAsserted()) {
+ // a cache above us (but not where the packet came from) is
+ // responding to the request
+ DPRINTF(Cache, "mem inhibited on addr %#llx (%s): not responding\n",
+ pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
+
+ // if the packet needs exclusive, and the cache that has
+ // promised to respond (setting the inhibit flag) is not
+ // providing exclusive (it is in O vs M state), we know that
+ // there may be other shared copies in the system; go out and
+ // invalidate them all
+ if (pkt->needsExclusive() && !pkt->isSupplyExclusive()) {
+ // create a downstream express snoop with cleared packet
+ // flags, there is no need to allocate any data as the
+ // packet is merely used to co-ordinate state transitions
+ Packet *snoop_pkt = new Packet(pkt, true, false);
+
+ // also reset the bus time that the original packet has
+ // not yet paid for
+ snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
+
+ // make this an instantaneous express snoop, and let the
+ // other caches in the system know that the packet is
+ // inhibited, because we have found the authorative copy
+ // (O) that will supply the right data
+ snoop_pkt->setExpressSnoop();
+ snoop_pkt->assertMemInhibit();
+
+ // this express snoop travels towards the memory, and at
+ // every crossbar it is snooped upwards thus reaching
+ // every cache in the system
+ bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
+ // express snoops always succeed
+ assert(success);
+
+ // main memory will delete the packet
+ }
+
+ /// @todo nominally we should just delete the packet here,
+ /// however, until 4-phase stuff we can't because sending
+ /// cache is still relying on it.
+ pendingDelete.push_back(pkt);
+
+ // no need to take any action in this particular cache as the
+ // caches along the path to memory are allowed to keep lines
+ // in a shared state, and a cache above us already committed
+ // to responding
+ return true;
+ }
+
+ // anything that is merely forwarded pays for the forward latency and
+ // the delay provided by the crossbar
+ Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
+
+ // We use lookupLatency here because it is used to specify the latency
+ // to access.
+ Cycles lat = lookupLatency;
+ CacheBlk *blk = NULL;
+ bool satisfied = false;
+ {
+ PacketList writebacks;
+ // Note that lat is passed by reference here. The function
+ // access() calls accessBlock() which can modify lat value.
+ satisfied = access(pkt, blk, lat, writebacks);
+
+ // copy writebacks to write buffer here to ensure they logically
+ // proceed anything happening below
+ doWritebacks(writebacks, forward_time);
+ }
+
+ // Here we charge the headerDelay that takes into account the latencies
+ // of the bus, if the packet comes from it.
+ // The latency charged it is just lat that is the value of lookupLatency
+ // modified by access() function, or if not just lookupLatency.
+ // In case of a hit we are neglecting response latency.
+ // In case of a miss we are neglecting forward latency.
+ Tick request_time = clockEdge(lat) + pkt->headerDelay;
+ // Here we reset the timing of the packet.
+ pkt->headerDelay = pkt->payloadDelay = 0;
+
+ // track time of availability of next prefetch, if any
+ Tick next_pf_time = MaxTick;
+
+ bool needsResponse = pkt->needsResponse();
+
+ if (satisfied) {
+ // should never be satisfying an uncacheable access as we
+ // flush and invalidate any existing block as part of the
+ // lookup
+ assert(!pkt->req->isUncacheable());
+
+ // hit (for all other request types)
+
+ if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
+ if (blk)
+ blk->status &= ~BlkHWPrefetched;
+
+ // Don't notify on SWPrefetch
+ if (!pkt->cmd.isSWPrefetch())
+ next_pf_time = prefetcher->notify(pkt);
+ }
+
+ if (needsResponse) {
+ pkt->makeTimingResponse();
+ // @todo: Make someone pay for this
+ pkt->headerDelay = pkt->payloadDelay = 0;
+
+ // In this case we are considering request_time that takes
+ // into account the delay of the xbar, if any, and just
+ // lat, neglecting responseLatency, modelling hit latency
+ // just as lookupLatency or or the value of lat overriden
+ // by access(), that calls accessBlock() function.
+ cpuSidePort->schedTimingResp(pkt, request_time);
+ } else {
+ /// @todo nominally we should just delete the packet here,
+ /// however, until 4-phase stuff we can't because sending cache is
+ /// still relying on it. If the block is found in access(),
+ /// CleanEvict and Writeback messages will be deleted here as
+ /// well.
+ pendingDelete.push_back(pkt);
+ }
+ } else {
+ // miss
+
+ Addr blk_addr = blockAlign(pkt->getAddr());
+
+ // ignore any existing MSHR if we are dealing with an
+ // uncacheable request
+ MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
+ mshrQueue.findMatch(blk_addr, pkt->isSecure());
+
+ // Software prefetch handling:
+ // To keep the core from waiting on data it won't look at
+ // anyway, send back a response with dummy data. Miss handling
+ // will continue asynchronously. Unfortunately, the core will
+ // insist upon freeing original Packet/Request, so we have to
+ // create a new pair with a different lifecycle. Note that this
+ // processing happens before any MSHR munging on the behalf of
+ // this request because this new Request will be the one stored
+ // into the MSHRs, not the original.
+ if (pkt->cmd.isSWPrefetch()) {
+ assert(needsResponse);
+ assert(pkt->req->hasPaddr());
+ assert(!pkt->req->isUncacheable());
+
+ // There's no reason to add a prefetch as an additional target
+ // to an existing MSHR. If an outstanding request is already
+ // in progress, there is nothing for the prefetch to do.
+ // If this is the case, we don't even create a request at all.
+ PacketPtr pf = nullptr;
+
+ if (!mshr) {
+ // copy the request and create a new SoftPFReq packet
+ RequestPtr req = new Request(pkt->req->getPaddr(),
+ pkt->req->getSize(),
+ pkt->req->getFlags(),
+ pkt->req->masterId());
+ pf = new Packet(req, pkt->cmd);
+ pf->allocate();
+ assert(pf->getAddr() == pkt->getAddr());
+ assert(pf->getSize() == pkt->getSize());
+ }
+
+ pkt->makeTimingResponse();
+ // for debugging, set all the bits in the response data
+ // (also keeps valgrind from complaining when debugging settings
+ // print out instruction results)
+ std::memset(pkt->getPtr<uint8_t>(), 0xFF, pkt->getSize());
+ // request_time is used here, taking into account lat and the delay
+ // charged if the packet comes from the xbar.
+ cpuSidePort->schedTimingResp(pkt, request_time);
+
+ // If an outstanding request is in progress (we found an
+ // MSHR) this is set to null
+ pkt = pf;
+ }
+
+ if (mshr) {
+ /// MSHR hit
+ /// @note writebacks will be checked in getNextMSHR()
+ /// for any conflicting requests to the same block
+
+ //@todo remove hw_pf here
+
+ // Coalesce unless it was a software prefetch (see above).
+ if (pkt) {
+ assert(pkt->cmd != MemCmd::Writeback);
+ // CleanEvicts corresponding to blocks which have outstanding
+ // requests in MSHRs can be deleted here.
+ if (pkt->cmd == MemCmd::CleanEvict) {
+ pendingDelete.push_back(pkt);
+ } else {
+ DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n",
+ __func__, pkt->cmdString(), pkt->getAddr(),
+ pkt->getSize());
+
+ assert(pkt->req->masterId() < system->maxMasters());
+ mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
+ if (mshr->threadNum != 0/*pkt->req->threadId()*/) {
+ mshr->threadNum = -1;
+ }
+ // We use forward_time here because it is the same
+ // considering new targets. We have multiple
+ // requests for the same address here. It
+ // specifies the latency to allocate an internal
+ // buffer and to schedule an event to the queued
+ // port and also takes into account the additional
+ // delay of the xbar.
