summaryrefslogtreecommitdiff
path: root/src/mem/dram_ctrl.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/mem/dram_ctrl.cc')
-rw-r--r--src/mem/dram_ctrl.cc1718
1 files changed, 1718 insertions, 0 deletions
diff --git a/src/mem/dram_ctrl.cc b/src/mem/dram_ctrl.cc
new file mode 100644
index 000000000..971c7227d
--- /dev/null
+++ b/src/mem/dram_ctrl.cc
@@ -0,0 +1,1718 @@
+/*
+ * Copyright (c) 2010-2013 ARM Limited
+ * All rights reserved
+ *
+ * The license below extends only to copyright in the software and shall
+ * not be construed as granting a license to any other intellectual
+ * property including but not limited to intellectual property relating
+ * to a hardware implementation of the functionality of the software
+ * licensed hereunder. You may use the software subject to the license
+ * terms below provided that you ensure that this notice is replicated
+ * unmodified and in its entirety in all distributions of the software,
+ * modified or unmodified, in source code or in binary form.
+ *
+ * Copyright (c) 2013 Amin Farmahini-Farahani
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * Authors: Andreas Hansson
+ * Ani Udipi
+ * Neha Agarwal
+ */
+
+#include "base/bitfield.hh"
+#include "base/trace.hh"
+#include "debug/DRAM.hh"
+#include "debug/Drain.hh"
+#include "mem/dram_ctrl.hh"
+#include "sim/system.hh"
+
+using namespace std;
+
+DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
+ AbstractMemory(p),
+ port(name() + ".port", *this),
+ retryRdReq(false), retryWrReq(false),
+ rowHitFlag(false), stopReads(false),
+ writeEvent(this), respondEvent(this),
+ refreshEvent(this), nextReqEvent(this), drainManager(NULL),
+ deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
+ deviceRowBufferSize(p->device_rowbuffer_size),
+ devicesPerRank(p->devices_per_rank),
+ burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
+ rowBufferSize(devicesPerRank * deviceRowBufferSize),
+ columnsPerRowBuffer(rowBufferSize / burstSize),
+ ranksPerChannel(p->ranks_per_channel),
+ banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
+ readBufferSize(p->read_buffer_size),
+ writeBufferSize(p->write_buffer_size),
+ writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
+ writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
+ minWritesPerSwitch(p->min_writes_per_switch), writesThisTime(0),
+ tWTR(p->tWTR), tBURST(p->tBURST),
+ tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
+ tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
+ tXAW(p->tXAW), activationLimit(p->activation_limit),
+ memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
+ pageMgmt(p->page_policy),
+ maxAccessesPerRow(p->max_accesses_per_row),
+ frontendLatency(p->static_frontend_latency),
+ backendLatency(p->static_backend_latency),
+ busBusyUntil(0), prevArrival(0),
+ newTime(0), startTickPrechargeAll(0), numBanksActive(0)
+{
+ // create the bank states based on the dimensions of the ranks and
+ // banks
+ banks.resize(ranksPerChannel);
+ actTicks.resize(ranksPerChannel);
+ for (size_t c = 0; c < ranksPerChannel; ++c) {
+ banks[c].resize(banksPerRank);
+ actTicks[c].resize(activationLimit, 0);
+ }
+
+ // perform a basic check of the write thresholds
+ if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
+ fatal("Write buffer low threshold %d must be smaller than the "
+ "high threshold %d\n", p->write_low_thresh_perc,
+ p->write_high_thresh_perc);
+
+ // determine the rows per bank by looking at the total capacity
+ uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
+
+ DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
+ AbstractMemory::size());
+
+ DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
+ rowBufferSize, columnsPerRowBuffer);
+
+ rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
+
+ if (range.interleaved()) {
+ if (channels != range.stripes())
+ fatal("%s has %d interleaved address stripes but %d channel(s)\n",
+ name(), range.stripes(), channels);
+
+ if (addrMapping == Enums::RoRaBaChCo) {
+ if (rowBufferSize != range.granularity()) {
+ fatal("Interleaving of %s doesn't match RoRaBaChCo "
+ "address map\n", name());
+ }
+ } else if (addrMapping == Enums::RoRaBaCoCh) {
+ if (system()->cacheLineSize() != range.granularity()) {
+ fatal("Interleaving of %s doesn't match RoRaBaCoCh "
+ "address map\n", name());
+ }
+ } else if (addrMapping == Enums::RoCoRaBaCh) {
+ if (system()->cacheLineSize() != range.granularity())
+ fatal("Interleaving of %s doesn't match RoCoRaBaCh "
+ "address map\n", name());
+ }
+ }
+}
+
+void
+DRAMCtrl::init()
+{
+ if (!port.isConnected()) {
+ fatal("DRAMCtrl %s is unconnected!\n", name());
+ } else {
+ port.sendRangeChange();
+ }
+}
+
+void
+DRAMCtrl::startup()
+{
+ // update the start tick for the precharge accounting to the
+ // current tick
+ startTickPrechargeAll = curTick();
+
+ // print the configuration of the controller
+ printParams();
+
+ // kick off the refresh
+ schedule(refreshEvent, curTick() + tREFI);
+}
+
+Tick
+DRAMCtrl::recvAtomic(PacketPtr pkt)
+{
+ DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
+
+ // do the actual memory access and turn the packet into a response
+ access(pkt);
+
+ Tick latency = 0;
+ if (!pkt->memInhibitAsserted() && pkt->hasData()) {
+ // this value is not supposed to be accurate, just enough to
+ // keep things going, mimic a closed page
+ latency = tRP + tRCD + tCL;
+ }
+ return latency;
+}
+
+bool
+DRAMCtrl::readQueueFull(unsigned int neededEntries) const
+{
+ DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
+ readBufferSize, readQueue.size() + respQueue.size(),
+ neededEntries);
+
+ return
+ (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
+}
+
+bool
+DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
+{
+ DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
+ writeBufferSize, writeQueue.size(), neededEntries);
+ return (writeQueue.size() + neededEntries) > writeBufferSize;
+}
+
+DRAMCtrl::DRAMPacket*
+DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
+ bool isRead)
+{
+ // decode the address based on the address mapping scheme, with
+ // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
+ // channel, respectively
+ uint8_t rank;
+ uint8_t bank;
+ uint16_t row;
+
+ // truncate the address to the access granularity
+ Addr addr = dramPktAddr / burstSize;
+
+ // we have removed the lowest order address bits that denote the
+ // position within the column
+ if (addrMapping == Enums::RoRaBaChCo) {
+ // the lowest order bits denote the column to ensure that
+ // sequential cache lines occupy the same row
+ addr = addr / columnsPerRowBuffer;
+
+ // take out the channel part of the address
+ addr = addr / channels;
+
+ // after the channel bits, get the bank bits to interleave
+ // over the banks
+ bank = addr % banksPerRank;
+ addr = addr / banksPerRank;
+
