summaryrefslogtreecommitdiff
path: root/src/mem/protocol/MESI_CMP_filter_directory-L1cache.sm
diff options
context:
space:
mode:
Diffstat (limited to 'src/mem/protocol/MESI_CMP_filter_directory-L1cache.sm')
-rw-r--r--src/mem/protocol/MESI_CMP_filter_directory-L1cache.sm1800
1 files changed, 1800 insertions, 0 deletions
diff --git a/src/mem/protocol/MESI_CMP_filter_directory-L1cache.sm b/src/mem/protocol/MESI_CMP_filter_directory-L1cache.sm
new file mode 100644
index 000000000..468cf3c1c
--- /dev/null
+++ b/src/mem/protocol/MESI_CMP_filter_directory-L1cache.sm
@@ -0,0 +1,1800 @@
+
+/*
+ * Copyright (c) 1999-2005 Mark D. Hill and David A. Wood
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ This file has been modified by Kevin Moore and Dan Nussbaum of the
+ Scalable Systems Research Group at Sun Microsystems Laboratories
+ (http://research.sun.com/scalable/) to support the Adaptive
+ Transactional Memory Test Platform (ATMTP).
+
+ Please send email to atmtp-interest@sun.com with feedback, questions, or
+ to request future announcements about ATMTP.
+
+ ----------------------------------------------------------------------
+
+ File modification date: 2008-02-23
+
+ ----------------------------------------------------------------------
+*/
+
+/*
+ * $Id$
+ *
+ */
+
+
+machine(L1Cache, "MESI Directory L1 Cache CMP") {
+
+ // NODE L1 CACHE
+ // From this node's L1 cache TO the network
+ // a local L1 -> this L2 bank, currently ordered with directory forwarded requests
+ MessageBuffer requestFromL1Cache, network="To", virtual_network="0", ordered="false";
+ // a local L1 -> this L2 bank
+ MessageBuffer responseFromL1Cache, network="To", virtual_network="3", ordered="false";
+ MessageBuffer unblockFromL1Cache, network="To", virtual_network="4", ordered="false";
+
+
+ // To this node's L1 cache FROM the network
+ // a L2 bank -> this L1
+ MessageBuffer requestToL1Cache, network="From", virtual_network="1", ordered="false";
+ // a L2 bank -> this L1
+ MessageBuffer responseToL1Cache, network="From", virtual_network="3", ordered="false";
+
+ // STATES
+ enumeration(State, desc="Cache states", default="L1Cache_State_I") {
+ // Base states
+ NP, desc="Not present in either cache";
+ I, desc="a L1 cache entry Idle";
+ S, desc="a L1 cache entry Shared";
+ E, desc="a L1 cache entry Exclusive";
+ M, desc="a L1 cache entry Modified", format="!b";
+
+ // Transient States
+ IS, desc="L1 idle, issued GETS, have not seen response yet";
+ IM, desc="L1 idle, issued GETX, have not seen response yet";
+ SM, desc="L1 idle, issued GETX, have not seen response yet";
+ IS_I, desc="L1 idle, issued GETS, saw Inv before data because directory doesn't block on GETS hit";
+ IS_S, desc="L1 idle, issued GETS, L2 sent us data but responses from filters have not arrived";
+ IS_E, desc="L1 idle, issued GETS, L2 sent us exclusive data, but responses from filters have not arrived";
+ IM_M, desc="L1 idle, issued GETX, L2 sent us data, but responses from filters have not arrived";
+
+ M_I, desc="L1 replacing, waiting for ACK";
+ E_I, desc="L1 replacing, waiting for ACK";
+
+ }
+
+ // EVENTS
+ enumeration(Event, desc="Cache events") {
+ // L1 events
+ Load, desc="Load request from the home processor";
+ Ifetch, desc="I-fetch request from the home processor";
+ Store, desc="Store request from the home processor";
+
+ Replace, desc="lower level cache replaced this line, also need to invalidate to maintain inclusion";
+ Inv, desc="Invalidate request from L2 bank";
+ Inv_X, desc="Invalidate request from L2 bank, trans CONFLICT";
+
+ // internal generated request
+ L1_Replacement, desc="L1 Replacement", format="!r";
+ L1_Replacement_XACT, desc="L1 Replacement of trans. data", format="!r";
+
+ // other requests
+ Fwd_GETX, desc="GETX from other processor";
+ Fwd_GETS, desc="GETS from other processor";
+ Fwd_GET_INSTR, desc="GET_INSTR from other processor";
+
+ //Data, desc="Data for processor";
+ L2_Data, desc="Data for processor, from L2";
+ L2_Data_all_Acks, desc="Data for processor, from L2, all acks";
+ L2_Exclusive_Data, desc="Exlusive Data for processor, from L2";
+ L2_Exclusive_Data_all_Acks, desc="Exlusive Data for processor, from L2, all acks";
+ DataS_fromL1, desc="data for GETS request, need to unblock directory";
+ Data_all_Acks, desc="Data for processor, all acks";
+
+ Ack, desc="Ack for processor";
+ Ack_all, desc="Last ack for processor";
+
+ WB_Ack, desc="Ack for replacement";
+
+ // Transactional responses/requests
+ Nack, desc="Nack for processor";
+ Nack_all, desc="Last Nack for processor";
+ Check_Write_Filter, desc="Check the write filter";
+ Check_Read_Write_Filter, desc="Check the read and write filters";
+
+ //Fwd_GETS_T, desc="A GetS from another processor, part of a trans, but not a conflict";
+ Fwd_GETS_X, desc="A GetS from another processor, trans CONFLICT";
+ Fwd_GETX_X, desc="A GetS from another processor, trans CONFLICT";
+ Fwd_GET_INSTR_X, desc="A GetInstr from another processor, trans CONFLICT";
+ }
+
+ // TYPES
+
+ // CacheEntry
+ structure(Entry, desc="...", interface="AbstractCacheEntry" ) {