+ mshr->allocateTarget(pkt, forward_time, order++);
+ if (mshr->getNumTargets() == numTarget) {
+ noTargetMSHR = mshr;
+ setBlocked(Blocked_NoTargets);
+ // need to be careful with this... if this mshr isn't
+ // ready yet (i.e. time > curTick()), we don't want to
+ // move it ahead of mshrs that are ready
+ // mshrQueue.moveToFront(mshr);
+ }
+ }
+ // We should call the prefetcher reguardless if the request is
+ // satisfied or not, reguardless if the request is in the MSHR or
+ // not. The request could be a ReadReq hit, but still not
+ // satisfied (potentially because of a prior write to the same
+ // cache line. So, even when not satisfied, tehre is an MSHR
+ // already allocated for this, we need to let the prefetcher know
+ // about the request
+ if (prefetcher) {
+ // Don't notify on SWPrefetch
+ if (!pkt->cmd.isSWPrefetch())
+ next_pf_time = prefetcher->notify(pkt);
+ }
+ }
+ } else {
+ // no MSHR
+ assert(pkt->req->masterId() < system->maxMasters());
+ if (pkt->req->isUncacheable()) {
+ mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
+ } else {
+ mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
+ }
+
+ if (pkt->evictingBlock() ||
+ (pkt->req->isUncacheable() && pkt->isWrite())) {
+ // We use forward_time here because there is an
+ // uncached memory write, forwarded to WriteBuffer.
+ allocateWriteBuffer(pkt, forward_time);
+ } else {
+ if (blk && blk->isValid()) {
+ // should have flushed and have no valid block
+ assert(!pkt->req->isUncacheable());
+
+ // If we have a write miss to a valid block, we
+ // need to mark the block non-readable. Otherwise
+ // if we allow reads while there's an outstanding
+ // write miss, the read could return stale data
+ // out of the cache block... a more aggressive
+ // system could detect the overlap (if any) and
+ // forward data out of the MSHRs, but we don't do
+ // that yet. Note that we do need to leave the
+ // block valid so that it stays in the cache, in
+ // case we get an upgrade response (and hence no
+ // new data) when the write miss completes.
+ // As long as CPUs do proper store/load forwarding
+ // internally, and have a sufficiently weak memory
+ // model, this is probably unnecessary, but at some
+ // point it must have seemed like we needed it...
+ assert(pkt->needsExclusive());
+ assert(!blk->isWritable());
+ blk->status &= ~BlkReadable;
+ }
+ // Here we are using forward_time, modelling the latency of
+ // a miss (outbound) just as forwardLatency, neglecting the
+ // lookupLatency component.
+ allocateMissBuffer(pkt, forward_time);
+ }
+
+ if (prefetcher) {
+ // Don't notify on SWPrefetch
+ if (!pkt->cmd.isSWPrefetch())
+ next_pf_time = prefetcher->notify(pkt);
+ }
+ }
+ }
+
+ if (next_pf_time != MaxTick)
+ schedMemSideSendEvent(next_pf_time);
+
+ return true;
+}
+
+
+// See comment in cache.hh.
+PacketPtr
+Cache::getBusPacket(PacketPtr cpu_pkt, CacheBlk *blk,
+ bool needsExclusive) const
+{
+ bool blkValid = blk && blk->isValid();
+
+ if (cpu_pkt->req->isUncacheable()) {
+ // note that at the point we see the uncacheable request we
+ // flush any block, but there could be an outstanding MSHR,
+ // and the cache could have filled again before we actually
+ // send out the forwarded uncacheable request (blk could thus
+ // be non-null)
+ return NULL;
+ }
+
+ if (!blkValid &&
+ (cpu_pkt->isUpgrade() ||
+ cpu_pkt->evictingBlock())) {
+ // Writebacks that weren't allocated in access() and upgrades
+ // from upper-level caches that missed completely just go
+ // through.
+ return NULL;
+ }
+
+ assert(cpu_pkt->needsResponse());
+
+ MemCmd cmd;
+ // @TODO make useUpgrades a parameter.
+ // Note that ownership protocols require upgrade, otherwise a
+ // write miss on a shared owned block will generate a ReadExcl,
+ // which will clobber the owned copy.
+ const bool useUpgrades = true;
+ if (blkValid && useUpgrades) {
+ // only reason to be here is that blk is shared
+ // (read-only) and we need exclusive
+ assert(needsExclusive);
+ assert(!blk->isWritable());
+ cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
+ } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
+ cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
+ // Even though this SC will fail, we still need to send out the
+ // request and get the data to supply it to other snoopers in the case
+ // where the determination the StoreCond fails is delayed due to
+ // all caches not being on the same local bus.
+ cmd = MemCmd::SCUpgradeFailReq;
+ } else if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
+ // forward as invalidate to all other caches, this gives us
+ // the line in exclusive state, and invalidates all other
+ // copies
+ cmd = MemCmd::InvalidateReq;
+ } else {
+ // block is invalid
+ cmd = needsExclusive ? MemCmd::ReadExReq :
+ (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
+ }
+ PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
+
+ // if there are sharers in the upper levels, pass that info downstream
+ if (cpu_pkt->sharedAsserted()) {
+ // note that cpu_pkt may have spent a considerable time in the
+ // MSHR queue and that the information could possibly be out
+ // of date, however, there is no harm in conservatively
+ // assuming the block is shared
+ pkt->assertShared();
+ DPRINTF(Cache, "%s passing shared from %s to %s addr %#llx size %d\n",
+ __func__, cpu_pkt->cmdString(), pkt->cmdString(),
+ pkt->getAddr(), pkt->getSize());
+ }
+
+ // the packet should be block aligned
+ assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
+
+ pkt->allocate();
+ DPRINTF(Cache, "%s created %s from %s for addr %#llx size %d\n",
+ __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
+ pkt->getSize());
+ return pkt;
+}
+
+
+Tick
+Cache::recvAtomic(PacketPtr pkt)
+{
+ // We are in atomic mode so we pay just for lookupLatency here.
+ Cycles lat = lookupLatency;
+ // @TODO: make this a parameter
+ bool last_level_cache = false;
+
+ // Forward the request if the system is in cache bypass mode.
+ if (system->bypassCaches())
+ return ticksToCycles(memSidePort->sendAtomic(pkt));
+
+ promoteWholeLineWrites(pkt);
+
+ if (pkt->memInhibitAsserted()) {
+ // have to invalidate ourselves and any lower caches even if
+ // upper cache will be responding
+ if (pkt->isInvalidate()) {
+ CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
+ if (blk && blk->isValid()) {
+ tags->invalidate(blk);
+ blk->invalidate();
+ DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx (%s):"
+ " invalidating\n",
+ pkt->cmdString(), pkt->getAddr(),
+ pkt->isSecure() ? "s" : "ns");
+ }
+ if (!last_level_cache) {
+ DPRINTF(Cache, "forwarding mem-inhibited %s on %#llx (%s)\n",
+ pkt->cmdString(), pkt->getAddr(),
+ pkt->isSecure() ? "s" : "ns");
+ lat += ticksToCycles(memSidePort->sendAtomic(pkt));
+ }
+ } else {
+ DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx: not responding\n",
+ pkt->cmdString(), pkt->getAddr());
+ }
+
+ return lat * clockPeriod();
+ }
+
+ // should assert here that there are no outstanding MSHRs or
+ // writebacks... that would mean that someone used an atomic
+ // access in timing mode
+
+ CacheBlk *blk = NULL;
+ PacketList writebacks;
+ bool satisfied = access(pkt, blk, lat, writebacks);
+
+ // handle writebacks resulting from the access here to ensure they
+ // logically proceed anything happening below
+ while (!writebacks.empty()){
+ PacketPtr wbPkt = writebacks.front();
+ memSidePort->sendAtomic(wbPkt);
+ writebacks.pop_front();
+ delete wbPkt;
+ }
+
+ if (!satisfied) {
+ // MISS
+
+ PacketPtr bus_pkt = getBusPacket(pkt, blk, pkt->needsExclusive());
+
+ bool is_forward = (bus_pkt == NULL);
+
+ if (is_forward) {
+ // just forwarding the same request to the next level
+ // no local cache operation involved
+ bus_pkt = pkt;
+ }
+
+ DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
+ bus_pkt->cmdString(), bus_pkt->getAddr(),
+ bus_pkt->isSecure() ? "s" : "ns");
+
+#if TRACING_ON
+ CacheBlk::State old_state = blk ? blk->status : 0;
+#endif
+
+ lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
+
+ // We are now dealing with the response handling
+ DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n",
+ bus_pkt->cmdString(), bus_pkt->getAddr(),
+ bus_pkt->isSecure() ? "s" : "ns",
+ old_state);
+
+ // If packet was a forward, the response (if any) is already
+ // in place in the bus_pkt == pkt structure, so we don't need
+ // to do anything. Otherwise, use the separate bus_pkt to
+ // generate response to pkt and then delete it.