+ // after the bank, we get the rank bits which thus interleaves
+ // over the ranks
+ rank = addr % ranksPerChannel;
+ addr = addr / ranksPerChannel;
+
+ // lastly, get the row bits
+ row = addr % rowsPerBank;
+ addr = addr / rowsPerBank;
+ } else if (addrMapping == Enums::RoRaBaCoCh) {
+ // take out the channel part of the address
+ addr = addr / channels;
+
+ // next, the column
+ addr = addr / columnsPerRowBuffer;
+
+ // after the column bits, we get the bank bits to interleave
+ // over the banks
+ bank = addr % banksPerRank;
+ addr = addr / banksPerRank;
+
+ // after the bank, we get the rank bits which thus interleaves
+ // over the ranks
+ rank = addr % ranksPerChannel;
+ addr = addr / ranksPerChannel;
+
+ // lastly, get the row bits
+ row = addr % rowsPerBank;
+ addr = addr / rowsPerBank;
+ } else if (addrMapping == Enums::RoCoRaBaCh) {
+ // optimise for closed page mode and utilise maximum
+ // parallelism of the DRAM (at the cost of power)
+
+ // take out the channel part of the address, not that this has
+ // to match with how accesses are interleaved between the
+ // controllers in the address mapping
+ addr = addr / channels;
+
+ // start with the bank bits, as this provides the maximum
+ // opportunity for parallelism between requests
+ bank = addr % banksPerRank;
+ addr = addr / banksPerRank;
+
+ // next get the rank bits
+ rank = addr % ranksPerChannel;
+ addr = addr / ranksPerChannel;
+
+ // next the column bits which we do not need to keep track of
+ // and simply skip past
+ addr = addr / columnsPerRowBuffer;
+
+ // lastly, get the row bits
+ row = addr % rowsPerBank;
+ addr = addr / rowsPerBank;
+ } else
+ panic("Unknown address mapping policy chosen!");
+
+ assert(rank < ranksPerChannel);
+ assert(bank < banksPerRank);
+ assert(row < rowsPerBank);
+
+ DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
+ dramPktAddr, rank, bank, row);
+
+ // create the corresponding DRAM packet with the entry time and
+ // ready time set to the current tick, the latter will be updated
+ // later
+ uint16_t bank_id = banksPerRank * rank + bank;
+ return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
+ size, banks[rank][bank]);
+}
+
+void
+DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
+{
+ // only add to the read queue here. whenever the request is
+ // eventually done, set the readyTime, and call schedule()
+ assert(!pkt->isWrite());
+
+ assert(pktCount != 0);
+
+ // if the request size is larger than burst size, the pkt is split into
+ // multiple DRAM packets
+ // Note if the pkt starting address is not aligened to burst size, the
+ // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
+ // are aligned to burst size boundaries. This is to ensure we accurately
+ // check read packets against packets in write queue.
+ Addr addr = pkt->getAddr();
+ unsigned pktsServicedByWrQ = 0;
+ BurstHelper* burst_helper = NULL;
+ for (int cnt = 0; cnt < pktCount; ++cnt) {
+ unsigned size = std::min((addr | (burstSize - 1)) + 1,
+ pkt->getAddr() + pkt->getSize()) - addr;
+ readPktSize[ceilLog2(size)]++;
+ readBursts++;
+
+ // First check write buffer to see if the data is already at
+ // the controller
+ bool foundInWrQ = false;
+ for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
+ // check if the read is subsumed in the write entry we are
+ // looking at
+ if ((*i)->addr <= addr &&
+ (addr + size) <= ((*i)->addr + (*i)->size)) {
+ foundInWrQ = true;
+ servicedByWrQ++;
+ pktsServicedByWrQ++;
+ DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
+ "write queue\n", addr, size);
+ bytesReadWrQ += burstSize;
+ break;
+ }
+ }
+
+ // If not found in the write q, make a DRAM packet and
+ // push it onto the read queue
+ if (!foundInWrQ) {
+
+ // Make the burst helper for split packets
+ if (pktCount > 1 && burst_helper == NULL) {
+ DPRINTF(DRAM, "Read to addr %lld translates to %d "
+ "dram requests\n", pkt->getAddr(), pktCount);
+ burst_helper = new BurstHelper(pktCount);
+ }
+
+ DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
+ dram_pkt->burstHelper = burst_helper;
+
+ assert(!readQueueFull(1));
+ rdQLenPdf[readQueue.size() + respQueue.size()]++;
+
+ DPRINTF(DRAM, "Adding to read queue\n");
+
+ readQueue.push_back(dram_pkt);
+
+ // Update stats
+ avgRdQLen = readQueue.size() + respQueue.size();
+ }
+
+ // Starting address of next dram pkt (aligend to burstSize boundary)
+ addr = (addr | (burstSize - 1)) + 1;
+ }
+
+ // If all packets are serviced by write queue, we send the repsonse back
+ if (pktsServicedByWrQ == pktCount) {
+ accessAndRespond(pkt, frontendLatency);
+ return;
+ }
+
+ // Update how many split packets are serviced by write queue
+ if (burst_helper != NULL)
+ burst_helper->burstsServiced = pktsServicedByWrQ;
+
+ // If we are not already scheduled to get the read request out of
+ // the queue, do so now
+ if (!nextReqEvent.scheduled() && !stopReads) {
+ DPRINTF(DRAM, "Request scheduled immediately\n");
+ schedule(nextReqEvent, curTick());
+ }
+}
+
+void
+DRAMCtrl::processWriteEvent()
+{
+ assert(!writeQueue.empty());
+
+ DPRINTF(DRAM, "Beginning DRAM Write\n");
+ Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil);
+ Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt());
+
+ chooseNextWrite();
+ DRAMPacket* dram_pkt = writeQueue.front();
+ // sanity check
+ assert(dram_pkt->size <= burstSize);
+ doDRAMAccess(dram_pkt);
+
+ writeQueue.pop_front();
+ delete dram_pkt;
+
+ ++writesThisTime;
+
+ DPRINTF(DRAM, "Writing, bus busy for %lld ticks, banks busy "
+ "for %lld ticks\n", busBusyUntil - temp1, maxBankFreeAt() - temp2);
+
+ // If we emptied the write queue, or got below the threshold and
+ // are not draining, or we have reads waiting and have done enough
+ // writes, then switch to reads. The retry above could already
+ // have caused it to be scheduled, so first check
+ if (writeQueue.empty() ||
+ (writeQueue.size() < writeLowThreshold && !drainManager) ||
+ (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
+ // turn the bus back around for reads again
+ busBusyUntil += tWTR;
+ stopReads = false;
+ writesThisTime = 0;
+
+ if (!nextReqEvent.scheduled())
+ schedule(nextReqEvent, busBusyUntil);
+ } else {
+ assert(!writeEvent.scheduled());
+ DPRINTF(DRAM, "Next write scheduled at %lld\n", newTime);
+ schedule(writeEvent, newTime);
+ }
+
+ if (retryWrReq) {
+ retryWrReq = false;
+ port.sendRetry();
+ }
+
+ // if there is nothing left in any queue, signal a drain
+ if (writeQueue.empty() && readQueue.empty() &&
+ respQueue.empty () && drainManager) {
+ drainManager->signalDrainDone();
+ drainManager = NULL;
+ }
+}
+
+
+void
+DRAMCtrl::triggerWrites()
+{
+ DPRINTF(DRAM, "Writes triggered at %lld\n", curTick());
+ // Flag variable to stop any more read scheduling
+ stopReads = true;
+
+ Tick write_start_time = std::max(busBusyUntil, curTick()) + tWTR;
+
+ DPRINTF(DRAM, "Writes scheduled at %lld\n", write_start_time);
