diff options
Diffstat (limited to 'src/mem/mem_checker.hh')
-rw-r--r-- | src/mem/mem_checker.hh | 568 |
1 files changed, 568 insertions, 0 deletions
diff --git a/src/mem/mem_checker.hh b/src/mem/mem_checker.hh new file mode 100644 index 000000000..0ec0f08df --- /dev/null +++ b/src/mem/mem_checker.hh @@ -0,0 +1,568 @@ +/* + * Copyright (c) 2014 ARM Limited + * All rights reserved. + * + * The license below extends only to copyright in the software and shall + * not be construed as granting a license to any other intellectual + * property including but not limited to intellectual property relating + * to a hardware implementation of the functionality of the software + * licensed hereunder. You may use the software subject to the license + * terms below provided that you ensure that this notice is replicated + * unmodified and in its entirety in all distributions of the software, + * modified or unmodified, in source code or in binary form. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are + * met: redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer; + * redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution; + * neither the name of the copyright holders nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * Authors: Rune Holm + * Marco Elver + */ + +#ifndef __MEM_MEM_CHECKER_HH__ +#define __MEM_MEM_CHECKER_HH__ + +#include <list> +#include <map> +#include <string> +#include <vector> + +#include "base/hashmap.hh" +#include "base/misc.hh" +#include "base/types.hh" +#include "debug/MemChecker.hh" +#include "params/MemChecker.hh" +#include "sim/core.hh" +#include "sim/sim_object.hh" + +/** + * MemChecker. Verifies that reads observe the values from permissible writes. + * As memory operations have a start and completion time, we consider them as + * transactions which have a start and end time. Because of this, the lifetimes + * of transactions of memory operations may be overlapping -- we assume that if + * there is overlap between writes, they could be reordered by the memory + * subsystem, and a read could any of these. For more detail, see comments of + * inExpectedData(). + * + * For simplicity, the permissible values a read can observe are only dependent + * on the particular location, and we do not consider the effect of multi-byte + * reads or writes. This precludes us from discovering single-copy atomicity + * violations. +*/ +class MemChecker : public SimObject +{ + public: + /** + * The Serial type is used to be able to uniquely identify a transaction as + * it passes through the system. It's value is independent of any other + * system counters. + */ + typedef uint64_t Serial; + + static const Serial SERIAL_INITIAL = 0; //!< Initial serial + + /** + * The initial tick the system starts with. Must not be larger than the + * minimum value that curTick() could return at any time in the system's + * execution. + */ + static const Tick TICK_INITIAL = 0; + + /** + * The maximum value that curTick() could ever return. + */ + static const Tick TICK_FUTURE = MaxTick; + + /** + * Initial data value. No requirements. + */ + static const uint8_t DATA_INITIAL = 0x00; + + /** + * The Transaction class captures the lifetimes of read and write + * operations, and the values they consumed or produced respectively. + */ + class Transaction + { + public: + + Transaction(Serial _serial, + Tick _start, Tick _complete, + uint8_t _data = DATA_INITIAL) + : serial(_serial), + start(_start), complete(_complete), + data(_data) + {} + + public: + Serial serial; //!< Unique identifying serial + Tick start; //!< Start tick + Tick complete; //!< Completion tick + + /** + * Depending on the memory operation, the data value either represents: + * for writes, the value written upon start; for reads, the value read + * upon completion. + */ + uint8_t data; + + /** + * Orders Transactions for use with std::map. + */ + bool operator<(const Transaction& rhs) const + { return serial < rhs.serial; } + }; + + /** + * The WriteCluster class captures sets of writes where all writes are + * overlapping with at least one other write. Capturing writes in this way + * simplifies pruning of writes. + */ + class WriteCluster + { + public: + WriteCluster() + : start(TICK_FUTURE), complete(TICK_FUTURE), + completeMax(TICK_INITIAL), numIncomplete(0) + {} + + /** + * Starts a write transaction. + * + * @param serial Unique identifier of the write. + * @param _start When the write was sent off to the memory subsystem. + * @param data The data that this write passed to the memory + * subsystem. + */ + void startWrite(Serial serial, Tick _start, uint8_t data); + + /** + * Completes a write transaction. + * + * @param serial Unique identifier of a write *previously started*. + * @param _complete When the write was sent off to the memory + * subsystem. + */ + void completeWrite(Serial serial, Tick _complete); + + /** + * Aborts a write transaction. + * + * @param serial Unique identifier of a write *previously started*. + */ + void abortWrite(Serial serial); + + /** + * @return true if this cluster's write all completed, false otherwise. + */ + bool isComplete() const { return complete != TICK_FUTURE; } + + public: + Tick start; //!< Start of earliest write in cluster + Tick complete; //!