+ if (!is_forward) {
+ if (pkt->needsResponse()) {
+ assert(bus_pkt->isResponse());
+ if (bus_pkt->isError()) {
+ pkt->makeAtomicResponse();
+ pkt->copyError(bus_pkt);
+ } else if (pkt->cmd == MemCmd::InvalidateReq) {
+ if (blk) {
+ // invalidate response to a cache that received
+ // an invalidate request
+ satisfyCpuSideRequest(pkt, blk);
+ }
+ } else if (pkt->cmd == MemCmd::WriteLineReq) {
+ // note the use of pkt, not bus_pkt here.
+
+ // write-line request to the cache that promoted
+ // the write to a whole line
+ blk = handleFill(pkt, blk, writebacks);
+ satisfyCpuSideRequest(pkt, blk);
+ } else if (bus_pkt->isRead() ||
+ bus_pkt->cmd == MemCmd::UpgradeResp) {
+ // we're updating cache state to allow us to
+ // satisfy the upstream request from the cache
+ blk = handleFill(bus_pkt, blk, writebacks);
+ satisfyCpuSideRequest(pkt, blk);
+ } else {
+ // we're satisfying the upstream request without
+ // modifying cache state, e.g., a write-through
+ pkt->makeAtomicResponse();
+ }
+ }
+ delete bus_pkt;
+ }
+ }
+
+ // Note that we don't invoke the prefetcher at all in atomic mode.
+ // It's not clear how to do it properly, particularly for
+ // prefetchers that aggressively generate prefetch candidates and
+ // rely on bandwidth contention to throttle them; these will tend
+ // to pollute the cache in atomic mode since there is no bandwidth
+ // contention. If we ever do want to enable prefetching in atomic
+ // mode, though, this is the place to do it... see timingAccess()
+ // for an example (though we'd want to issue the prefetch(es)
+ // immediately rather than calling requestMemSideBus() as we do
+ // there).
+
+ // Handle writebacks (from the response handling) if needed
+ while (!writebacks.empty()){
+ PacketPtr wbPkt = writebacks.front();
+ memSidePort->sendAtomic(wbPkt);
+ writebacks.pop_front();
+ delete wbPkt;
+ }
+
+ if (pkt->needsResponse()) {
+ pkt->makeAtomicResponse();
+ }
+
+ return lat * clockPeriod();
+}
+
+
+void
+Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
+{
+ if (system->bypassCaches()) {
+ // Packets from the memory side are snoop request and
+ // shouldn't happen in bypass mode.
+ assert(fromCpuSide);
+
+ // The cache should be flushed if we are in cache bypass mode,
+ // so we don't need to check if we need to update anything.
+ memSidePort->sendFunctional(pkt);
+ return;
+ }
+
+ Addr blk_addr = blockAlign(pkt->getAddr());
+ bool is_secure = pkt->isSecure();
+ CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
+ MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
+
+ pkt->pushLabel(name());
+
+ CacheBlkPrintWrapper cbpw(blk);
+
+ // Note that just because an L2/L3 has valid data doesn't mean an
+ // L1 doesn't have a more up-to-date modified copy that still
+ // needs to be found. As a result we always update the request if
+ // we have it, but only declare it satisfied if we are the owner.
+
+ // see if we have data at all (owned or otherwise)
+ bool have_data = blk && blk->isValid()
+ && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
+ blk->data);
+
+ // data we have is dirty if marked as such or if valid & ownership
+ // pending due to outstanding UpgradeReq
+ bool have_dirty =
+ have_data && (blk->isDirty() ||
+ (mshr && mshr->inService && mshr->isPendingDirty()));
+
+ bool done = have_dirty
+ || cpuSidePort->checkFunctional(pkt)
+ || mshrQueue.checkFunctional(pkt, blk_addr)
+ || writeBuffer.checkFunctional(pkt, blk_addr)
+ || memSidePort->checkFunctional(pkt);
+
+ DPRINTF(Cache, "functional %s %#llx (%s) %s%s%s\n",
+ pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
+ (blk && blk->isValid()) ? "valid " : "",
+ have_data ? "data " : "", done ? "done " : "");
+
+ // We're leaving the cache, so pop cache->name() label
+ pkt->popLabel();
+
+ if (done) {
+ pkt->makeResponse();
+ } else {
+ // if it came as a request from the CPU side then make sure it
+ // continues towards the memory side
+ if (fromCpuSide) {
+ memSidePort->sendFunctional(pkt);
+ } else if (forwardSnoops && cpuSidePort->isSnooping()) {
+ // if it came from the memory side, it must be a snoop request
+ // and we should only forward it if we are forwarding snoops
+ cpuSidePort->sendFunctionalSnoop(pkt);
+ }
+ }
+}
+
+
+/////////////////////////////////////////////////////
+//
+// Response handling: responses from the memory side
+//
+/////////////////////////////////////////////////////
+
+
+void
+Cache::recvTimingResp(PacketPtr pkt)
+{
+ assert(pkt->isResponse());
+
+ // all header delay should be paid for by the crossbar, unless
+ // this is a prefetch response from above
+ panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
+ "%s saw a non-zero packet delay\n", name());
+
+ MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
+ bool is_error = pkt->isError();
+
+ assert(mshr);
+
+ if (is_error) {
+ DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
+ "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
+ pkt->cmdString());
+ }
+
+ DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
+ pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
+ pkt->isSecure() ? "s" : "ns");
+
+ MSHRQueue *mq = mshr->queue;
+ bool wasFull = mq->isFull();
+
+ if (mshr == noTargetMSHR) {
+ // we always clear at least one target
+ clearBlocked(Blocked_NoTargets);
+ noTargetMSHR = NULL;
+ }
+
+ // Initial target is used just for stats
+ MSHR::Target *initial_tgt = mshr->getTarget();
+ CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
+ int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
+ Tick miss_latency = curTick() - initial_tgt->recvTime;
+ PacketList writebacks;
+ // We need forward_time here because we have a call of
+ // allocateWriteBuffer() that need this parameter to specify the
+ // time to request the bus. In this case we use forward latency
+ // because there is a writeback. We pay also here for headerDelay
+ // that is charged of bus latencies if the packet comes from the
+ // bus.
+ Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
+
+ if (pkt->req->isUncacheable()) {
+ assert(pkt->req->masterId() < system->maxMasters());
+ mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
+ miss_latency;
+ } else {
+ assert(pkt->req->masterId() < system->maxMasters());
+ mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
+ miss_latency;
+ }
+
+ bool is_fill = !mshr->isForward &&
+ (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
+
+ if (is_fill && !is_error) {
+ DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
+ pkt->getAddr());
+
+ // give mshr a chance to do some dirty work
+ mshr->handleFill(pkt, blk);
+
+ blk = handleFill(pkt, blk, writebacks);
+ assert(blk != NULL);
+ }
+
+ // allow invalidation responses originating from write-line
+ // requests to be discarded
+ bool discard_invalidate = false;
+
+ // First offset for critical word first calculations
+ int initial_offset = initial_tgt->pkt->getOffset(blkSize);
+
+ while (mshr->hasTargets()) {
+ MSHR::Target *target = mshr->getTarget();
+ Packet *tgt_pkt = target->pkt;
+
+ switch (target->source) {
+ case MSHR::Target::FromCPU:
+ Tick completion_time;
+ // Here we charge on completion_time the delay of the xbar if the
+ // packet comes from it, charged on headerDelay.
+ completion_time = pkt->headerDelay;
+
+ // Software prefetch handling for cache closest to core
+ if (tgt_pkt->cmd.isSWPrefetch()) {
+ // a software prefetch would have already been ack'd immediately
+ // with dummy data so the core would be able to retire it.
+ // this request completes right here, so we deallocate it.
+ delete tgt_pkt->req;
+ delete tgt_pkt;
+ break; // skip response
+ }
+
+ // unlike the other packet flows, where data is found in other
+ // caches or memory and brought back, write-line requests always
+ // have the data right away, so the above check for "is fill?"
+ // cannot actually be determined until examining the stored MSHR
+ // state. We "catch up" with that logic here, which is duplicated
+ // from above.