+
+ assert(write_start_time >= curTick());
+ assert(!writeEvent.scheduled());
+ schedule(writeEvent, write_start_time);
+}
+
+void
+DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
+{
+ // only add to the write queue here. whenever the request is
+ // eventually done, set the readyTime, and call schedule()
+ assert(pkt->isWrite());
+
+ // if the request size is larger than burst size, the pkt is split into
+ // multiple DRAM packets
+ Addr addr = pkt->getAddr();
+ for (int cnt = 0; cnt < pktCount; ++cnt) {
+ unsigned size = std::min((addr | (burstSize - 1)) + 1,
+ pkt->getAddr() + pkt->getSize()) - addr;
+ writePktSize[ceilLog2(size)]++;
+ writeBursts++;
+
+ // see if we can merge with an existing item in the write
+ // queue and keep track of whether we have merged or not so we
+ // can stop at that point and also avoid enqueueing a new
+ // request
+ bool merged = false;
+ auto w = writeQueue.begin();
+
+ while(!merged && w != writeQueue.end()) {
+ // either of the two could be first, if they are the same
+ // it does not matter which way we go
+ if ((*w)->addr >= addr) {
+ // the existing one starts after the new one, figure
+ // out where the new one ends with respect to the
+ // existing one
+ if ((addr + size) >= ((*w)->addr + (*w)->size)) {
+ // check if the existing one is completely
+ // subsumed in the new one
+ DPRINTF(DRAM, "Merging write covering existing burst\n");
+ merged = true;
+ // update both the address and the size
+ (*w)->addr = addr;
+ (*w)->size = size;
+ } else if ((addr + size) >= (*w)->addr &&
+ ((*w)->addr + (*w)->size - addr) <= burstSize) {
+ // the new one is just before or partially
+ // overlapping with the existing one, and together
+ // they fit within a burst
+ DPRINTF(DRAM, "Merging write before existing burst\n");
+ merged = true;
+ // the existing queue item needs to be adjusted with
+ // respect to both address and size
+ (*w)->size = (*w)->addr + (*w)->size - addr;
+ (*w)->addr = addr;
+ }
+ } else {
+ // the new one starts after the current one, figure
+ // out where the existing one ends with respect to the
+ // new one
+ if (((*w)->addr + (*w)->size) >= (addr + size)) {
+ // check if the new one is completely subsumed in the
+ // existing one
+ DPRINTF(DRAM, "Merging write into existing burst\n");
+ merged = true;
+ // no adjustments necessary
+ } else if (((*w)->addr + (*w)->size) >= addr &&
+ (addr + size - (*w)->addr) <= burstSize) {
+ // the existing one is just before or partially
+ // overlapping with the new one, and together
+ // they fit within a burst
+ DPRINTF(DRAM, "Merging write after existing burst\n");
+ merged = true;
+ // the address is right, and only the size has
+ // to be adjusted
+ (*w)->size = addr + size - (*w)->addr;
+ }
+ }
+ ++w;
+ }
+
+ // if the item was not merged we need to create a new write
+ // and enqueue it
+ if (!merged) {
+ DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
+
+ assert(writeQueue.size() < writeBufferSize);
+ wrQLenPdf[writeQueue.size()]++;
+
+ DPRINTF(DRAM, "Adding to write queue\n");
+
+ writeQueue.push_back(dram_pkt);
+
+ // Update stats
+ avgWrQLen = writeQueue.size();
+ } else {
+ // keep track of the fact that this burst effectively
+ // disappeared as it was merged with an existing one
+ mergedWrBursts++;
+ }
+
+ // Starting address of next dram pkt (aligend to burstSize boundary)
+ addr = (addr | (burstSize - 1)) + 1;
+ }
+
+ // we do not wait for the writes to be send to the actual memory,
+ // but instead take responsibility for the consistency here and
+ // snoop the write queue for any upcoming reads
+ // @todo, if a pkt size is larger than burst size, we might need a
+ // different front end latency
+ accessAndRespond(pkt, frontendLatency);
+
+ // If your write buffer is starting to fill up, drain it!
+ if (writeQueue.size() >= writeHighThreshold && !stopReads){
+ triggerWrites();
+ }
+}
+
+void
+DRAMCtrl::printParams() const
+{
+ // Sanity check print of important parameters
+ DPRINTF(DRAM,
+ "Memory controller %s physical organization\n" \
+ "Number of devices per rank %d\n" \
+ "Device bus width (in bits) %d\n" \
+ "DRAM data bus burst (bytes) %d\n" \
+ "Row buffer size (bytes) %d\n" \
+ "Columns per row buffer %d\n" \
+ "Rows per bank %d\n" \
+ "Banks per rank %d\n" \
+ "Ranks per channel %d\n" \
+ "Total mem capacity (bytes) %u\n",
+ name(), devicesPerRank, deviceBusWidth, burstSize, rowBufferSize,
+ columnsPerRowBuffer, rowsPerBank, banksPerRank, ranksPerChannel,
+ rowBufferSize * rowsPerBank * banksPerRank * ranksPerChannel);
+
+ string scheduler = memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
+ string address_mapping = addrMapping == Enums::RoRaBaChCo ? "RoRaBaChCo" :
+ (addrMapping == Enums::RoRaBaCoCh ? "RoRaBaCoCh" : "RoCoRaBaCh");
+ string page_policy = pageMgmt == Enums::open ? "OPEN" :
+ (pageMgmt == Enums::open_adaptive ? "OPEN (adaptive)" :
+ (pageMgmt == Enums::close_adaptive ? "CLOSE (adaptive)" : "CLOSE"));
+
+ DPRINTF(DRAM,
+ "Memory controller %s characteristics\n" \
+ "Read buffer size %d\n" \
+ "Write buffer size %d\n" \
+ "Write high thresh %d\n" \
+ "Write low thresh %d\n" \
+ "Scheduler %s\n" \
+ "Address mapping %s\n" \
+ "Page policy %s\n",
+ name(), readBufferSize, writeBufferSize, writeHighThreshold,
+ writeLowThreshold, scheduler, address_mapping, page_policy);
+
+ DPRINTF(DRAM, "Memory controller %s timing specs\n" \
+ "tRCD %d ticks\n" \
+ "tCL %d ticks\n" \
+ "tRP %d ticks\n" \
+ "tBURST %d ticks\n" \
+ "tRFC %d ticks\n" \
+ "tREFI %d ticks\n" \
+ "tWTR %d ticks\n" \
+ "tXAW (%d) %d ticks\n",
+ name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR,
+ activationLimit, tXAW);
+}
+
+void
+DRAMCtrl::printQs() const {
+ DPRINTF(DRAM, "===READ QUEUE===\n\n");
+ for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) {
+ DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
+ }
+ DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
+ for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) {
+ DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
+ }
+ DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
+ for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) {
+ DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
+ }
+}
+
+bool
+DRAMCtrl::recvTimingReq(PacketPtr pkt)
+{
+ /// @todo temporary hack to deal with memory corruption issues until
+ /// 4-phase transactions are complete
+ for (int x = 0; x < pendingDelete.size(); x++)
+ delete pendingDelete[x];
+ pendingDelete.clear();
+
+ // This is where we enter from the outside world
+ DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
+ pkt->cmdString(), pkt->getAddr(), pkt->getSize());
+
+ // simply drop inhibited packets for now
+ if (pkt->memInhibitAsserted()) {
+ DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
+ pendingDelete.push_back(pkt);