+ State CacheState, desc="cache state";
+ DataBlock DataBlk, desc="data for the block";
+ bool Dirty, default="false", desc="data is dirty";
+ }
+
+ // TBE fields
+ structure(TBE, desc="...") {
+ Address Address, desc="Line address for this TBE";
+ Address PhysicalAddress, desc="Physical address for this TBE";
+ State TBEState, desc="Transient state";
+ DataBlock DataBlk, desc="Buffer for the data block";
+ bool Dirty, default="false", desc="data is dirty";
+ bool isPrefetch, desc="Set if this was caused by a prefetch";
+ int pendingAcks, default="0", desc="number of pending acks";
+ int ThreadID, default="0", desc="SMT thread issuing the request";
+
+ bool RemoveLastOwnerFromDir, default="false", desc="The forwarded data was being replaced";
+ MachineID LastOwnerID, desc="What component forwarded (last owned) the data"; // For debugging
+
+ // for Transactional Memory
+ uint64 Timestamp, default="0", desc="Timestamp of request";
+ bool nack, default="false", desc="has this request been nacked?";
+ NetDest Nackers, desc="The nodes which sent a NACK to us";
+ }
+
+ external_type(CacheMemory) {
+ bool cacheAvail(Address);
+ Address cacheProbe(Address);
+ void allocate(Address);
+ void deallocate(Address);
+ Entry lookup(Address);
+ void changePermission(Address, AccessPermission);
+ bool isTagPresent(Address);
+ }
+
+ external_type(TBETable) {
+ TBE lookup(Address);
+ void allocate(Address);
+ void deallocate(Address);
+ bool isPresent(Address);
+ }
+
+ TBETable L1_TBEs, template_hack="<L1Cache_TBE>";
+
+ CacheMemory L1IcacheMemory, template_hack="<L1Cache_Entry>", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L1I"', abstract_chip_ptr="true";
+ CacheMemory L1DcacheMemory, template_hack="<L1Cache_Entry>", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L1D"', abstract_chip_ptr="true";
+
+
+ MessageBuffer mandatoryQueue, ordered="false", rank="100", abstract_chip_ptr="true";
+
+ Sequencer sequencer, abstract_chip_ptr="true", constructor_hack="i";
+ TransactionInterfaceManager xact_mgr, abstract_chip_ptr="true", constructor_hack="i";
+
+ // triggerQueue used to indicate when all acks/nacks have been received
+ MessageBuffer triggerQueue, ordered="false";
+
+ int cache_state_to_int(State state);
+
+ // inclusive cache returns L1 entries only
+ Entry getL1CacheEntry(Address addr), return_by_ref="yes" {
+ if (L1DcacheMemory.isTagPresent(addr)) {
+ return L1DcacheMemory[addr];
+ } else {
+ return L1IcacheMemory[addr];
+ }
+ }
+
+ void changeL1Permission(Address addr, AccessPermission permission) {
+ if (L1DcacheMemory.isTagPresent(addr)) {
+ return L1DcacheMemory.changePermission(addr, permission);
+ } else if(L1IcacheMemory.isTagPresent(addr)) {
+ return L1IcacheMemory.changePermission(addr, permission);
+ } else {
+ error("cannot change permission, L1 block not present");
+ }
+ }
+
+ bool isL1CacheTagPresent(Address addr) {
+ return (L1DcacheMemory.isTagPresent(addr) || L1IcacheMemory.isTagPresent(addr));
+ }
+
+ State getState(Address addr) {
+ if((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == true){
+ DEBUG_EXPR(id);
+ DEBUG_EXPR(addr);
+ }
+ assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false);
+
+ if(L1_TBEs.isPresent(addr)) {
+ return L1_TBEs[addr].TBEState;
+ } else if (isL1CacheTagPresent(addr)) {
+ return getL1CacheEntry(addr).CacheState;
+ }
+ return State:NP;
+ }
+
+
+ // For detecting read/write conflicts on requests from remote processors
+ bool shouldNackLoad(Address addr, uint64 remote_timestamp, MachineID remote_id){
+ return xact_mgr.shouldNackLoad(addr, remote_timestamp, remote_id);
+ }
+
+ bool shouldNackStore(Address addr, uint64 remote_timestamp, MachineID remote_id){
+ return xact_mgr.shouldNackStore(addr, remote_timestamp, remote_id);
+ }
+
+ // For querying read/write signatures on current processor
+ bool checkReadWriteSignatures(Address addr){
+ return xact_mgr.checkReadWriteSignatures(addr);
+ }
+
+ bool checkWriteSignatures(Address addr){
+ return xact_mgr.checkWriteSignatures(addr);
+ }
+
+ void setState(Address addr, State state) {
+ assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false);
+
+ // MUST CHANGE
+ if(L1_TBEs.isPresent(addr)) {
+ L1_TBEs[addr].TBEState := state;
+ }
+
+ if (isL1CacheTagPresent(addr)) {
+ getL1CacheEntry(addr).CacheState := state;
+
+ // Set permission
+ if (state == State:I) {
+ changeL1Permission(addr, AccessPermission:Invalid);
+ } else if (state == State:S || state == State:E) {
+ changeL1Permission(addr, AccessPermission:Read_Only);
+ } else if (state == State:M) {
+ changeL1Permission(addr, AccessPermission:Read_Write);
+ } else {
+ changeL1Permission(addr, AccessPermission:Busy);
+ }
+ }
+ }
+
+ Event mandatory_request_type_to_event(CacheRequestType type) {
+ if (type == CacheRequestType:LD) {
+ return Event:Load;
+ } else if (type == CacheRequestType:LD_XACT) {
+ return Event:Load;
+ } else if (type == CacheRequestType:IFETCH) {
+ return Event:Ifetch;
+ } else if ((type == CacheRequestType:ST) || (type == CacheRequestType:ATOMIC)) {
+ return Event:Store;