< Completion of last write in cluster + + /** + * Map of Serial --> Transaction of all writes in cluster; contains + * all, in-flight or already completed. + */ + m5::hash_map<Serial, Transaction> writes; + + private: + Tick completeMax; + size_t numIncomplete; + }; + + typedef std::list<Transaction> TransactionList; + typedef std::list<WriteCluster> WriteClusterList; + + /** + * The ByteTracker keeps track of transactions for the *same byte* -- all + * outstanding reads, the completed reads (and what they observed) and write + * clusters (see WriteCluster). + */ + class ByteTracker : public Named + { + public: + + ByteTracker(Addr addr = 0, const MemChecker *parent = NULL) + : Named((parent != NULL ? parent->name() : "") + + csprintf(".ByteTracker@%#llx", addr)) + { + // The initial transaction has start == complete == TICK_INITIAL, + // indicating that there has been no real write to this location; + // therefore, upon checking, we do not expect any particular value. + readObservations.emplace_back( + Transaction(SERIAL_INITIAL, TICK_INITIAL, TICK_INITIAL, + DATA_INITIAL)); + } + + /** + * Starts a read transaction. + * + * @param serial Unique identifier for the read. + * @param start When the read was sent off to the memory subsystem. + */ + void startRead(Serial serial, Tick start); + + /** + * Given a start and end time (of any read transaction), this function + * iterates through all data that such a read is expected to see. The + * data parameter is the actual value that we observed, and the + * function immediately returns true when a match is found, false + * otherwise. + * + * The set of expected data are: + * + * 1. The last value observed by a read with a completion time before + * this start time (if any). + * + * 2. The data produced by write transactions with a completion after + * the last observed read start time. Only data produced in the + * closest overlapping / earlier write cluster relative to this check + * request is considered, as writes in separate clusters are not + * reordered. + * + * @param start Start time of transaction to validate. + * @param complete End time of transaction to validate. + * @param data The value that we have actually seen. + * + * @return True if a match is found, false otherwise. + */ + bool inExpectedData(Tick start, Tick complete, uint8_t data); + + /** + * Completes a read transaction that is still outstanding. + * + * @param serial Unique identifier of a read *previously started*. + * @param complete When the read got a response. + * @param data The data returned by the memory subsystem. + */ + bool completeRead(Serial serial, Tick complete, uint8_t data); + + /** + * Starts a write transaction. Wrapper to startWrite of WriteCluster + * instance. + * + * @param serial Unique identifier of the write. + * @param start When the write was sent off to the memory subsystem. + * @param data The data that this write passed to the memory + * subsystem. + */ + void startWrite(Serial serial, Tick start, uint8_t data); + + /** + * Completes a write transaction. Wrapper to startWrite of WriteCluster + * instance. + * + * @param serial Unique identifier of a write *previously started*. + * @param complete When the write was sent off to the memory subsystem. + */ + void completeWrite(Serial serial, Tick complete); + + /** + * Aborts a write transaction. Wrapper to abortWrite of WriteCluster + * instance. + * + * @param serial Unique identifier of a write *previously started*. + */ + void abortWrite(Serial serial); + + /** + * This function returns the expected data that inExpectedData iterated + * through in the last call. If inExpectedData last returned true, the + * set may be incomplete; if inExpectedData last returned false, the + * vector will contain the full set. + * + * @return Reference to internally maintained vector maintaining last + * expected data that inExpectedData iterated through. + */ + const std::vector<uint8_t>& lastExpectedData() const + { return _lastExpectedData; } + + private: + + /** + * Convenience function to return the most recent incomplete write + * cluster. Instantiates new write cluster if the most recent one has + * been completed. + * + * @return The most recent incomplete write cluster. + */ + WriteCluster* getIncompleteWriteCluster(); + + /** + * Helper function to return an iterator to the entry of a container of + * Transaction compatible classes, before a certain tick. + * + * @param before Tick value which should be greater than the + * completion tick of the returned element. + * + * @return Iterator into container. + */ + template <class TList> + typename TList::iterator lastCompletedTransaction(TList *l, Tick before) + { + assert(!l->empty()); + + // Scanning backwards increases the chances of getting a match + // quicker. + auto it = l->end(); + + for (--it; it != l->begin() && it->complete >= before; --it); + + return it; + } + + /** + * Prunes no longer needed transactions. We only keep up to the last / + * most recent of each, readObservations and writeClusters, before the + * first outstanding read. + * + * It depends on the contention / overlap between memory operations to + * the same location of a particular workload how large each of them + * would grow. + */ + void pruneTransactions(); + + private: + + /** + * Maintains a map of Serial -> Transaction for all outstanding reads. + * + * Use an ordered map here, as this makes pruneTransactions() more + * efficient (find first outstanding read). + */ + std::map<Serial, Transaction> outstandingReads; + + /** + * List of completed reads, i.e. observations of reads. + */ + TransactionList readObservations; + + /** + * List of write clusters for this address. + */ + WriteClusterList writeClusters; + + /** + * See lastExpectedData(). + */ + std::vector<uint8_t> _lastExpectedData; + }; + + public: + + MemChecker(const MemCheckerParams *p) + : SimObject(p), + nextSerial(SERIAL_INITIAL) + {} + + virtual ~MemChecker() {} + + /** + * Starts a read transaction. + * + * @param start Tick this read was sent to the memory subsystem. + * @param addr Address for read. + * @param size Size of data