+ if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
+ assert(!is_error);
+
+ // NB: we use the original packet here and not the response!
+ mshr->handleFill(tgt_pkt, blk);
+ blk = handleFill(tgt_pkt, blk, writebacks);
+ assert(blk != NULL);
+
+ // treat as a fill, and discard the invalidation
+ // response
+ is_fill = true;
+ discard_invalidate = true;
+ }
+
+ if (is_fill) {
+ satisfyCpuSideRequest(tgt_pkt, blk,
+ true, mshr->hasPostDowngrade());
+
+ // How many bytes past the first request is this one
+ int transfer_offset =
+ tgt_pkt->getOffset(blkSize) - initial_offset;
+ if (transfer_offset < 0) {
+ transfer_offset += blkSize;
+ }
+
+ // If not critical word (offset) return payloadDelay.
+ // responseLatency is the latency of the return path
+ // from lower level caches/memory to an upper level cache or
+ // the core.
+ completion_time += clockEdge(responseLatency) +
+ (transfer_offset ? pkt->payloadDelay : 0);
+
+ assert(!tgt_pkt->req->isUncacheable());
+
+ assert(tgt_pkt->req->masterId() < system->maxMasters());
+ missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
+ completion_time - target->recvTime;
+ } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
+ // failed StoreCond upgrade
+ assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
+ tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
+ tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
+ // responseLatency is the latency of the return path
+ // from lower level caches/memory to an upper level cache or
+ // the core.
+ completion_time += clockEdge(responseLatency) +
+ pkt->payloadDelay;
+ tgt_pkt->req->setExtraData(0);
+ } else {
+ // not a cache fill, just forwarding response
+ // responseLatency is the latency of the return path
+ // from lower level cahces/memory to the core.
+ completion_time += clockEdge(responseLatency) +
+ pkt->payloadDelay;
+ if (pkt->isRead() && !is_error) {
+ // sanity check
+ assert(pkt->getAddr() == tgt_pkt->getAddr());
+ assert(pkt->getSize() >= tgt_pkt->getSize());
+
+ tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
+ }
+ }
+ tgt_pkt->makeTimingResponse();
+ // if this packet is an error copy that to the new packet
+ if (is_error)
+ tgt_pkt->copyError(pkt);
+ if (tgt_pkt->cmd == MemCmd::ReadResp &&
+ (pkt->isInvalidate() || mshr->hasPostInvalidate())) {
+ // If intermediate cache got ReadRespWithInvalidate,
+ // propagate that. Response should not have
+ // isInvalidate() set otherwise.
+ tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
+ DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
+ __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
+ }
+ // Reset the bus additional time as it is now accounted for
+ tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
+ cpuSidePort->schedTimingResp(tgt_pkt, completion_time);
+ break;
+
+ case MSHR::Target::FromPrefetcher:
+ assert(tgt_pkt->cmd == MemCmd::HardPFReq);
+ if (blk)
+ blk->status |= BlkHWPrefetched;
+ delete tgt_pkt->req;
+ delete tgt_pkt;
+ break;
+
+ case MSHR::Target::FromSnoop:
+ // I don't believe that a snoop can be in an error state
+ assert(!is_error);
+ // response to snoop request
+ DPRINTF(Cache, "processing deferred snoop...\n");
+ assert(!(pkt->isInvalidate() && !mshr->hasPostInvalidate()));
+ handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
+ break;
+
+ default:
+ panic("Illegal target->source enum %d\n", target->source);
+ }
+
+ mshr->popTarget();
+ }
+
+ if (blk && blk->isValid()) {
+ // an invalidate response stemming from a write line request
+ // should not invalidate the block, so check if the
+ // invalidation should be discarded
+ if ((pkt->isInvalidate() || mshr->hasPostInvalidate()) &&
+ !discard_invalidate) {
+ assert(blk != tempBlock);
+ tags->invalidate(blk);
+ blk->invalidate();
+ } else if (mshr->hasPostDowngrade()) {
+ blk->status &= ~BlkWritable;
+ }
+ }
+
+ if (mshr->promoteDeferredTargets()) {
+ // avoid later read getting stale data while write miss is
+ // outstanding.. see comment in timingAccess()
+ if (blk) {
+ blk->status &= ~BlkReadable;
+ }
+ mq = mshr->queue;
+ mq->markPending(mshr);
+ schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
+ } else {
+ mq->deallocate(mshr);
+ if (wasFull && !mq->isFull()) {
+ clearBlocked((BlockedCause)mq->index);
+ }
+
+ // Request the bus for a prefetch if this deallocation freed enough
+ // MSHRs for a prefetch to take place
+ if (prefetcher && mq == &mshrQueue && mshrQueue.canPrefetch()) {
+ Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
+ clockEdge());
+ if (next_pf_time != MaxTick)
+ schedMemSideSendEvent(next_pf_time);
+ }
+ }
+ // reset the xbar additional timinig as it is now accounted for
+ pkt->headerDelay = pkt->payloadDelay = 0;
+
+ // copy writebacks to write buffer
+ doWritebacks(writebacks, forward_time);
+
+ // if we used temp block, check to see if its valid and then clear it out
+ if (blk == tempBlock && tempBlock->isValid()) {
+ // We use forwardLatency here because we are copying
+ // Writebacks/CleanEvicts to write buffer. It specifies the latency to
+ // allocate an internal buffer and to schedule an event to the
+ // queued port.
+ if (blk->isDirty()) {
+ PacketPtr wbPkt = writebackBlk(blk);
+ allocateWriteBuffer(wbPkt, forward_time);
+ // Set BLOCK_CACHED flag if cached above.
+ if (isCachedAbove(wbPkt))
+ wbPkt->setBlockCached();
+ } else {
+ PacketPtr wcPkt = cleanEvictBlk(blk);
+ // Check to see if block is cached above. If not allocate
+ // write buffer
+ if (isCachedAbove(wcPkt))
+ delete wcPkt;
+ else
+ allocateWriteBuffer(wcPkt, forward_time);
+ }
+ blk->invalidate();
+ }
+
+ DPRINTF(Cache, "Leaving %s with %s for addr %#llx\n", __func__,
+ pkt->cmdString(), pkt->getAddr());
+ delete pkt;
+}
+
+PacketPtr
+Cache::writebackBlk(CacheBlk *blk)
+{
+ chatty_assert(!isReadOnly, "Writeback from read-only cache");
+ assert(blk && blk->isValid() && blk->isDirty());
+
+ writebacks[Request::wbMasterId]++;
+
+ Request *writebackReq =
+ new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
+ Request::wbMasterId);
+ if (blk->isSecure())
+ writebackReq->setFlags(Request::SECURE);
+
+ writebackReq->taskId(blk->task_id);
+ blk->task_id= ContextSwitchTaskId::Unknown;
+ blk->tickInserted = curTick();
+
+ PacketPtr writeback = new Packet(writebackReq, MemCmd::Writeback);
+ if (blk->isWritable()) {
+ // not asserting shared means we pass the block in modified
+ // state, mark our own block non-writeable
+ blk->status &= ~BlkWritable;
+ } else {
+ // we are in the owned state, tell the receiver
+ writeback->assertShared();
+ }
+
+ writeback->allocate();
+ std::memcpy(writeback->getPtr<uint8_t>(), blk->data, blkSize);
+
+ blk->status &= ~BlkDirty;
+ return writeback;
+}
+
+PacketPtr
+Cache::cleanEvictBlk(CacheBlk *blk)
+{
+ assert(blk && blk->isValid() && !blk->isDirty());
+ // Creating a zero sized write, a message to the snoop filter
+ Request *req =
+ new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
+ Request::wbMasterId);
+ if (blk->isSecure())
+ req->setFlags(Request::SECURE);
+
+ req->taskId(blk->task_id);
+ blk->task_id = ContextSwitchTaskId::Unknown;
+ blk->tickInserted = curTick();
+
+ PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
+ pkt->allocate();
+ DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
+ pkt->req->isInstFetch() ? " (ifetch)" : "",
+ pkt->getAddr());
+
+ return pkt;
+}
+
+void
+Cache::memWriteback()
+{
+ CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
+ tags->forEachBlk(visitor);
+}
+
+void
+Cache::memInvalidate()
+{
+ CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
+ tags->forEachBlk(visitor);
+}
+
+bool
+Cache::isDirty() const
+{
+ CacheBlkIsDirtyVisitor visitor;
+ tags->forEachBlk(visitor);
+
+ return visitor.isDirty();
+}
+
+bool
+Cache::writebackVisitor(CacheBlk &blk)
+{
+ if (blk.isDirty()) {
+ assert(blk.isValid());
+
+ Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
+ blkSize, 0, Request::funcMasterId);
+ request.taskId(blk.task_id);
+
+ Packet packet(&request, MemCmd::WriteReq);
+ packet.dataStatic(blk.data);
+
+ memSidePort->sendFunctional(&packet);
+
+ blk.status &= ~BlkDirty;
+ }
+
+ return true;
+}
+
+bool
+Cache::invalidateVisitor(CacheBlk &blk)
+{
+
+ if (blk.isDirty())
+ warn_once("Invalidating dirty cache lines. Expect things to break.\n");
+
+ if (blk.isValid()) {
+ assert(!blk.isDirty());
+ tags->invalidate(&blk);
+ blk.invalidate();
+ }
+
+ return true;
+}
+
+CacheBlk*
+Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
+{
+ CacheBlk *blk = tags->findVictim(addr);
+
+ // It is valid to return NULL if there is no victim
+ if (!blk)
+ return nullptr;
+
+ if (blk->isValid()) {
+ Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
+ MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
+ if (repl_mshr) {
+ // must be an outstanding upgrade request
+ // on a block we're about to replace...