+ } else if((type == CacheRequestType:ST_XACT) || (type == CacheRequestType:LDX_XACT) ) {
+ return Event:Store;
+ } else {
+ error("Invalid CacheRequestType");
+ }
+ }
+
+
+ void printRequest(CacheMsg in_msg){
+ DEBUG_EXPR("Regquest msg: ");
+ DEBUG_EXPR(machineID);
+ DEBUG_EXPR(in_msg.Address);
+ DEBUG_EXPR(in_msg.PhysicalAddress);
+ DEBUG_EXPR(in_msg.Type);
+ DEBUG_EXPR(in_msg.ProgramCounter);
+ DEBUG_EXPR(in_msg.AccessMode);
+ DEBUG_EXPR(in_msg.Size);
+ DEBUG_EXPR(in_msg.Prefetch);
+ DEBUG_EXPR(in_msg.Version);
+ DEBUG_EXPR(in_msg.LogicalAddress);
+ DEBUG_EXPR(in_msg.ThreadID);
+ DEBUG_EXPR(in_msg.Timestamp);
+ DEBUG_EXPR(in_msg.ExposedAction);
+ }
+
+ out_port(requestIntraChipL1Network_out, RequestMsg, requestFromL1Cache);
+ out_port(responseIntraChipL1Network_out, ResponseMsg, responseFromL1Cache);
+ out_port(unblockNetwork_out, ResponseMsg, unblockFromL1Cache);
+ out_port(triggerQueue_out, TriggerMsg, triggerQueue);
+
+ // Trigger Queue
+ in_port(triggerQueue_in, TriggerMsg, triggerQueue) {
+ if (triggerQueue_in.isReady()) {
+ peek(triggerQueue_in, TriggerMsg) {
+ if (in_msg.Type == TriggerType:ALL_ACKS) {
+ if (L1_TBEs[in_msg.Address].nack == true){
+ trigger(Event:Nack_all, in_msg.Address);
+ } else {
+ trigger(Event:Ack_all, in_msg.Address);
+ }
+ } else {
+ error("Unexpected message");
+ }
+ }
+ }
+ }
+
+ // Response IntraChip L1 Network - response msg to this L1 cache
+ in_port(responseIntraChipL1Network_in, ResponseMsg, responseToL1Cache) {
+ if (responseIntraChipL1Network_in.isReady()) {
+ peek(responseIntraChipL1Network_in, ResponseMsg) {
+ assert(in_msg.Destination.isElement(machineID));
+ if(in_msg.Type == CoherenceResponseType:L2_DATA_EXCLUSIVE) {
+ if( in_msg.AckCount == 0 ){
+ trigger(Event:L2_Exclusive_Data_all_Acks, in_msg.Address);
+ }
+ else{
+ trigger(Event:L2_Exclusive_Data, in_msg.Address);
+ }
+ } else if(in_msg.Type == CoherenceResponseType:L2_DATA) {
+ if( in_msg.AckCount == 0 ){
+ trigger(Event:L2_Data_all_Acks, in_msg.Address);
+ }
+ else{
+ trigger(Event:L2_Data, in_msg.Address);
+ }
+ } else if(in_msg.Type == CoherenceResponseType:DATA) {
+ if ( (getState(in_msg.Address) == State:IS || getState(in_msg.Address) == State:IS_I) &&
+ machineIDToMachineType(in_msg.Sender) == MachineType:L1Cache ) {
+
+ trigger(Event:DataS_fromL1, in_msg.Address);
+ } else if ( (L1_TBEs[in_msg.Address].pendingAcks - in_msg.AckCount) == 0 ) {
+ trigger(Event:Data_all_Acks, in_msg.Address);
+ }
+ } else if (in_msg.Type == CoherenceResponseType:ACK) {
+ trigger(Event:Ack, in_msg.Address);
+ } else if (in_msg.Type == CoherenceResponseType:NACK) {
+ trigger(Event:Nack, in_msg.Address);
+ } else if (in_msg.Type == CoherenceResponseType:WB_ACK) {
+ trigger(Event:WB_Ack, in_msg.Address);
+ } else {
+ error("Invalid L1 response type");
+ }
+ }
+ }
+ }
+
+ // Request InterChip network - request from this L1 cache to the shared L2
+ in_port(requestIntraChipL1Network_in, RequestMsg, requestToL1Cache) {
+ if(requestIntraChipL1Network_in.isReady()) {
+ peek(requestIntraChipL1Network_in, RequestMsg) {
+ assert(in_msg.Destination.isElement(machineID));
+ if (in_msg.Type == CoherenceRequestType:INV) {
+ // check whether we have a inter-proc conflict
+ if(shouldNackStore(in_msg.PhysicalAddress, in_msg.Timestamp, in_msg.Requestor) == false){
+ trigger(Event:Inv, in_msg.Address);
+ }
+ else{
+ // there's a conflict
+ trigger(Event:Inv_X, in_msg.Address);
+ }
+ } else if(in_msg.Type == CoherenceRequestType:INV_ESCAPE) {
+ // we cannot NACK this
+ trigger(Event:Inv, in_msg.Address);
+ } else if (in_msg.Type == CoherenceRequestType:GETX || in_msg.Type == CoherenceRequestType:UPGRADE) {
+ // check whether we have a conflict
+ if(shouldNackStore(in_msg.PhysicalAddress, in_msg.Timestamp, in_msg.Requestor) == true){
+ trigger(Event:Fwd_GETX_X, in_msg.Address);
+ }
+ else{
+ // else no conflict
+ // upgrade transforms to GETX due to race
+ trigger(Event:Fwd_GETX, in_msg.Address);
+ }
+ } else if(in_msg.Type == CoherenceRequestType:GETX_ESCAPE) {
+ // no need for filter checks
+ trigger(Event:Fwd_GETX, in_msg.Address);
+ } else if (in_msg.Type == CoherenceRequestType:GETS) {
+ // check whether we have a conflict
+ if(shouldNackLoad(in_msg.PhysicalAddress, in_msg.Timestamp, in_msg.Requestor) == true){
+ trigger(Event:Fwd_GETS_X, in_msg.Address);
+ }
+ else{
+ // else no conflict
+ trigger(Event:Fwd_GETS, in_msg.Address);
+ }
+ } else if(in_msg.Type == CoherenceRequestType:GETS_ESCAPE) {
+ // no need for filter checks
+ trigger(Event:Fwd_GETS, in_msg.Address);
+ } else if (in_msg.Type == CoherenceRequestType:GET_INSTR) {
+ if(shouldNackLoad(in_msg.PhysicalAddress, in_msg.Timestamp, in_msg.Requestor) == true){
+ trigger(Event:Fwd_GET_INSTR_X, in_msg.Address);
+ }
+ else{
+ // else no conflict
+ trigger(Event:Fwd_GET_INSTR, in_msg.Address);
+ }
+ } else if (in_msg.Type == CoherenceRequestType:GET_INSTR_ESCAPE) {
+ // no need for filter checks
+ trigger(Event:Fwd_GET_INSTR, in_msg.Address);
+ } else if (in_msg.Type == CoherenceRequestType:REPLACE) {
+ trigger(Event:Replace, in_msg.Address);
+ } else if (in_msg.Type == CoherenceRequestType:CHECK_WRITE_FILTER) {