+ return true;
+ }
+
+ // Calc avg gap between requests
+ if (prevArrival != 0) {
+ totGap += curTick() - prevArrival;
+ }
+ prevArrival = curTick();
+
+
+ // Find out how many dram packets a pkt translates to
+ // If the burst size is equal or larger than the pkt size, then a pkt
+ // translates to only one dram packet. Otherwise, a pkt translates to
+ // multiple dram packets
+ unsigned size = pkt->getSize();
+ unsigned offset = pkt->getAddr() & (burstSize - 1);
+ unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
+
+ // check local buffers and do not accept if full
+ if (pkt->isRead()) {
+ assert(size != 0);
+ if (readQueueFull(dram_pkt_count)) {
+ DPRINTF(DRAM, "Read queue full, not accepting\n");
+ // remember that we have to retry this port
+ retryRdReq = true;
+ numRdRetry++;
+ return false;
+ } else {
+ addToReadQueue(pkt, dram_pkt_count);
+ readReqs++;
+ bytesReadSys += size;
+ }
+ } else if (pkt->isWrite()) {
+ assert(size != 0);
+ if (writeQueueFull(dram_pkt_count)) {
+ DPRINTF(DRAM, "Write queue full, not accepting\n");
+ // remember that we have to retry this port
+ retryWrReq = true;
+ numWrRetry++;
+ return false;
+ } else {
+ addToWriteQueue(pkt, dram_pkt_count);
+ writeReqs++;
+ bytesWrittenSys += size;
+ }
+ } else {
+ DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
+ neitherReadNorWrite++;
+ accessAndRespond(pkt, 1);
+ }
+
+ return true;
+}
+
+void
+DRAMCtrl::processRespondEvent()
+{
+ DPRINTF(DRAM,
+ "processRespondEvent(): Some req has reached its readyTime\n");
+
+ DRAMPacket* dram_pkt = respQueue.front();
+
+ if (dram_pkt->burstHelper) {
+ // it is a split packet
+ dram_pkt->burstHelper->burstsServiced++;
+ if (dram_pkt->burstHelper->burstsServiced ==
+ dram_pkt->burstHelper->burstCount) {
+ // we have now serviced all children packets of a system packet
+ // so we can now respond to the requester
+ // @todo we probably want to have a different front end and back
+ // end latency for split packets
+ accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
+ delete dram_pkt->burstHelper;
+ dram_pkt->burstHelper = NULL;
+ }
+ } else {
+ // it is not a split packet
+ accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
+ }
+
+ delete respQueue.front();
+ respQueue.pop_front();
+
+ if (!respQueue.empty()) {
+ assert(respQueue.front()->readyTime >= curTick());
+ assert(!respondEvent.scheduled());
+ schedule(respondEvent, respQueue.front()->readyTime);
+ } else {
+ // if there is nothing left in any queue, signal a drain
+ if (writeQueue.empty() && readQueue.empty() &&
+ drainManager) {
+ drainManager->signalDrainDone();
+ drainManager = NULL;
+ }
+ }
+
+ // We have made a location in the queue available at this point,
+ // so if there is a read that was forced to wait, retry now
+ if (retryRdReq) {
+ retryRdReq = false;
+ port.sendRetry();
+ }
+}
+
+void
+DRAMCtrl::chooseNextWrite()
+{
+ // This method does the arbitration between write requests. The
+ // chosen packet is simply moved to the head of the write
+ // queue. The other methods know that this is the place to
+ // look. For example, with FCFS, this method does nothing
+ assert(!writeQueue.empty());
+
+ if (writeQueue.size() == 1) {
+ DPRINTF(DRAM, "Single write request, nothing to do\n");
+ return;
+ }
+
+ if (memSchedPolicy == Enums::fcfs) {
+ // Do nothing, since the correct request is already head
+ } else if (memSchedPolicy == Enums::frfcfs) {
+ reorderQueue(writeQueue);
+ } else
+ panic("No scheduling policy chosen\n");
+
+ DPRINTF(DRAM, "Selected next write request\n");
+}
+
+bool
+DRAMCtrl::chooseNextRead()
+{
+ // This method does the arbitration between read requests. The
+ // chosen packet is simply moved to the head of the queue. The
+ // other methods know that this is the place to look. For example,
+ // with FCFS, this method does nothing
+ if (readQueue.empty()) {
+ DPRINTF(DRAM, "No read request to select\n");
+ return false;
+ }
+
+ // If there is only one request then there is nothing left to do
+ if (readQueue.size() == 1)
+ return true;
+
+ if (memSchedPolicy == Enums::fcfs) {
+ // Do nothing, since the request to serve is already the first
+ // one in the read queue
+ } else if (memSchedPolicy == Enums::frfcfs) {
+ reorderQueue(readQueue);
+ } else
+ panic("No scheduling policy chosen!\n");
+
+ DPRINTF(DRAM, "Selected next read request\n");
+ return true;
+}
+
+void
+DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue)
+{
+ // Only determine this when needed
+ uint64_t earliest_banks = 0;
+
+ // Search for row hits first, if no row hit is found then schedule the
+ // packet to one of the earliest banks available
+ bool found_earliest_pkt = false;
+ auto selected_pkt_it = queue.begin();
+
+ for (auto i = queue.begin(); i != queue.end() ; ++i) {
+ DRAMPacket* dram_pkt = *i;
+ const Bank& bank = dram_pkt->bankRef;
+ // Check if it is a row hit
+ if (bank.openRow == dram_pkt->row) {
+ DPRINTF(DRAM, "Row buffer hit\n");
+ selected_pkt_it = i;
+ break;
+ } else if (!found_earliest_pkt) {
+ // No row hit, go for first ready
+ if (earliest_banks == 0)
+ earliest_banks = minBankFreeAt(queue);
+
+ // Bank is ready or is the first available bank
+ if (bank.freeAt <= curTick() ||
+ bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
+ // Remember the packet to be scheduled to one of the earliest
+ // banks available
+ selected_pkt_it = i;
+ found_earliest_pkt = true;
+ }
+ }
+ }
+
+ DRAMPacket* selected_pkt = *selected_pkt_it;
+ queue.erase(selected_pkt_it);
+ queue.push_front(selected_pkt);
+}
+
+void
+DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
+{
+ DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
+
+ bool needsResponse = pkt->needsResponse();
+ // do the actual memory access which also turns the packet into a
+ // response
+ access(pkt);
+
+ // turn packet around to go back to requester if response expected
+ if (needsResponse) {
+ // access already turned the packet into a response
+ assert(pkt->isResponse());
+
+ // @todo someone should pay for this
+ pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
+
+ // queue the packet in the response queue to be sent out after
+ // the static latency has passed
+ port.schedTimingResp(pkt, curTick() + static_latency);
+ } else {
+ // @todo the packet is going to be deleted, and the DRAMPacket
+ // is still having a pointer to it
+ pendingDelete.push_back(pkt);
+ }
+
+ DPRINTF(DRAM, "Done\n");
+
+ return;
+}
+
+pair<Tick, Tick>
+DRAMCtrl::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
+{
+ // If a request reaches a bank at tick 'inTime', how much time
+ // *after* that does it take to finish the request, depending
+ // on bank status and page open policy. Note that this method
+ // considers only the time taken for the actual read or write
+ // to complete, NOT any additional time thereafter for tRAS or
+ // tRP.