+ assert(!blk->isWritable() || blk->isDirty());
+ assert(repl_mshr->needsExclusive());
+ // too hard to replace block with transient state
+ // allocation failed, block not inserted
+ return NULL;
+ } else {
+ DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n",
+ repl_addr, blk->isSecure() ? "s" : "ns",
+ addr, is_secure ? "s" : "ns",
+ blk->isDirty() ? "writeback" : "clean");
+
+ // Will send up Writeback/CleanEvict snoops via isCachedAbove
+ // when pushing this writeback list into the write buffer.
+ if (blk->isDirty()) {
+ // Save writeback packet for handling by caller
+ writebacks.push_back(writebackBlk(blk));
+ } else {
+ writebacks.push_back(cleanEvictBlk(blk));
+ }
+ }
+ }
+
+ return blk;
+}
+
+
+// Note that the reason we return a list of writebacks rather than
+// inserting them directly in the write buffer is that this function
+// is called by both atomic and timing-mode accesses, and in atomic
+// mode we don't mess with the write buffer (we just perform the
+// writebacks atomically once the original request is complete).
+CacheBlk*
+Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks)
+{
+ assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
+ Addr addr = pkt->getAddr();
+ bool is_secure = pkt->isSecure();
+#if TRACING_ON
+ CacheBlk::State old_state = blk ? blk->status : 0;
+#endif
+
+ // When handling a fill, discard any CleanEvicts for the
+ // same address in write buffer.
+ Addr M5_VAR_USED blk_addr = blockAlign(pkt->getAddr());
+ std::vector<MSHR *> M5_VAR_USED wbs;
+ assert (!writeBuffer.findMatches(blk_addr, is_secure, wbs));
+
+ if (blk == NULL) {
+ // better have read new data...
+ assert(pkt->hasData());
+
+ // only read responses and write-line requests have data;
+ // note that we don't write the data here for write-line - that
+ // happens in the subsequent satisfyCpuSideRequest.
+ assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
+
+ // need to do a replacement
+ blk = allocateBlock(addr, is_secure, writebacks);
+ if (blk == NULL) {
+ // No replaceable block... just use temporary storage to
+ // complete the current request and then get rid of it
+ assert(!tempBlock->isValid());
+ blk = tempBlock;
+ tempBlock->set = tags->extractSet(addr);
+ tempBlock->tag = tags->extractTag(addr);
+ // @todo: set security state as well...
+ DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
+ is_secure ? "s" : "ns");
+ } else {
+ tags->insertBlock(pkt, blk);
+ }
+
+ // we should never be overwriting a valid block
+ assert(!blk->isValid());
+ } else {
+ // existing block... probably an upgrade
+ assert(blk->tag == tags->extractTag(addr));
+ // either we're getting new data or the block should already be valid
+ assert(pkt->hasData() || blk->isValid());
+ // don't clear block status... if block is already dirty we
+ // don't want to lose that
+ }
+
+ if (is_secure)
+ blk->status |= BlkSecure;
+ blk->status |= BlkValid | BlkReadable;
+
+ if (!pkt->sharedAsserted()) {
+ // we could get non-shared responses from memory (rather than
+ // a cache) even in a read-only cache, note that we set this
+ // bit even for a read-only cache as we use it to represent
+ // the exclusive state
+ blk->status |= BlkWritable;
+
+ // If we got this via cache-to-cache transfer (i.e., from a
+ // cache that was an owner) and took away that owner's copy,
+ // then we need to write it back. Normally this happens
+ // anyway as a side effect of getting a copy to write it, but
+ // there are cases (such as failed store conditionals or
+ // compare-and-swaps) where we'll demand an exclusive copy but
+ // end up not writing it.
+ if (pkt->memInhibitAsserted()) {
+ blk->status |= BlkDirty;
+
+ chatty_assert(!isReadOnly, "Should never see dirty snoop response "
+ "in read-only cache %s\n", name());
+ }
+ }
+
+ DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
+ addr, is_secure ? "s" : "ns", old_state, blk->print());
+
+ // if we got new data, copy it in (checking for a read response
+ // and a response that has data is the same in the end)
+ if (pkt->isRead()) {
+ // sanity checks
+ assert(pkt->hasData());
+ assert(pkt->getSize() == blkSize);
+
+ std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
+ }
+ // We pay for fillLatency here.
+ blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
+ pkt->payloadDelay;
+
+ return blk;
+}
+
+
+/////////////////////////////////////////////////////
+//
+// Snoop path: requests coming in from the memory side
+//
+/////////////////////////////////////////////////////
+
+void
+Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
+ bool already_copied, bool pending_inval)
+{
+ // sanity check
+ assert(req_pkt->isRequest());
+ assert(req_pkt->needsResponse());
+
+ DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
+ req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
+ // timing-mode snoop responses require a new packet, unless we
+ // already made a copy...
+ PacketPtr pkt = req_pkt;
+ if (!already_copied)
+ // do not clear flags, and allocate space for data if the
+ // packet needs it (the only packets that carry data are read
+ // responses)
+ pkt = new Packet(req_pkt, false, req_pkt->isRead());
+
+ assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
+ pkt->sharedAsserted());
+ pkt->makeTimingResponse();
+ if (pkt->isRead()) {
+ pkt->setDataFromBlock(blk_data, blkSize);
+ }
+ if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
+ // Assume we defer a response to a read from a far-away cache
+ // A, then later defer a ReadExcl from a cache B on the same
+ // bus as us. We'll assert MemInhibit in both cases, but in
+ // the latter case MemInhibit will keep the invalidation from
+ // reaching cache A. This special response tells cache A that
+ // it gets the block to satisfy its read, but must immediately
+ // invalidate it.
+ pkt->cmd = MemCmd::ReadRespWithInvalidate;
+ }
+ // Here we consider forward_time, paying for just forward latency and
+ // also charging the delay provided by the xbar.
+ // forward_time is used as send_time in next allocateWriteBuffer().
+ Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
+ // Here we reset the timing of the packet.