+ trigger(Event:Check_Write_Filter, in_msg.Address);
+ } else if (in_msg.Type == CoherenceRequestType:CHECK_READ_WRITE_FILTER) {
+ trigger(Event:Check_Read_Write_Filter, in_msg.Address);
+ } else {
+ error("Invalid forwarded request type");
+ }
+ }
+ }
+ }
+
+ // Mandatory Queue betweens Node's CPU and it's L1 caches
+ in_port(mandatoryQueue_in, CacheMsg, mandatoryQueue, desc="...") {
+ if (mandatoryQueue_in.isReady()) {
+ peek(mandatoryQueue_in, CacheMsg) {
+
+ // Check for data access to blocks in I-cache and ifetchs to blocks in D-cache
+
+ if (in_msg.Type == CacheRequestType:IFETCH) {
+ // ** INSTRUCTION ACCESS ***
+
+ // Check to see if it is in the OTHER L1
+ if (L1DcacheMemory.isTagPresent(in_msg.Address)) {
+ // check whether block is transactional
+ if (checkReadWriteSignatures(in_msg.Address) == true){
+ // The block is in the wrong L1, put the request on the queue to the shared L2
+ trigger(Event:L1_Replacement_XACT, in_msg.Address);
+ }
+ else{
+ // The block is in the wrong L1, put the request on the queue to the shared L2
+ trigger(Event:L1_Replacement, in_msg.Address);
+ }
+ }
+ if (L1IcacheMemory.isTagPresent(in_msg.Address)) {
+ // The tag matches for the L1, so the L1 asks the L2 for it.
+ printRequest(in_msg);
+ trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
+ } else {
+ if (L1IcacheMemory.cacheAvail(in_msg.Address)) {
+ // L1 does't have the line, but we have space for it in the L1 so let's see if the L2 has it
+ printRequest(in_msg);
+ trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
+ } else {
+ // check whether block is transactional
+ if(checkReadWriteSignatures( L1IcacheMemory.cacheProbe(in_msg.Address) ) == true){
+ // No room in the L1, so we need to make room in the L1
+ trigger(Event:L1_Replacement_XACT, L1IcacheMemory.cacheProbe(in_msg.Address));
+ }
+ else{
+ // No room in the L1, so we need to make room in the L1
+ trigger(Event:L1_Replacement, L1IcacheMemory.cacheProbe(in_msg.Address));
+ }
+ }
+ }
+ } else {
+ // *** DATA ACCESS ***
+
+ // Check to see if it is in the OTHER L1
+ if (L1IcacheMemory.isTagPresent(in_msg.Address)) {
+ // check whether block is transactional
+ if(checkReadWriteSignatures(in_msg.Address) == true){
+ // The block is in the wrong L1, put the request on the queue to the shared L2
+ trigger(Event:L1_Replacement_XACT, in_msg.Address);
+ }
+ else{
+ // The block is in the wrong L1, put the request on the queue to the shared L2
+ trigger(Event:L1_Replacement, in_msg.Address);
+ }
+ }
+ if (L1DcacheMemory.isTagPresent(in_msg.Address)) {
+ // The tag matches for the L1, so the L1 ask the L2 for it
+ printRequest(in_msg);
+ trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
+ } else {
+ if (L1DcacheMemory.cacheAvail(in_msg.Address)) {
+ // L1 does't have the line, but we have space for it in the L1 let's see if the L2 has it
+ printRequest(in_msg);
+ trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
+ } else {
+ // check whether block is transactional
+ if(checkReadWriteSignatures( L1DcacheMemory.cacheProbe(in_msg.Address) ) == true){
+ // No room in the L1, so we need to make room in the L1
+ trigger(Event:L1_Replacement_XACT, L1DcacheMemory.cacheProbe(in_msg.Address));
+ }
+ else{
+ // No room in the L1, so we need to make room in the L1
+ trigger(Event:L1_Replacement, L1DcacheMemory.cacheProbe(in_msg.Address));
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // ACTIONS
+ action(a_issueGETS, "a", desc="Issue GETS") {
+ peek(mandatoryQueue_in, CacheMsg) {
+ enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ if(in_msg.ExposedAction){
+ out_msg.Type := CoherenceRequestType:GETS_ESCAPE;
+ }
+ else{
+ out_msg.Type := CoherenceRequestType:GETS;
+ }
+ out_msg.Requestor := machineID;
+ out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ DEBUG_EXPR(address);
+ DEBUG_EXPR(out_msg.Destination);
+ out_msg.MessageSize := MessageSizeType:Control;
+ out_msg.Prefetch := in_msg.Prefetch;
+ out_msg.AccessMode := in_msg.AccessMode;
+ // either return transactional timestamp or current time
+ out_msg.Timestamp := in_msg.Timestamp;
+ APPEND_TRANSITION_COMMENT(out_msg.Timestamp);
+ }
+ }
+ }
+
+ action(ai_issueGETINSTR, "ai", desc="Issue GETINSTR") {
+ peek(mandatoryQueue_in, CacheMsg) {
+ enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ if(in_msg.ExposedAction){
+ out_msg.Type := CoherenceRequestType:GET_INSTR_ESCAPE;
+ }
+ else{
+ out_msg.Type := CoherenceRequestType:GET_INSTR;
+ }
+ out_msg.Requestor := machineID;
+ out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ DEBUG_EXPR(address);
+ DEBUG_EXPR(out_msg.Destination);
+ out_msg.MessageSize := MessageSizeType:Control;
+ out_msg.Prefetch := in_msg.Prefetch;
+ out_msg.AccessMode := in_msg.AccessMode;
+ // either return transactional timestamp or current time
+ out_msg.Timestamp := in_msg.Timestamp;
+ APPEND_TRANSITION_COMMENT(out_msg.Timestamp);
+ }
+ }
+ }
+
+
+ action(b_issueGETX, "b", desc="Issue GETX") {
+ peek(mandatoryQueue_in, CacheMsg) {
+ enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ if(in_msg.ExposedAction){