+ Tick accLat = 0;
+ Tick bankLat = 0;
+ rowHitFlag = false;
+ Tick potentialActTick;
+
+ const Bank& bank = dram_pkt->bankRef;
+ // open-page policy or close_adaptive policy
+ if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive ||
+ pageMgmt == Enums::close_adaptive) {
+ if (bank.openRow == dram_pkt->row) {
+ // When we have a row-buffer hit,
+ // we don't care about tRAS having expired or not,
+ // but do care about bank being free for access
+ rowHitFlag = true;
+
+ // When a series of requests arrive to the same row,
+ // DDR systems are capable of streaming data continuously
+ // at maximum bandwidth (subject to tCCD). Here, we approximate
+ // this condition, and assume that if whenever a bank is already
+ // busy and a new request comes in, it can be completed with no
+ // penalty beyond waiting for the existing read to complete.
+ if (bank.freeAt > inTime) {
+ accLat += bank.freeAt - inTime;
+ bankLat += 0;
+ } else {
+ // CAS latency only
+ accLat += tCL;
+ bankLat += tCL;
+ }
+
+ } else {
+ // Row-buffer miss, need to close existing row
+ // once tRAS has expired, then open the new one,
+ // then add cas latency.
+ Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
+
+ if (freeTime > inTime)
+ accLat += freeTime - inTime;
+
+ // If the there is no open row (open adaptive), then there
+ // is no precharge delay, otherwise go with tRP
+ Tick precharge_delay = bank.openRow == -1 ? 0 : tRP;
+
+ //The bank is free, and you may be able to activate
+ potentialActTick = inTime + accLat + precharge_delay;
+ if (potentialActTick < bank.actAllowedAt)
+ accLat += bank.actAllowedAt - potentialActTick;
+
+ accLat += precharge_delay + tRCD + tCL;
+ bankLat += precharge_delay + tRCD + tCL;
+ }
+ } else if (pageMgmt == Enums::close) {
+ // With a close page policy, no notion of
+ // bank.tRASDoneAt
+ if (bank.freeAt > inTime)
+ accLat += bank.freeAt - inTime;
+
+ //The bank is free, and you may be able to activate
+ potentialActTick = inTime + accLat;
+ if (potentialActTick < bank.actAllowedAt)
+ accLat += bank.actAllowedAt - potentialActTick;
+
+ // page already closed, simply open the row, and
+ // add cas latency
+ accLat += tRCD + tCL;
+ bankLat += tRCD + tCL;
+ } else
+ panic("No page management policy chosen\n");
+
+ DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n",
+ bankLat, accLat);
+
+ return make_pair(bankLat, accLat);
+}
+
+void
+DRAMCtrl::processNextReqEvent()
+{
+ scheduleNextReq();
+}
+
+void
+DRAMCtrl::recordActivate(Tick act_tick, uint8_t rank, uint8_t bank)
+{
+ assert(0 <= rank && rank < ranksPerChannel);
+ assert(actTicks[rank].size() == activationLimit);
+
+ DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
+
+ // Tracking accesses after all banks are precharged.
+ // startTickPrechargeAll: is the tick when all the banks were again
+ // precharged. The difference between act_tick and startTickPrechargeAll
+ // gives the time for which DRAM doesn't get any accesses after refreshing
+ // or after a page is closed in closed-page or open-adaptive-page policy.
+ if ((numBanksActive == 0) && (act_tick > startTickPrechargeAll)) {
+ prechargeAllTime += act_tick - startTickPrechargeAll;
+ }
+
+ // No need to update number of active banks for closed-page policy as only 1
+ // bank will be activated at any given point, which will be instatntly
+ // precharged
+ if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive ||
+ pageMgmt == Enums::close_adaptive)
+ ++numBanksActive;
+
+ // start by enforcing tRRD
+ for(int i = 0; i < banksPerRank; i++) {
+ // next activate must not happen before tRRD
+ banks[rank][i].actAllowedAt = act_tick + tRRD;
+ }
+ // tRC should be added to activation tick of the bank currently accessed,
+ // where tRC = tRAS + tRP, this is just for a check as actAllowedAt for same
+ // bank is already captured by bank.freeAt and bank.tRASDoneAt
+ banks[rank][bank].actAllowedAt = act_tick + tRAS + tRP;
+
+ // next, we deal with tXAW, if the activation limit is disabled
+ // then we are done
+ if (actTicks[rank].empty())
+ return;
+
+ // sanity check
+ if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
+ // @todo For now, stick with a warning
+ warn("Got %d activates in window %d (%d - %d) which is smaller "
+ "than %d\n", activationLimit, act_tick - actTicks[rank].back(),
+ act_tick, actTicks[rank].back(), tXAW);
+ }
+
+ // shift the times used for the book keeping, the last element
+ // (highest index) is the oldest one and hence the lowest value
+ actTicks[rank].pop_back();
+
+ // record an new activation (in the future)
+ actTicks[rank].push_front(act_tick);
+
+ // cannot activate more than X times in time window tXAW, push the
+ // next one (the X + 1'st activate) to be tXAW away from the
+ // oldest in our window of X
+ if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
+ DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
+ "than %d\n", activationLimit, actTicks[rank].back() + tXAW);
+ for(int j = 0; j < banksPerRank; j++)
+ // next activate must not happen before end of window
+ banks[rank][j].actAllowedAt = actTicks[rank].back() + tXAW;
+ }
+}
+
+void
+DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
+{
+
+ DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
+ dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
+
+ // estimate the bank and access latency
+ pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
+ Tick bankLat = lat.first;
+ Tick accessLat = lat.second;
+ Tick actTick;
+
+ // This request was woken up at this time based on a prior call
+ // to estimateLatency(). However, between then and now, both the
+ // accessLatency and/or busBusyUntil may have changed. We need
+ // to correct for that.