+ pkt->headerDelay = pkt->payloadDelay = 0;
+ DPRINTF(Cache, "%s created response: %s addr %#llx size %d tick: %lu\n",
+ __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
+ forward_time);
+ memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
+}
+
+void
+Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
+ bool is_deferred, bool pending_inval)
+{
+ DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
+ pkt->cmdString(), pkt->getAddr(), pkt->getSize());
+ // deferred snoops can only happen in timing mode
+ assert(!(is_deferred && !is_timing));
+ // pending_inval only makes sense on deferred snoops
+ assert(!(pending_inval && !is_deferred));
+ assert(pkt->isRequest());
+
+ // the packet may get modified if we or a forwarded snooper
+ // responds in atomic mode, so remember a few things about the
+ // original packet up front
+ bool invalidate = pkt->isInvalidate();
+ bool M5_VAR_USED needs_exclusive = pkt->needsExclusive();
+
+ if (forwardSnoops) {
+ // first propagate snoop upward to see if anyone above us wants to
+ // handle it. save & restore packet src since it will get
+ // rewritten to be relative to cpu-side bus (if any)
+ bool alreadyResponded = pkt->memInhibitAsserted();
+ if (is_timing) {
+ // copy the packet so that we can clear any flags before
+ // forwarding it upwards, we also allocate data (passing
+ // the pointer along in case of static data), in case
+ // there is a snoop hit in upper levels
+ Packet snoopPkt(pkt, true, true);
+ snoopPkt.setExpressSnoop();
+ snoopPkt.pushSenderState(new ForwardResponseRecord());
+ // the snoop packet does not need to wait any additional
+ // time
+ snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
+ cpuSidePort->sendTimingSnoopReq(&snoopPkt);
+ if (snoopPkt.memInhibitAsserted()) {
+ // cache-to-cache response from some upper cache
+ assert(!alreadyResponded);
+ pkt->assertMemInhibit();
+ } else {
+ // no cache (or anyone else for that matter) will
+ // respond, so delete the ForwardResponseRecord here
+ delete snoopPkt.popSenderState();
+ }
+ if (snoopPkt.sharedAsserted()) {
+ pkt->assertShared();
+ }
+ // If this request is a prefetch or clean evict and an upper level
+ // signals block present, make sure to propagate the block
+ // presence to the requester.
+ if (snoopPkt.isBlockCached()) {
+ pkt->setBlockCached();
+ }
+ } else {
+ cpuSidePort->sendAtomicSnoop(pkt);
+ if (!alreadyResponded && pkt->memInhibitAsserted()) {
+ // cache-to-cache response from some upper cache:
+ // forward response to original requester
+ assert(pkt->isResponse());
+ }
+ }
+ }
+
+ if (!blk || !blk->isValid()) {
+ DPRINTF(Cache, "%s snoop miss for %s addr %#llx size %d\n",
+ __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
+ return;
+ } else {
+ DPRINTF(Cache, "%s snoop hit for %s for addr %#llx size %d, "
+ "old state is %s\n", __func__, pkt->cmdString(),
+ pkt->getAddr(), pkt->getSize(), blk->print());
+ }
+
+ chatty_assert(!(isReadOnly && blk->isDirty()),
+ "Should never have a dirty block in a read-only cache %s\n",
+ name());
+
+ // We may end up modifying both the block state and the packet (if
+ // we respond in atomic mode), so just figure out what to do now
+ // and then do it later. If we find dirty data while snooping for
+ // an invalidate, we don't need to send a response. The
+ // invalidation itself is taken care of below.
+ bool respond = blk->isDirty() && pkt->needsResponse() &&
+ pkt->cmd != MemCmd::InvalidateReq;
+ bool have_exclusive = blk->isWritable();
+
+ // Invalidate any prefetch's from below that would strip write permissions
+ // MemCmd::HardPFReq is only observed by upstream caches. After missing
+ // above and in it's own cache, a new MemCmd::ReadReq is created that
+ // downstream caches observe.
+ if (pkt->mustCheckAbove()) {
+ DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from"
+ " lower cache\n", pkt->getAddr(), pkt->cmdString());
+ pkt->setBlockCached();
+ return;
+ }
+
+ if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
+ assert(!needs_exclusive);
+ pkt->assertShared();
+ int bits_to_clear = BlkWritable;
+ const bool haveOwnershipState = true; // for now
+ if (!haveOwnershipState) {
+ // if we don't support pure ownership (dirty && !writable),
+ // have to clear dirty bit here, assume memory snarfs data
+ // on cache-to-cache xfer
+ bits_to_clear |= BlkDirty;
+ }
+ blk->status &= ~bits_to_clear;
+ }
+
+ if (respond) {
+ // prevent anyone else from responding, cache as well as
+ // memory, and also prevent any memory from even seeing the
+ // request (with current inhibited semantics), note that this
+ // applies both to reads and writes and that for writes it
+ // works thanks to the fact that we still have dirty data and
+ // will write it back at a later point
+ pkt->assertMemInhibit();
+ if (have_exclusive) {
+ // in the case of an uncacheable request there is no need
+ // to set the exclusive flag, but since the recipient does
+ // not care there is no harm in doing so
+ pkt->setSupplyExclusive();
+ }
+ if (is_timing) {
+ doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
+ } else {
+ pkt->makeAtomicResponse();
+ pkt->setDataFromBlock(blk->data, blkSize);
+ }
+ }
+
+ if (!respond && is_timing && is_deferred) {
+ // if it's a deferred timing snoop then we've made a copy of
+ // both the request and the packet, and so if we're not using
+ // those copies to respond and delete them here
+ DPRINTF(Cache, "Deleting pkt %p and request %p for cmd %s addr: %p\n",
+ pkt, pkt->req, pkt->cmdString(), pkt->getAddr());
+
+ // the packets needs a response (just not from us), so we also
+ // need to delete the request and not rely on the packet
+ // destructor
+ assert(pkt->needsResponse());
+ delete pkt->req;
+ delete pkt;
+ }
+
+ // Do this last in case it deallocates block data or something
+ // like that
+ if (invalidate) {
+ if (blk != tempBlock)
+ tags->invalidate(blk);
+ blk->invalidate();
+ }
+
+ DPRINTF(Cache, "new state is %s\n", blk->print());
+}
+
+
+void
+Cache::recvTimingSnoopReq(PacketPtr pkt)
+{
+ DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
+ pkt->cmdString(), pkt->getAddr(), pkt->getSize());
+
+ // Snoops shouldn't happen when bypassing caches
+ assert(!system->bypassCaches());
+
+ // no need to snoop writebacks or requests that are not in range
+ if (!inRange(pkt->getAddr())) {
+ return;
+ }
+
+ bool is_secure = pkt->isSecure();
+ CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
+
+ Addr blk_addr = blockAlign(pkt->getAddr());
+ MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
+
+ // Inform request(Prefetch, CleanEvict or Writeback) from below of
+ // MSHR hit, set setBlockCached.
+ if (mshr && pkt->mustCheckAbove()) {
+ DPRINTF(Cache, "Setting block cached for %s from"
+ "lower cache on mshr hit %#x\n",
+ pkt->cmdString(), pkt->getAddr());
+ pkt->setBlockCached();
+ return;
+ }
+
+ // Let the MSHR itself track the snoop and decide whether we want
+ // to go ahead and do the regular cache snoop
+ if (mshr && mshr->handleSnoop(pkt, order++)) {
+ DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
+ "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
+ mshr->print());
+
+ if (mshr->getNumTargets() > numTarget)
+ warn("allocating bonus target for snoop"); //handle later
+ return;
+ }
+
+ //We also need to check the writeback buffers and handle those
+ std::vector<MSHR *> writebacks;
+ if (writeBuffer.findMatches(blk_addr, is_secure, writebacks)) {
+ DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
+ pkt->getAddr(), is_secure ? "s" : "ns");
+
+ // Look through writebacks for any cachable writes.
+ // We should only ever find a single match
+ assert(writebacks.size() == 1);
+ MSHR *wb_entry = writebacks[0];
+ // Expect to see only Writebacks and/or CleanEvicts here, both of
+ // which should not be generated for uncacheable data.
+ assert(!wb_entry->isUncacheable());
+ // There should only be a single request responsible for generating
+ // Writebacks/CleanEvicts.
+ assert(wb_entry->getNumTargets() == 1);
+ PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
+ assert(wb_pkt->evictingBlock());
+
+ if (pkt->evictingBlock()) {
+ // if the block is found in the write queue, set the BLOCK_CACHED
+ // flag for Writeback/CleanEvict snoop. On return the snoop will
+ // propagate the BLOCK_CACHED flag in Writeback packets and prevent
+ // any CleanEvicts from travelling down the memory hierarchy.
+ pkt->setBlockCached();
+ DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
+ " %#x\n", pkt->cmdString(), pkt->getAddr());
+ return;
+ }
+
+ if (wb_pkt->cmd == MemCmd::Writeback) {
+ assert(!pkt->memInhibitAsserted());
+ pkt->assertMemInhibit();
+ if (!pkt->needsExclusive()) {
+ pkt->assertShared();
+ // the writeback is no longer passing exclusivity (the
+ // receiving cache should consider the block owned
+ // rather than modified)
+ wb_pkt->assertShared();
+ } else {
+ // if we're not asserting the shared line, we need to
+ // invalidate our copy. we'll do that below as long as
+ // the packet's invalidate flag is set...