+ out_msg.Type := CoherenceRequestType:GETX_ESCAPE;
+ }
+ else{
+ out_msg.Type := CoherenceRequestType:GETX;
+ }
+ out_msg.Requestor := machineID;
+ DEBUG_EXPR(machineID);
+ out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ DEBUG_EXPR(address);
+ DEBUG_EXPR(out_msg.Destination);
+ out_msg.MessageSize := MessageSizeType:Control;
+ out_msg.Prefetch := in_msg.Prefetch;
+ out_msg.AccessMode := in_msg.AccessMode;
+ // either return transactional timestamp or current time
+ out_msg.Timestamp := in_msg.Timestamp;
+ APPEND_TRANSITION_COMMENT(out_msg.Timestamp);
+ }
+ }
+ }
+
+ action(c_issueUPGRADE, "c", desc="Issue GETX") {
+ peek(mandatoryQueue_in, CacheMsg) {
+ enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceRequestType:UPGRADE;
+ out_msg.Requestor := machineID;
+ out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ DEBUG_EXPR(address);
+ DEBUG_EXPR(out_msg.Destination);
+ out_msg.MessageSize := MessageSizeType:Control;
+ out_msg.Prefetch := in_msg.Prefetch;
+ out_msg.AccessMode := in_msg.AccessMode;
+ // either return transactional timestamp or current time
+ out_msg.Timestamp := in_msg.Timestamp;
+ APPEND_TRANSITION_COMMENT(out_msg.Timestamp);
+ }
+ }
+ }
+
+ /****************************BEGIN Transactional Actions*************************/
+ // send a NACK to requestor - the equivalent of a NACKed data response
+ // Note we don't have to track the ackCount here because we only send data NACKs when
+ // we are exclusive with the data. Otherwise the L2 will source the data (and set the ackCount
+ // appropriately)
+ action(e_sendNackToRequestor, "en", desc="send nack to requestor (could be L2 or L1)") {
+ peek(requestIntraChipL1Network_in, RequestMsg) {
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceResponseType:NACK;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ // send oldest timestamp (or current time if no thread in transaction)
+ out_msg.Timestamp := xact_mgr.getOldestTimestamp();
+ APPEND_TRANSITION_COMMENT(out_msg.Timestamp);
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.Timestamp);
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ // ackCount is by default 0
+ }
+ // also inform driver about sending NACK
+ xact_mgr.notifySendNack(in_msg.PhysicalAddress, in_msg.Timestamp, in_msg.Requestor);
+ }
+ }
+
+ // send a NACK when L2 wants us to invalidate ourselves
+ action(fi_sendInvNack, "fin", desc="send data to the L2 cache") {
+ peek(requestIntraChipL1Network_in, RequestMsg) {
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceResponseType:NACK;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ // send oldest timestamp (or current time if no thread in transaction)
+ out_msg.Timestamp := xact_mgr.getOldestTimestamp();
+ out_msg.AckCount := 1;
+ APPEND_TRANSITION_COMMENT(out_msg.Timestamp);
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.Timestamp);
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ }
+ // also inform driver about sending NACK
+ xact_mgr.notifySendNack(in_msg.PhysicalAddress, in_msg.Timestamp, in_msg.Requestor);
+ }
+ }
+
+ // for when we want to check our Write filters
+ action(a_checkWriteFilter, "awf", desc="Check our write filter for conflicts") {
+ peek(requestIntraChipL1Network_in, RequestMsg) {
+ // For correct conflict detection, should call shouldNackLoad() NOT
+ // checkWriteSignatures()
+ if(shouldNackLoad(in_msg.PhysicalAddress, in_msg.Timestamp, in_msg.Requestor) == true){
+ // conflict - send a NACK
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceResponseType:NACK;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ // send oldest timestamp (or current time if no thread in transaction)
+ out_msg.Timestamp := xact_mgr.getOldestTimestamp();
+ out_msg.AckCount := 1;
+ APPEND_TRANSITION_COMMENT(out_msg.Timestamp);
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.Timestamp);
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ }
+ // also inform driver about sending NACK
+ xact_mgr.notifySendNack(in_msg.PhysicalAddress, in_msg.Timestamp, in_msg.Requestor);
+ }
+ else{
+ // no conflict - send ACK
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceResponseType:ACK;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ out_msg.AckCount := 1;
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ }
+ }
+ }
+ }
+
+ // for when we want to check our Read + Write filters
+ action(a_checkReadWriteFilter, "arwf", desc="Check our write filter for conflicts") {
+ peek(requestIntraChipL1Network_in, RequestMsg) {
+ // For correct conflict detection, we should call shouldNackStore() NOT
+ // checkReadWriteSignatures()
+ if(shouldNackStore(in_msg.PhysicalAddress, in_msg.Timestamp,in_msg.Requestor ) == true){
+ // conflict - send a NACK
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceResponseType:NACK;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ // send oldest timestamp (or current time if no thread in transaction)
+ out_msg.Timestamp := xact_mgr.getOldestTimestamp();
+ out_msg.AckCount := 1;
+ APPEND_TRANSITION_COMMENT(out_msg.Timestamp);
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.Timestamp);