+
+ Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
+ busBusyUntil - (curTick() + accessLat) : 0;
+
+ Bank& bank = dram_pkt->bankRef;
+
+ // Update bank state
+ if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive ||
+ pageMgmt == Enums::close_adaptive) {
+ bank.freeAt = curTick() + addDelay + accessLat;
+
+ // If you activated a new row do to this access, the next access
+ // will have to respect tRAS for this bank.
+ if (!rowHitFlag) {
+ // any waiting for banks account for in freeAt
+ actTick = bank.freeAt - tCL - tRCD;
+ bank.tRASDoneAt = actTick + tRAS;
+ recordActivate(actTick, dram_pkt->rank, dram_pkt->bank);
+
+ // if we closed an open row as a result of this access,
+ // then sample the number of bytes accessed before
+ // resetting it
+ if (bank.openRow != -1)
+ bytesPerActivate.sample(bank.bytesAccessed);
+
+ // update the open row
+ bank.openRow = dram_pkt->row;
+
+ // start counting anew, this covers both the case when we
+ // auto-precharged, and when this access is forced to
+ // precharge
+ bank.bytesAccessed = 0;
+ bank.rowAccesses = 0;
+ }
+
+ // increment the bytes accessed and the accesses per row
+ bank.bytesAccessed += burstSize;
+ ++bank.rowAccesses;
+
+ // if we reached the max, then issue with an auto-precharge
+ bool auto_precharge = bank.rowAccesses == maxAccessesPerRow;
+
+ // if we did not hit the limit, we might still want to
+ // auto-precharge
+ if (!auto_precharge &&
+ (pageMgmt == Enums::open_adaptive ||
+ pageMgmt == Enums::close_adaptive)) {
+ // a twist on the open and close page policies:
+ // 1) open_adaptive page policy does not blindly keep the
+ // page open, but close it if there are no row hits, and there
+ // are bank conflicts in the queue
+ // 2) close_adaptive page policy does not blindly close the
+ // page, but closes it only if there are no row hits in the queue.
+ // In this case, only force an auto precharge when there
+ // are no same page hits in the queue
+ bool got_more_hits = false;
+ bool got_bank_conflict = false;
+
+ // either look at the read queue or write queue
+ const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
+ writeQueue;
+ auto p = queue.begin();
+ // make sure we are not considering the packet that we are
+ // currently dealing with (which is the head of the queue)
+ ++p;
+
+ // keep on looking until we have found required condition or
+ // reached the end
+ while (!(got_more_hits &&
+ (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
+ p != queue.end()) {
+ bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
+ (dram_pkt->bank == (*p)->bank);
+ bool same_row = dram_pkt->row == (*p)->row;
+ got_more_hits |= same_rank_bank && same_row;
+ got_bank_conflict |= same_rank_bank && !same_row;
+ ++p;
+ }
+
+ // auto pre-charge when either
+ // 1) open_adaptive policy, we have not got any more hits, and
+ // have a bank conflict
+ // 2) close_adaptive policy and we have not got any more hits
+ auto_precharge = !got_more_hits &&
+ (got_bank_conflict || pageMgmt == Enums::close_adaptive);
+ }
+
+ // if this access should use auto-precharge, then we are
+ // closing the row
+ if (auto_precharge) {
+ bank.openRow = -1;
+ bank.freeAt = std::max(bank.freeAt, bank.tRASDoneAt) + tRP;
+ --numBanksActive;
+ if (numBanksActive == 0) {
+ startTickPrechargeAll = std::max(startTickPrechargeAll,
+ bank.freeAt);
+ DPRINTF(DRAM, "All banks precharged at tick: %ld\n",
+ startTickPrechargeAll);
+ }
+
+ // sample the bytes per activate here since we are closing
+ // the page
+ bytesPerActivate.sample(bank.bytesAccessed);
+
+ DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
+ }
+
+ DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt);
+ } else if (pageMgmt == Enums::close) {
+ actTick = curTick() + addDelay + accessLat - tRCD - tCL;
+ recordActivate(actTick, dram_pkt->rank, dram_pkt->bank);
+
+ // If the DRAM has a very quick tRAS, bank can be made free
+ // after consecutive tCL,tRCD,tRP times. In general, however,
+ // an additional wait is required to respect tRAS.
+ bank.freeAt = std::max(actTick + tRAS + tRP,
+ actTick + tRCD + tCL + tRP);
+ DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt);
+ bytesPerActivate.sample(burstSize);
+ startTickPrechargeAll = std::max(startTickPrechargeAll, bank.freeAt);
+ } else
+ panic("No page management policy chosen\n");
+
+ // Update request parameters
+ dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
+
+
+ DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
+ "readytime is %lld busbusyuntil is %lld. " \
+ "Scheduling at readyTime\n", dram_pkt->addr,
+ curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
+
+ // Make sure requests are not overlapping on the databus
+ assert (dram_pkt->readyTime - busBusyUntil >= tBURST);
+
+ // Update bus state
+ busBusyUntil = dram_pkt->readyTime;
+
+ DPRINTF(DRAM,"Access time is %lld\n",
+ dram_pkt->readyTime - dram_pkt->entryTime);
+
+ // Update the minimum timing between the requests
+ newTime = (busBusyUntil > tRP + tRCD + tCL) ?
+ std::max(busBusyUntil - (tRP + tRCD + tCL), curTick()) : curTick();
+
+ // Update the access related stats
+ if (dram_pkt->isRead) {
+ if (rowHitFlag)
+ readRowHits++;
+ bytesReadDRAM += burstSize;
+ perBankRdBursts[dram_pkt->bankId]++;
+ } else {
+ if (rowHitFlag)
+ writeRowHits++;
+ bytesWritten += burstSize;
+ perBankWrBursts[dram_pkt->bankId]++;
+
+ // At this point, commonality between reads and writes ends.
+ // For writes, we are done since we long ago responded to the
+ // requestor.