+ assert(pkt->isInvalidate());
+ }
+ doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
+ false, false);
+ } else {
+ assert(wb_pkt->cmd == MemCmd::CleanEvict);
+ // The cache technically holds the block until the
+ // corresponding CleanEvict message reaches the crossbar
+ // below. Therefore when a snoop encounters a CleanEvict
+ // message we must set assertShared (just like when it
+ // encounters a Writeback) to avoid the snoop filter
+ // prematurely clearing the holder bit in the crossbar
+ // below
+ if (!pkt->needsExclusive())
+ pkt->assertShared();
+ else
+ assert(pkt->isInvalidate());
+ }
+
+ if (pkt->isInvalidate()) {
+ // Invalidation trumps our writeback... discard here
+ // Note: markInService will remove entry from writeback buffer.
+ markInService(wb_entry, false);
+ delete wb_pkt;
+ }
+ }
+
+ // If this was a shared writeback, there may still be
+ // other shared copies above that require invalidation.
+ // We could be more selective and return here if the
+ // request is non-exclusive or if the writeback is
+ // exclusive.
+ handleSnoop(pkt, blk, true, false, false);
+}
+
+bool
+Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
+{
+ // Express snoop responses from master to slave, e.g., from L1 to L2
+ cache->recvTimingSnoopResp(pkt);
+ return true;
+}
+
+Tick
+Cache::recvAtomicSnoop(PacketPtr pkt)
+{
+ // Snoops shouldn't happen when bypassing caches
+ assert(!system->bypassCaches());
+
+ // no need to snoop writebacks or requests that are not in range. In
+ // atomic we have no Writebacks/CleanEvicts queued and no prefetches,
+ // hence there is no need to snoop upwards and determine if they are
+ // present above.
+ if (pkt->evictingBlock() || !inRange(pkt->getAddr())) {
+ return 0;
+ }
+
+ CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
+ handleSnoop(pkt, blk, false, false, false);
+ // We consider forwardLatency here because a snoop occurs in atomic mode
+ return forwardLatency * clockPeriod();
+}
+
+
+MSHR *
+Cache::getNextMSHR()
+{
+ // Check both MSHR queue and write buffer for potential requests,
+ // note that null does not mean there is no request, it could
+ // simply be that it is not ready
+ MSHR *miss_mshr = mshrQueue.getNextMSHR();
+ MSHR *write_mshr = writeBuffer.getNextMSHR();
+
+ // If we got a write buffer request ready, first priority is a
+ // full write buffer, otherwhise we favour the miss requests
+ if (write_mshr &&
+ ((writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) ||
+ !miss_mshr)) {
+ // need to search MSHR queue for conflicting earlier miss.
+ MSHR *conflict_mshr =
+ mshrQueue.findPending(write_mshr->blkAddr,
+ write_mshr->isSecure);
+
+ if (conflict_mshr && conflict_mshr->order < write_mshr->order) {
+ // Service misses in order until conflict is cleared.
+ return conflict_mshr;
+
+ // @todo Note that we ignore the ready time of the conflict here
+ }
+
+ // No conflicts; issue write
+ return write_mshr;
+ } else if (miss_mshr) {
+ // need to check for conflicting earlier writeback
+ MSHR *conflict_mshr =
+ writeBuffer.findPending(miss_mshr->blkAddr,
+ miss_mshr->isSecure);
+ if (conflict_mshr) {
+ // not sure why we don't check order here... it was in the
+ // original code but commented out.
+
+ // The only way this happens is if we are
+ // doing a write and we didn't have permissions
+ // then subsequently saw a writeback (owned got evicted)
+ // We need to make sure to perform the writeback first
+ // To preserve the dirty data, then we can issue the write
+
+ // should we return write_mshr here instead? I.e. do we
+ // have to flush writes in order? I don't think so... not
+ // for Alpha anyway. Maybe for x86?
+ return conflict_mshr;
+
+ // @todo Note that we ignore the ready time of the conflict here
+ }
+
+ // No conflicts; issue read
+ return miss_mshr;
+ }
+
+ // fall through... no pending requests. Try a prefetch.
+ assert(!miss_mshr && !write_mshr);
+ if (prefetcher && mshrQueue.canPrefetch()) {
+ // If we have a miss queue slot, we can try a prefetch
+ PacketPtr pkt = prefetcher->getPacket();
+ if (pkt) {
+ Addr pf_addr = blockAlign(pkt->getAddr());
+ if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
+ !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
+ !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
+ // Update statistic on number of prefetches issued
+ // (hwpf_mshr_misses)
+ assert(pkt->req->masterId() < system->maxMasters());
+ mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
+
+ // allocate an MSHR and return it, note
+ // that we send the packet straight away, so do not
+ // schedule the send
+ return allocateMissBuffer(pkt, curTick(), false);
+ } else {
+ // free the request and packet
+ delete pkt->req;
+ delete pkt;
+ }
+ }
+ }
+
+ return NULL;
+}
+
+bool
+Cache::isCachedAbove(const PacketPtr pkt) const
+{
+ if (!forwardSnoops)
+ return false;
+ // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
+ // Writeback snoops into upper level caches to check for copies of the
+ // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
+ // packet, the cache can inform the crossbar below of presence or absence
+ // of the block.
+
+ Packet snoop_pkt(pkt, true, false);
+ snoop_pkt.setExpressSnoop();
+ // Assert that packet is either Writeback or CleanEvict and not a prefetch
+ // request because prefetch requests need an MSHR and may generate a snoop
+ // response.
+ assert(pkt->evictingBlock());
+ snoop_pkt.senderState = NULL;
+ cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
+ // Writeback/CleanEvict snoops do not generate a separate snoop response.
+ assert(!(snoop_pkt.memInhibitAsserted()));
+ return snoop_pkt.isBlockCached();
+}
+
+PacketPtr
+Cache::getTimingPacket()
+{
+ MSHR *mshr = getNextMSHR();
+
+ if (mshr == NULL) {
+ return NULL;
+ }
+
+ // use request from 1st target
+ PacketPtr tgt_pkt = mshr->getTarget()->pkt;
+ PacketPtr pkt = NULL;
+
+ DPRINTF(CachePort, "%s %s for addr %#llx size %d\n", __func__,
+ tgt_pkt->cmdString(), tgt_pkt->getAddr(), tgt_pkt->getSize());
+
+ CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
+
+ if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
+ // We need to check the caches above us to verify that
+ // they don't have a copy of this block in the dirty state
+ // at the moment. Without this check we could get a stale
+ // copy from memory that might get used in place of the
+ // dirty one.
+ Packet snoop_pkt(tgt_pkt, true, false);
+ snoop_pkt.setExpressSnoop();
+ snoop_pkt.senderState = mshr;
+ cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
+
+ // Check to see if the prefetch was squashed by an upper cache (to
+ // prevent us from grabbing the line) or if a Check to see if a
+ // writeback arrived between the time the prefetch was placed in
+ // the MSHRs and when it was selected to be sent or if the
+ // prefetch was squashed by an upper cache.
+
+ // It is important to check memInhibitAsserted before
+ // prefetchSquashed. If another cache has asserted MEM_INGIBIT, it
+ // will be sending a response which will arrive at the MSHR
+ // allocated ofr this request. Checking the prefetchSquash first
+ // may result in the MSHR being prematurely deallocated.
+
+ if (snoop_pkt.memInhibitAsserted()) {
+ // If we are getting a non-shared response it is dirty
+ bool pending_dirty_resp = !snoop_pkt.sharedAsserted();
+ markInService(mshr, pending_dirty_resp);
+ DPRINTF(Cache, "Upward snoop of prefetch for addr"
+ " %#x (%s) hit\n",
+ tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
+ return NULL;
+ }
+
+ if (snoop_pkt.isBlockCached() || blk != NULL) {
+ DPRINTF(Cache, "Block present, prefetch squashed by cache. "
+ "Deallocating mshr target %#x.\n",
+ mshr->blkAddr);
+
+ // Deallocate the mshr target
+ if (tgt_pkt->cmd != MemCmd::Writeback) {
+ if (mshr->queue->forceDeallocateTarget(mshr)) {
+ // Clear block if this deallocation resulted freed an
+ // mshr when all had previously been utilized
+ clearBlocked((BlockedCause)(mshr->queue->index));
+ }
+ return NULL;
+ } else {
+ // If this is a Writeback, and the snoops indicate that the blk
+ // is cached above, set the BLOCK_CACHED flag in the Writeback
+ // packet, so that it does not reset the bits corresponding to
+ // this block in the snoop filter below.