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ }
+ // also inform driver about sending NACK
+ xact_mgr.notifySendNack(in_msg.PhysicalAddress, in_msg.Timestamp, in_msg.Requestor);
+ }
+ else{
+ // no conflict - send ACK
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceResponseType:ACK;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ out_msg.AckCount := 1;
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ }
+ }
+ }
+ }
+
+ action(r_notifyReceiveNack, "nrn", desc="Notify the driver when a nack is received"){
+ peek(responseIntraChipL1Network_in, ResponseMsg) {
+ xact_mgr.notifyReceiveNack(L1_TBEs[address].ThreadID, in_msg.PhysicalAddress, L1_TBEs[address].Timestamp, in_msg.Timestamp, in_msg.Sender);
+ }
+ }
+
+ // Used to driver to take abort or retry action
+ action(r_notifyReceiveNackFinal, "nrnf", desc="Notify the driver when the final nack is received"){
+ xact_mgr.notifyReceiveNackFinal(L1_TBEs[address].ThreadID, L1_TBEs[address].PhysicalAddress);
+ }
+
+ // this version uses physical address stored in TBE
+
+ action(x_tbeSetPrefetch, "xp", desc="Set the prefetch bit in the TBE."){
+ peek(mandatoryQueue_in, CacheMsg) {
+ if(in_msg.Prefetch == PrefetchBit:No){
+ L1_TBEs[address].isPrefetch := false;
+ }
+ else{
+ assert(in_msg.Prefetch == PrefetchBit:Yes);
+ L1_TBEs[address].isPrefetch := true;
+ }
+ }
+ }
+
+ action(x_tbeSetPhysicalAddress, "ia", desc="Sets the physical address field of the TBE"){
+ peek(mandatoryQueue_in, CacheMsg) {
+ L1_TBEs[address].PhysicalAddress := in_msg.PhysicalAddress;
+ L1_TBEs[address].ThreadID := in_msg.ThreadID;
+ L1_TBEs[address].Timestamp := in_msg.Timestamp;
+ }
+ }
+
+ // Send unblock cancel to L2 (for nacked requests that blocked directory)
+ action(jj_sendUnblockCancel, "\jc", desc="send unblock to the L2 cache") {
+ enqueue(unblockNetwork_out, ResponseMsg, latency="1") {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceResponseType:UNBLOCK_CANCEL;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ // also pass along list of NACKers
+ out_msg.Nackers := L1_TBEs[address].Nackers;
+ }
+ }
+
+ //same as ACK case, but sets the NACK flag for TBE entry
+ action(q_updateNackCount, "qn", desc="Update ack count") {
+ peek(responseIntraChipL1Network_in, ResponseMsg) {
+ // mark this request as having been NACKed
+ L1_TBEs[address].nack := true;
+ APPEND_TRANSITION_COMMENT(" before pendingAcks: ");
+ APPEND_TRANSITION_COMMENT(L1_TBEs[address].pendingAcks);
+ L1_TBEs[address].pendingAcks := L1_TBEs[address].pendingAcks - in_msg.AckCount;
+ L1_TBEs[address].Nackers.add(in_msg.Sender);
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.AckCount);
+
+ APPEND_TRANSITION_COMMENT(" after pendingAcks: ");
+ APPEND_TRANSITION_COMMENT(L1_TBEs[address].pendingAcks);
+ APPEND_TRANSITION_COMMENT(" sender: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Sender);
+ if (L1_TBEs[address].pendingAcks == 0) {
+ enqueue(triggerQueue_out, TriggerMsg) {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := TriggerType:ALL_ACKS;
+ APPEND_TRANSITION_COMMENT(" Triggering All_Acks");
+ }
+ }
+ }
+ }
+
+ action(q_profileOverflow, "po", desc="profile the overflowed block"){
+ profileOverflow(address, machineID);
+ }
+
+ action(qq_xactReplacement, "\q", desc="replaced a transactional block"){
+ xact_mgr.xactReplacement(address);
+ }
+
+ action(p_profileRequest, "pcc", desc="Profile request msg") {
+ peek(mandatoryQueue_in, CacheMsg) {
+ APPEND_TRANSITION_COMMENT(" request: Timestamp: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Timestamp);
+ APPEND_TRANSITION_COMMENT(" PA: ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ APPEND_TRANSITION_COMMENT(" Type: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Type);
+ APPEND_TRANSITION_COMMENT(" VPC: ");
+ APPEND_TRANSITION_COMMENT(in_msg.ProgramCounter);
+ APPEND_TRANSITION_COMMENT(" Mode: ");
+ APPEND_TRANSITION_COMMENT(in_msg.AccessMode);
+ APPEND_TRANSITION_COMMENT(" PF: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Prefetch);
+ APPEND_TRANSITION_COMMENT(" VA: ");
+ APPEND_TRANSITION_COMMENT(in_msg.LogicalAddress);
+ APPEND_TRANSITION_COMMENT(" Thread: ");
+ APPEND_TRANSITION_COMMENT(in_msg.ThreadID);
+ APPEND_TRANSITION_COMMENT(" Exposed: ");
+ APPEND_TRANSITION_COMMENT(in_msg.ExposedAction);
+ }
+ }
+
+ /********************************END Transactional Actions************************/
+
+ action(d_sendDataToRequestor, "d", desc="send data to requestor") {
+ peek(requestIntraChipL1Network_in, RequestMsg) {
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceResponseType:DATA;
+ out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
+ out_msg.Dirty := getL1CacheEntry(address).Dirty;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Response_Data;
+ }
+ }
+ }
+
+ action(d2_sendDataToL2, "d2", desc="send data to the L2 cache because of M downgrade") {
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceResponseType:DATA;
+ out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