+ return;
+ }
+
+ // Update latency stats
+ totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
+ totBankLat += bankLat;
+ totBusLat += tBURST;
+ totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST;
+
+
+ // At this point we're done dealing with the request
+ // It will be moved to a separate response queue with a
+ // correct readyTime, and eventually be sent back at that
+ //time
+ moveToRespQ();
+
+ // Schedule the next read event
+ if (!nextReqEvent.scheduled() && !stopReads) {
+ schedule(nextReqEvent, newTime);
+ } else {
+ if (newTime < nextReqEvent.when())
+ reschedule(nextReqEvent, newTime);
+ }
+}
+
+void
+DRAMCtrl::moveToRespQ()
+{
+ // Remove from read queue
+ DRAMPacket* dram_pkt = readQueue.front();
+ readQueue.pop_front();
+
+ // sanity check
+ assert(dram_pkt->size <= burstSize);
+
+ // Insert into response queue sorted by readyTime
+ // It will be sent back to the requestor at its
+ // readyTime
+ if (respQueue.empty()) {
+ respQueue.push_front(dram_pkt);
+ assert(!respondEvent.scheduled());
+ assert(dram_pkt->readyTime >= curTick());
+ schedule(respondEvent, dram_pkt->readyTime);
+ } else {
+ bool done = false;
+ auto i = respQueue.begin();
+ while (!done && i != respQueue.end()) {
+ if ((*i)->readyTime > dram_pkt->readyTime) {
+ respQueue.insert(i, dram_pkt);
+ done = true;
+ }
+ ++i;
+ }
+
+ if (!done)
+ respQueue.push_back(dram_pkt);
+
+ assert(respondEvent.scheduled());
+
+ if (respQueue.front()->readyTime < respondEvent.when()) {
+ assert(respQueue.front()->readyTime >= curTick());
+ reschedule(respondEvent, respQueue.front()->readyTime);
+ }
+ }
+}
+
+void
+DRAMCtrl::scheduleNextReq()
+{
+ DPRINTF(DRAM, "Reached scheduleNextReq()\n");
+
+ // Figure out which read request goes next, and move it to the
+ // front of the read queue
+ if (!chooseNextRead()) {
+ // In the case there is no read request to go next, trigger
+ // writes if we have passed the low threshold (or if we are
+ // draining)
+ if (!writeQueue.empty() && !writeEvent.scheduled() &&
+ (writeQueue.size() > writeLowThreshold || drainManager))
+ triggerWrites();
+ } else {
+ doDRAMAccess(readQueue.front());
+ }
+}
+
+Tick
+DRAMCtrl::maxBankFreeAt() const
+{
+ Tick banksFree = 0;
+
+ for(int i = 0; i < ranksPerChannel; i++)
+ for(int j = 0; j < banksPerRank; j++)
+ banksFree = std::max(banks[i][j].freeAt, banksFree);
+
+ return banksFree;
+}
+
+uint64_t
+DRAMCtrl::minBankFreeAt(const deque<DRAMPacket*>& queue) const
+{
+ uint64_t bank_mask = 0;
+ Tick freeAt = MaxTick;
+
+ // detemrine if we have queued transactions targetting the
+ // bank in question
+ vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
+ for (auto p = queue.begin(); p != queue.end(); ++p) {
+ got_waiting[(*p)->bankId] = true;
+ }
+
+ for (int i = 0; i < ranksPerChannel; i++) {
+ for (int j = 0; j < banksPerRank; j++) {
+ // if we have waiting requests for the bank, and it is
+ // amongst the first available, update the mask
+ if (got_waiting[i * banksPerRank + j] &&
+ banks[i][j].freeAt <= freeAt) {
+ // reset bank mask if new minimum is found
+ if (banks[i][j].freeAt < freeAt)
+ bank_mask = 0;
+ // set the bit corresponding to the available bank
+ uint8_t bit_index = i * ranksPerChannel + j;
+ replaceBits(bank_mask, bit_index, bit_index, 1);
+ freeAt = banks[i][j].freeAt;
+ }
+ }
+ }
+ return bank_mask;
+}
+
+void
+DRAMCtrl::processRefreshEvent()
+{
+ DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick());
+
+ Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC;
+
+ for(int i = 0; i < ranksPerChannel; i++)
+ for(int j = 0; j < banksPerRank; j++) {
+ banks[i][j].freeAt = banksFree;
+ banks[i][j].openRow = -1;
+ }
+
+ // updating startTickPrechargeAll, isprechargeAll
+ numBanksActive = 0;
+ startTickPrechargeAll = banksFree;
+
+ schedule(refreshEvent, curTick() + tREFI);
+}
+
+void
+DRAMCtrl::regStats()
+{
+ using namespace Stats;
+
+ AbstractMemory::regStats();
+
+ readReqs
+ .name(name() + ".readReqs")
+ .desc("Number of read requests accepted");
+
+ writeReqs
+ .name(name() + ".writeReqs")
+ .desc("Number of write requests accepted");
+
+ readBursts
+ .name(name() + ".readBursts")
+ .desc("Number of DRAM read bursts, "
+ "including those serviced by the write queue");
+
+ writeBursts
+ .name(name() + ".writeBursts")
+ .desc("Number of DRAM write bursts, "
+ "including those merged in the write queue");
+
+ servicedByWrQ
+ .name(name() + ".servicedByWrQ")
+ .desc("Number of DRAM read bursts serviced by the write queue");
+
+ mergedWrBursts
+ .name(name() + ".mergedWrBursts")
+ .desc("Number of DRAM write bursts merged with an existing one");
+
+ neitherReadNorWrite
+ .name(name() + ".neitherReadNorWriteReqs")
+ .desc("Number of requests that are neither read nor write");
+
+ perBankRdBursts
+ .init(banksPerRank * ranksPerChannel)
+ .name(name() + ".perBankRdBursts")
+ .desc("Per bank write bursts");
+
+ perBankWrBursts
+ .init(banksPerRank * ranksPerChannel)
+ .name(name() + ".perBankWrBursts")
+ .desc("Per bank write bursts");
+
+ avgRdQLen
+ .name(name() + ".avgRdQLen")
+ .desc("Average read queue length when enqueuing")
+ .precision(2);
+
+ avgWrQLen
+ .name(name() + ".avgWrQLen")
+ .desc("Average write queue length when enqueuing")
+ .precision(2);
+
+ totQLat
+ .name(name() + ".totQLat")
+ .desc("Total ticks spent queuing");
+
+ totBankLat
+ .name(name() + ".totBankLat")
+ .desc("Total ticks spent accessing banks");
+
+ totBusLat
+ .name(name() + ".totBusLat")
+ .desc("Total ticks spent in databus transfers");
+
+ totMemAccLat
+ .name(name() + ".totMemAccLat")
+ .desc("Total ticks spent from burst creation until serviced "
+ "by the DRAM");
+
+ avgQLat
+ .name(name() + ".avgQLat")
+ .desc("Average queueing delay per DRAM burst")
+ .precision(2);
+
+ avgQLat = totQLat / (readBursts - servicedByWrQ);
+
+ avgBankLat
+ .name(name() + ".avgBankLat")
+ .desc("Average bank access latency per DRAM burst")
+ .precision(2);
+
+ avgBankLat = totBankLat / (readBursts - servicedByWrQ);
+
+ avgBusLat
+ .name(name() + ".avgBusLat")
+ .desc("Average bus latency per DRAM burst")
+ .precision(2);
+
+ avgBusLat = totBusLat / (readBursts - servicedByWrQ);
+
+ avgMemAccLat
+ .name(name() + ".avgMemAccLat")
+ .desc("Average memory access latency per DRAM burst")
+ .precision(2);
+
+ avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
+
+ numRdRetry
+ .name(name() + ".numRdRetry")
+ .desc("Number of times read queue was full causing retry");
+
+ numWrRetry
+ .name(name() + ".numWrRetry")
+ .desc("Number of times write queue was full causing retry");
+
+ readRowHits
+ .name(name() + ".readRowHits")
+ .desc("Number of row buffer hits during reads");
+
+ writeRowHits
+ .name(name() + ".writeRowHits")
+ .desc("Number of row buffer hits during writes");
+
+ readRowHitRate
+ .name(name() + ".readRowHitRate")
+ .desc("Row buffer hit rate for reads")
+ .precision(2);
+
+ readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
+
+ writeRowHitRate
+ .name(name() + ".writeRowHitRate")
+ .desc("Row buffer hit rate for writes")
+ .precision(2);
+
+ writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
+
+ readPktSize
+ .init(ceilLog2(burstSize) + 1)
+ .name(name() + ".readPktSize")
+ .desc("Read request sizes (log2)");
+
+ writePktSize
+ .init(ceilLog2(burstSize) + 1)
+ .name(name() + ".writePktSize")
+ .desc("Write request sizes (log2)");
+
+ rdQLenPdf
+ .init(readBufferSize)
+ .name(name() + ".rdQLenPdf")
+ .desc("What read queue length does an incoming req see");
+
+ wrQLenPdf
+ .init(writeBufferSize)
+ .name(name() + ".wrQLenPdf")
+ .desc("What write queue length does an incoming req see");
+
+ bytesPerActivate
+ .init(maxAccessesPerRow)
+ .name(name() + ".bytesPerActivate")
+ .desc("Bytes accessed per row activation")
+ .flags(nozero);
+
+ bytesReadDRAM
+ .name(name() + ".bytesReadDRAM")
+ .desc("Total number of bytes read from DRAM");
+
+ bytesReadWrQ
+ .name(name() + ".bytesReadWrQ")
+ .desc("Total number of bytes read from write queue");
+
+ bytesWritten
+ .name(name() + ".bytesWritten")
+ .desc("Total number of bytes written to DRAM");
+
+ bytesReadSys
+ .name(name() + ".bytesReadSys")
+ .desc("Total read bytes from the system interface side");
+
+ bytesWrittenSys
+ .name(name() + ".bytesWrittenSys")
+ .desc("Total written bytes from the system interface side");
+
+ avgRdBW
+ .name(name() + ".avgRdBW")
+ .desc("Average DRAM read bandwidth in MiByte/s")
+ .precision(2);
+
+ avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
+
+ avgWrBW
+ .name(name() + ".avgWrBW")
+ .desc("Average achieved write bandwidth in MiByte/s")
+ .precision(2);
+
+ avgWrBW = (bytesWritten / 1000000) / simSeconds;
+
+ avgRdBWSys
+ .name(name() + ".avgRdBWSys")
+ .desc("Average system read bandwidth in MiByte/s")
+ .precision(2);
+
+ avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
+
+ avgWrBWSys
+ .name(name() + ".avgWrBWSys")
+ .desc("Average system write bandwidth in MiByte/s")
+ .precision(2);
+
+ avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
+
+ peakBW
+ .name(name() + ".peakBW")
+ .desc("Theoretical peak bandwidth in MiByte/s")
+ .precision(2);
+
+ peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
+
+ busUtil
+ .name(name() + ".busUtil")
+ .desc("Data bus utilization in percentage")
+ .precision(2);
+
+ busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
+
+ totGap
+ .name(name() + ".totGap")
+ .desc("Total gap between requests");
+
+ avgGap
+ .name(name() + ".avgGap")
+ .desc("Average gap between requests")
+ .precision(2);
+
+ avgGap = totGap / (readReqs + writeReqs);
+
+ // Stats for DRAM Power calculation based on Micron datasheet
+ busUtilRead
+ .name(name() + ".busUtilRead")
+ .desc("Data bus utilization in percentage for reads")
+ .precision(2);
+
+ busUtilRead = avgRdBW / peakBW * 100;
+
+ busUtilWrite
+ .name(name() + ".busUtilWrite")
+ .desc("Data bus utilization in percentage for writes")
+ .precision(2);
+
+ busUtilWrite = avgWrBW / peakBW * 100;
+
+ pageHitRate
+ .name(name() + ".pageHitRate")
+ .desc("Row buffer hit rate, read and write combined")
+ .precision(2);
+
+ pageHitRate = (writeRowHits + readRowHits) /
+ (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
+
+ prechargeAllPercent
+ .name(name() + ".prechargeAllPercent")
+ .desc("Percentage of time for which DRAM has all the banks in "
+ "precharge state")
+ .precision(2);
+
+ prechargeAllPercent = prechargeAllTime / simTicks * 100;
+}
+
+void
+DRAMCtrl::recvFunctional(PacketPtr pkt)
+{
+ // rely on the abstract memory
+ functionalAccess(pkt);
+}
+
+BaseSlavePort&
+DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
+{
+ if (if_name != "port") {
+ return MemObject::getSlavePort(if_name, idx);
+ } else {
+ return port;
+ }
+}
+
+unsigned int
+DRAMCtrl::drain(DrainManager *dm)
+{
+ unsigned int count = port.drain(dm);
+
+ // if there is anything in any of our internal queues, keep track
+ // of that as well
+ if (!(writeQueue.empty() && readQueue.empty() &&
+ respQueue.empty())) {
+ DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
+ " resp: %d\n", writeQueue.size(), readQueue.size(),
+ respQueue.size());
+ ++count;
+ drainManager = dm;
+ // the only part that is not drained automatically over time
+ // is the write queue, thus trigger writes if there are any
+ // waiting and no reads waiting, otherwise wait until the
+ // reads are done
+ if (readQueue.empty() && !writeQueue.empty() &&
+ !writeEvent.scheduled())
+ triggerWrites();
+ }
+
+ if (count)
+ setDrainState(Drainable::Draining);
+ else
+ setDrainState(Drainable::Drained);
+ return count;
+}
+
+DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
+ : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
+ memory(_memory)
+{ }
+
+AddrRangeList
+DRAMCtrl::MemoryPort::getAddrRanges() const
+{
+ AddrRangeList ranges;
+ ranges.push_back(memory.getAddrRange());
+ return ranges;
+}
+
+void
+DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
+{
+ pkt->pushLabel(memory.name());
+
+ if (!queue.checkFunctional(pkt)) {
+ // Default implementation of SimpleTimingPort::recvFunctional()
+ // calls recvAtomic() and throws away the latency; we can save a
+ // little here by just not calculating the latency.
+ memory.recvFunctional(pkt);
+ }
+
+ pkt->popLabel();
+}
+
+Tick
+DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
+{
+ return memory.recvAtomic(pkt);
+}
+
+bool
+DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
+{
+ // pass it to the memory controller
+ return memory.recvTimingReq(pkt);
+}
+
+DRAMCtrl*
+DRAMCtrlParams::create()
+{
+ return new DRAMCtrl(this);
+}