+ tgt_pkt->setBlockCached();
+ }
+ }
+ }
+
+ if (mshr->isForwardNoResponse()) {
+ // no response expected, just forward packet as it is
+ assert(tags->findBlock(mshr->blkAddr, mshr->isSecure) == NULL);
+ pkt = tgt_pkt;
+ } else {
+ pkt = getBusPacket(tgt_pkt, blk, mshr->needsExclusive());
+
+ mshr->isForward = (pkt == NULL);
+
+ if (mshr->isForward) {
+ // not a cache block request, but a response is expected
+ // make copy of current packet to forward, keep current
+ // copy for response handling
+ pkt = new Packet(tgt_pkt, false, true);
+ if (pkt->isWrite()) {
+ pkt->setData(tgt_pkt->getConstPtr<uint8_t>());
+ }
+ }
+ }
+
+ assert(pkt != NULL);
+ pkt->senderState = mshr;
+ return pkt;
+}
+
+
+Tick
+Cache::nextMSHRReadyTime() const
+{
+ Tick nextReady = std::min(mshrQueue.nextMSHRReadyTime(),
+ writeBuffer.nextMSHRReadyTime());
+
+ // Don't signal prefetch ready time if no MSHRs available
+ // Will signal once enoguh MSHRs are deallocated
+ if (prefetcher && mshrQueue.canPrefetch()) {
+ nextReady = std::min(nextReady,
+ prefetcher->nextPrefetchReadyTime());
+ }
+
+ return nextReady;
+}
+
+void
+Cache::serialize(CheckpointOut &cp) const
+{
+ bool dirty(isDirty());
+
+ if (dirty) {
+ warn("*** The cache still contains dirty data. ***\n");
+ warn(" Make sure to drain the system using the correct flags.\n");
+ warn(" This checkpoint will not restore correctly and dirty data in "
+ "the cache will be lost!\n");
+ }
+
+ // Since we don't checkpoint the data in the cache, any dirty data
+ // will be lost when restoring from a checkpoint of a system that
+ // wasn't drained properly. Flag the checkpoint as invalid if the
+ // cache contains dirty data.
+ bool bad_checkpoint(dirty);
+ SERIALIZE_SCALAR(bad_checkpoint);
+}
+
+void
+Cache::unserialize(CheckpointIn &cp)
+{
+ bool bad_checkpoint;
+ UNSERIALIZE_SCALAR(bad_checkpoint);
+ if (bad_checkpoint) {
+ fatal("Restoring from checkpoints with dirty caches is not supported "
+ "in the classic memory system. Please remove any caches or "
+ " drain them properly before taking checkpoints.\n");
+ }
+}
+
+///////////////
+//
+// CpuSidePort
+//
+///////////////
+
+AddrRangeList
+Cache::CpuSidePort::getAddrRanges() const
+{
+ return cache->getAddrRanges();
+}
+
+bool
+Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
+{
+ assert(!cache->system->bypassCaches());
+
+ bool success = false;
+
+ // always let inhibited requests through, even if blocked,
+ // ultimately we should check if this is an express snoop, but at
+ // the moment that flag is only set in the cache itself
+ if (pkt->memInhibitAsserted()) {
+ // do not change the current retry state
+ bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
+ assert(bypass_success);
+ return true;
+ } else if (blocked || mustSendRetry) {
+ // either already committed to send a retry, or blocked
+ success = false;
+ } else {
+ // pass it on to the cache, and let the cache decide if we
+ // have to retry or not
+ success = cache->recvTimingReq(pkt);
+ }
+
+ // remember if we have to retry
+ mustSendRetry = !success;
+ return success;
+}
+
+Tick
+Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
+{
+ return cache->recvAtomic(pkt);
+}
+
+void
+Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
+{
+ // functional request
+ cache->functionalAccess(pkt, true);
+}
+
+Cache::
+CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
+ const std::string &_label)
+ : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
+{
+}
+
+///////////////
+//
+// MemSidePort
+//
+///////////////
+
+bool
+Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
+{
+ cache->recvTimingResp(pkt);
+ return true;
+}
+
+// Express snooping requests to memside port
+void
+Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
+{
+ // handle snooping requests
+ cache->recvTimingSnoopReq(pkt);
+}
+
+Tick
+Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
+{
+ return cache->recvAtomicSnoop(pkt);
+}
+
+void
+Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
+{
+ // functional snoop (note that in contrast to atomic we don't have
+ // a specific functionalSnoop method, as they have the same
+ // behaviour regardless)
+ cache->functionalAccess(pkt, false);
+}
+
+void
+Cache::CacheReqPacketQueue::sendDeferredPacket()
+{
+ // sanity check
+ assert(!waitingOnRetry);
+
+ // there should never be any deferred request packets in the
+ // queue, instead we resly on the cache to provide the packets
+ // from the MSHR queue or write queue
+ assert(deferredPacketReadyTime() == MaxTick);
+
+ // check for request packets (requests & writebacks)
+ PacketPtr pkt = cache.getTimingPacket();
+ if (pkt == NULL) {
+ // can happen if e.g. we attempt a writeback and fail, but
+ // before the retry, the writeback is eliminated because
+ // we snoop another cache's ReadEx.
+ } else {
+ MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
+ // in most cases getTimingPacket allocates a new packet, and
+ // we must delete it unless it is successfully sent
+ bool delete_pkt = !mshr->isForwardNoResponse();
+
+ // let our snoop responses go first if there are responses to
+ // the same addresses we are about to writeback, note that
+ // this creates a dependency between requests and snoop
+ // responses, but that should not be a problem since there is
+ // a chain already and the key is that the snoop responses can
+ // sink unconditionally
+ if (snoopRespQueue.hasAddr(pkt->getAddr())) {
+ DPRINTF(CachePort, "Waiting for snoop response to be sent\n");
+ Tick when = snoopRespQueue.deferredPacketReadyTime();
+ schedSendEvent(when);
+
+ if (delete_pkt)
+ delete pkt;
+
+ return;
+ }
+
+
+ waitingOnRetry = !masterPort.sendTimingReq(pkt);
+
+ if (waitingOnRetry) {
+ DPRINTF(CachePort, "now waiting on a retry\n");
+ if (delete_pkt) {
+ // we are awaiting a retry, but we
+ // delete the packet and will be creating a new packet
+ // when we get the opportunity
+ delete pkt;
+ }
+ // note that we have now masked any requestBus and
+ // schedSendEvent (we will wait for a retry before
+ // doing anything), and this is so even if we do not
+ // care about this packet and might override it before
+ // it gets retried
+ } else {
+ // As part of the call to sendTimingReq the packet is
+ // forwarded to all neighbouring caches (and any
+ // caches above them) as a snoop. The packet is also
+ // sent to any potential cache below as the
+ // interconnect is not allowed to buffer the
+ // packet. Thus at this point we know if any of the
+ // neighbouring, or the downstream cache is
+ // responding, and if so, if it is with a dirty line
+ // or not.
+ bool pending_dirty_resp = !pkt->sharedAsserted() &&
+ pkt->memInhibitAsserted();
+
+ cache.markInService(mshr, pending_dirty_resp);
+ }
+ }
+
+ // if we succeeded and are not waiting for a retry, schedule the
+ // next send considering when the next MSHR is ready, note that
+ // snoop responses have their own packet queue and thus schedule
+ // their own events
+ if (!waitingOnRetry) {
+ schedSendEvent(cache.nextMSHRReadyTime());
+ }
+}
+Cache::
+MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
+ const std::string &_label)
+ : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
+ _reqQueue(*_cache, *this, _snoopRespQueue, _label),
+ _snoopRespQueue(*_cache, *this, _label), cache(_cache)
+{
+}