+ out_msg.Dirty := getL1CacheEntry(address).Dirty;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ out_msg.MessageSize := MessageSizeType:Response_Data;
+ }
+ }
+
+ action(dt_sendDataToRequestor_fromTBE, "dt", desc="send data to requestor") {
+ peek(requestIntraChipL1Network_in, RequestMsg) {
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceResponseType:DATA;
+ out_msg.DataBlk := L1_TBEs[address].DataBlk;
+ out_msg.Dirty := L1_TBEs[address].Dirty;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Response_Data;
+ out_msg.RemoveLastOwnerFromDir := true;
+ out_msg.LastOwnerID := machineID;
+ }
+ }
+ }
+
+ action(d2t_sendDataToL2_fromTBE, "d2t", desc="send data to the L2 cache") {
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceResponseType:DATA;
+ out_msg.DataBlk := L1_TBEs[address].DataBlk;
+ out_msg.Dirty := L1_TBEs[address].Dirty;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ out_msg.MessageSize := MessageSizeType:Response_Data;
+ }
+ }
+
+ action(f_sendDataToL2, "f", desc="send data to the L2 cache") {
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceResponseType:DATA;
+ out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
+ out_msg.Dirty := getL1CacheEntry(address).Dirty;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ out_msg.MessageSize := MessageSizeType:Writeback_Data;
+ }
+ }
+
+ action(ft_sendDataToL2_fromTBE, "ft", desc="send data to the L2 cache") {
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceResponseType:DATA;
+ out_msg.DataBlk := L1_TBEs[address].DataBlk;
+ out_msg.Dirty := L1_TBEs[address].Dirty;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ out_msg.MessageSize := MessageSizeType:Writeback_Data;
+ }
+ }
+
+ action(fi_sendInvAck, "fi", desc="send data to the L2 cache") {
+ peek(requestIntraChipL1Network_in, RequestMsg) {
+ enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceResponseType:ACK;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ out_msg.AckCount := 1;
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ }
+ }
+ }
+
+
+ action(g_issuePUTX, "g", desc="send data to the L2 cache") {
+ enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceRequestType:PUTX;
+ out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
+ out_msg.Dirty := getL1CacheEntry(address).Dirty;
+ out_msg.Requestor:= machineID;
+ out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ if (getL1CacheEntry(address).Dirty) {
+ out_msg.MessageSize := MessageSizeType:Writeback_Data;
+ } else {
+ out_msg.MessageSize := MessageSizeType:Writeback_Control;
+ }
+ }
+ }
+
+ action(g_issuePUTS, "gs", desc="send clean data to the L2 cache") {
+ enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceRequestType:PUTS;
+ out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
+ out_msg.Dirty := getL1CacheEntry(address).Dirty;
+ out_msg.Requestor:= machineID;
+ out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ if (getL1CacheEntry(address).Dirty) {
+ out_msg.MessageSize := MessageSizeType:Writeback_Data;
+ } else {
+ out_msg.MessageSize := MessageSizeType:Writeback_Control;
+ }
+ }
+ }
+
+ // used to determine whether to set sticky-M or sticky-S state in directory (M or SS in L2)
+ action(g_issuePUTXorPUTS, "gxs", desc="send data to the L2 cache") {
+ enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ if(checkWriteSignatures(address) == true){
+ // we should set sticky-M
+ out_msg.Type := CoherenceRequestType:PUTX;
+ }
+ else{
+ // we should set sticky-S
+ out_msg.Type := CoherenceRequestType:PUTS;
+ }
+ out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
+ out_msg.Dirty := getL1CacheEntry(address).Dirty;
+ out_msg.Requestor:= machineID;
+ out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ if (getL1CacheEntry(address).Dirty) {
+ out_msg.MessageSize := MessageSizeType:Writeback_Data;
+ } else {
+ out_msg.MessageSize := MessageSizeType:Writeback_Control;
+ }
+ }
+ }
+
+ action(j_sendUnblock, "j", desc="send unblock to the L2 cache") {
+ enqueue(unblockNetwork_out, ResponseMsg, latency="1") {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceResponseType:UNBLOCK;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ // inform L2 whether request was transactional
+ //out_msg.Transactional := L1_TBEs[address].Trans;
+ out_msg.Transactional := checkReadWriteSignatures(address);
+
+ out_msg.RemoveLastOwnerFromDir := L1_TBEs[address].RemoveLastOwnerFromDir;
+ out_msg.LastOwnerID := L1_TBEs[address].LastOwnerID;
+ }
+ }
+
+ action(jj_sendExclusiveUnblock, "\j", desc="send unblock to the L2 cache") {
+ enqueue(unblockNetwork_out, ResponseMsg, latency="1") {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceResponseType:EXCLUSIVE_UNBLOCK;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ // inform L2 whether request was transactional
+ // out_msg.Transactional := L1_TBEs[address].Trans;
+ out_msg.Transactional := checkReadWriteSignatures(address);
+
+ out_msg.RemoveLastOwnerFromDir := L1_TBEs[address].RemoveLastOwnerFromDir;
+ out_msg.LastOwnerID := L1_TBEs[address].LastOwnerID;
+ }
+ }
+
+
+
+ action(h_load_hit, "h", desc="If not prefetch, notify sequencer the load completed.") {