expected. + * + * @return Serial representing the unique identifier for this transaction. + */ + Serial startRead(Tick start, Addr addr, size_t size); + + /** + * Starts a write transaction. + * + * @param start Tick when this write was sent to the memory subsystem. + * @param addr Address for write. + * @param size Size of data to be written. + * @param data Pointer to size bytes, containing data to be written. + * + * @return Serial representing the unique identifier for this transaction. + */ + Serial startWrite(Tick start, Addr addr, size_t size, const uint8_t *data); + + /** + * Completes a previously started read transaction. + * + * @param serial A serial of a read that was previously started and + * matches the address of the previously started read. + * @param complete Tick we received the response from the memory subsystem. + * @param addr Address for read. + * @param size Size of data received. + * @param data Pointer to size bytes, containing data received. + * + * @return True if the data we received is in the expected set, false + * otherwise. + */ + bool completeRead(Serial serial, Tick complete, + Addr addr, size_t size, uint8_t *data); + + /** + * Completes a previously started write transaction. + * + * @param serial A serial of a write that was previously started and + * matches the address of the previously started write. + * @param complete Tick we received acknowledgment of completion from the + * memory subsystem. + * @param addr Address for write. + * @param size The size of the data written. + */ + void completeWrite(Serial serial, Tick complete, Addr addr, size_t size); + + /** + * Aborts a previously started write transaction. + * + * @param serial A serial of a write that was previously started and + * matches the address of the previously started write. + * @param addr Address for write. + * @param size The size of the data written. + */ + void abortWrite(Serial serial, Addr addr, size_t size); + + /** + * Resets the entire checker. Note that if there are transactions + * in-flight, this will cause a warning to be issued if these are completed + * after the reset. This does not reset nextSerial to avoid such a race + * condition: where a transaction started before a reset with serial S, + * then reset() was called, followed by a start of a transaction with the + * same serial S and then receive a completion of the transaction before + * the reset with serial S. + */ + void reset() + { byte_trackers.clear(); } + + /** + * Resets an address-range. This may be useful in case other unmonitored + * parts of the system caused modification to this memory, but we cannot + * track their written values. + * + * @param addr Address base. + * @param size Size of range to be invalidated. + */ + void reset(Addr addr, size_t size); + + /** + * In completeRead, if an error is encountered, this does not print nor + * cause an error, but instead should be handled by the caller. However, to + * record information about the cause of an error, completeRead creates an + * errorMessage. This function returns the last error that was detected in + * completeRead. + * + * @return Reference to string of error message. + */ + const std::string& getErrorMessage() const { return errorMessage; } + + private: + /** + * Returns the instance of ByteTracker for the requested location. + */ + ByteTracker* getByteTracker(Addr addr) + { + auto it = byte_trackers.find(addr); + if (it == byte_trackers.end()) { + it = byte_trackers.insert( + std::make_pair(addr, ByteTracker(addr, this))).first; + } + return &it->second; + }; + + private: + /** + * Detailed error message of the last violation in completeRead. + */ + std::string errorMessage; + + /** + * Next distinct serial to be assigned to the next transaction to be + * started. + */ + Serial nextSerial; + + /** + * Maintain a map of address --> byte-tracker. Per-byte entries are + * initialized as needed. + * + * The required space for this obviously grows with the number of distinct + * addresses used for a particular workload. The used size is independent on + * the number of nodes in the system, those may affect the size of per-byte + * tracking information. + * + * Access via getByteTracker()! + */ + m5::hash_map<Addr, ByteTracker> byte_trackers; +}; + +inline MemChecker::Serial +MemChecker::startRead(Tick start, Addr addr, size_t size) +{ + DPRINTF(MemChecker, + "starting read: serial = %d, start = %d, addr = %#llx, " + "size = %d\n", nextSerial, start, addr , size); + + for (size_t i = 0; i < size; ++i) { + getByteTracker(addr + i)->startRead(nextSerial, start); + } + + return nextSerial++; +} + +inline MemChecker::Serial +MemChecker::startWrite(Tick start, Addr addr, size_t size, const uint8_t *data) +{ + DPRINTF(MemChecker, + "starting write: serial = %d, start = %d, addr = %#llx, " + "size = %d\n", nextSerial, start, addr, size); + + for (size_t i = 0; i < size; ++i) { + getByteTracker(addr + i)->startWrite(nextSerial, start, data[i]); + } + + return nextSerial++; +} + +inline void +MemChecker::completeWrite(MemChecker::Serial serial, Tick complete, + Addr addr, size_t size) +{ + DPRINTF(MemChecker, + "completing write: serial = %d, complete = %d, " + "addr = %#llx, size = %d\n", serial, complete, addr, size); + + for (size_t i = 0; i < size; ++i) { + getByteTracker(addr + i)->completeWrite(serial, complete); + } +} + +inline void +MemChecker::abortWrite(MemChecker::Serial serial, Addr addr, size_t size) +{ + DPRINTF(MemChecker, + "aborting write: serial = %d, addr = %#llx, size = %d\n", + serial, addr, size); + + for (size_t i = 0; i < size; ++i) { + getByteTracker(addr + i)->abortWrite(serial); + } +} + +#endif // __MEM_MEM_CHECKER_HH__ |