+ DEBUG_EXPR(getL1CacheEntry(address).DataBlk);
+ sequencer.readCallback(address, getL1CacheEntry(address).DataBlk);
+ }
+
+ action(hh_store_hit, "\h", desc="If not prefetch, notify sequencer that store completed.") {
+ DEBUG_EXPR(getL1CacheEntry(address).DataBlk);
+ sequencer.writeCallback(address, getL1CacheEntry(address).DataBlk);
+ getL1CacheEntry(address).Dirty := true;
+ }
+
+ action(h_load_conflict, "hc", desc="Notify sequencer of conflict on load") {
+ sequencer.readConflictCallback(address);
+ }
+
+ action(hh_store_conflict, "\hc", desc="If not prefetch, notify sequencer that store completed.") {
+ sequencer.writeConflictCallback(address);
+ }
+
+ action(i_allocateTBE, "i", desc="Allocate TBE (isPrefetch=0, number of invalidates=0)") {
+ check_allocate(L1_TBEs);
+ L1_TBEs.allocate(address);
+ L1_TBEs[address].isPrefetch := false;
+ L1_TBEs[address].Dirty := getL1CacheEntry(address).Dirty;
+ L1_TBEs[address].DataBlk := getL1CacheEntry(address).DataBlk;
+ }
+
+ action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") {
+ mandatoryQueue_in.dequeue();
+ }
+
+ action(j_popTriggerQueue, "jp", desc="Pop trigger queue.") {
+ triggerQueue_in.dequeue();
+ }
+
+ action(l_popRequestQueue, "l", desc="Pop incoming request queue and profile the delay within this virtual network") {
+ profileMsgDelay(2, requestIntraChipL1Network_in.dequeue_getDelayCycles());
+ }
+
+ action(o_popIncomingResponseQueue, "o", desc="Pop Incoming Response queue and profile the delay within this virtual network") {
+ profileMsgDelay(3, responseIntraChipL1Network_in.dequeue_getDelayCycles());
+ }
+
+ action(s_deallocateTBE, "s", desc="Deallocate TBE") {
+ L1_TBEs.deallocate(address);
+ }
+
+ action(u_writeDataToL1Cache, "u", desc="Write data to cache") {
+ peek(responseIntraChipL1Network_in, ResponseMsg) {
+ getL1CacheEntry(address).DataBlk := in_msg.DataBlk;
+ getL1CacheEntry(address).Dirty := in_msg.Dirty;
+ if (machineIDToMachineType(in_msg.Sender) == MachineType:L1Cache) {
+ L1_TBEs[address].RemoveLastOwnerFromDir := in_msg.RemoveLastOwnerFromDir;
+ L1_TBEs[address].LastOwnerID := in_msg.LastOwnerID;
+ }
+ }
+ }
+
+ action(q_updateAckCount, "q", desc="Update ack count") {
+ peek(responseIntraChipL1Network_in, ResponseMsg) {
+ APPEND_TRANSITION_COMMENT(" before pendingAcks: ");
+ APPEND_TRANSITION_COMMENT(L1_TBEs[address].pendingAcks);
+ L1_TBEs[address].pendingAcks := L1_TBEs[address].pendingAcks - in_msg.AckCount;
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.AckCount);
+ APPEND_TRANSITION_COMMENT(" after pendingAcks: ");
+ APPEND_TRANSITION_COMMENT(L1_TBEs[address].pendingAcks);
+ APPEND_TRANSITION_COMMENT(" sender: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Sender);
+ if (L1_TBEs[address].pendingAcks == 0) {
+ enqueue(triggerQueue_out, TriggerMsg) {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := TriggerType:ALL_ACKS;
+ APPEND_TRANSITION_COMMENT(" Triggering All_Acks");
+ }
+ }
+ }
+ }
+
+ action(z_stall, "z", desc="Stall") {
+ }
+
+ action(ff_deallocateL1CacheBlock, "\f", desc="Deallocate L1 cache block. Sets the cache to not present, allowing a replacement in parallel with a fetch.") {
+ if (L1DcacheMemory.isTagPresent(address)) {
+ L1DcacheMemory.deallocate(address);
+ } else {
+ L1IcacheMemory.deallocate(address);
+ }
+ }
+
+ action(oo_allocateL1DCacheBlock, "\o", desc="Set L1 D-cache tag equal to tag of block B.") {
+ if (L1DcacheMemory.isTagPresent(address) == false) {
+ L1DcacheMemory.allocate(address);
+ // reset trans bit
+ }
+ }
+
+ action(pp_allocateL1ICacheBlock, "\p", desc="Set L1 I-cache tag equal to tag of block B.") {
+ if (L1IcacheMemory.isTagPresent(address) == false) {
+ L1IcacheMemory.allocate(address);
+ // reset trans bit
+ }
+ }
+
+ action(zz_recycleRequestQueue, "zz", desc="recycle L1 request queue") {
+ requestIntraChipL1Network_in.recycle();
+ }
+
+ action(z_recycleMandatoryQueue, "\z", desc="recycle L1 request queue") {
+ mandatoryQueue_in.recycle();
+ }
+
+ action(uu_profileMiss, "\u", desc="Profile the demand miss") {
+ peek(mandatoryQueue_in, CacheMsg) {
+ profile_L1Cache_miss(in_msg, id);
+ }
+ }
+
+ action(uuu_profileTransactionLoadMiss, "\uu", desc="Profile Miss") {
+ xact_mgr.profileTransactionMiss(L1_TBEs[address].ThreadID, true);
+ }
+
+ action(uuu_profileTransactionStoreMiss, "\uuu", desc="Profile Miss") {
+ xact_mgr.profileTransactionMiss(L1_TBEs[address].ThreadID, false);
+ }
+
+
+ //*****************************************************
+ // TRANSITIONS
+ //*****************************************************
+
+ // For filter responses
+ transition({NP, I, S, E, M, IS, IM, SM, IS_I, IS_S, IS_E, IM_M, M_I, E_I}, Check_Write_Filter){
+ a_checkWriteFilter;
+ l_popRequestQueue;
+ }
+
+ transition({NP, I, S, E, M, IS, IM, SM, IS_I, IS_S, IS_E, IM_M, M_I, E_I}, Check_Read_Write_Filter){
+ a_checkReadWriteFilter;
+ l_popRequestQueue;
+ }
+
+ // Transitions for Load/Store/Replacement/WriteBack from transient states
+ transition({IS, IM, IS_I, IS_S, IS_E, IM_M, M_I, E_I}, {Load, Ifetch, Store, L1_Replacement, L1_Replacement_XACT}) {
+ z_recycleMandatoryQueue;
+ }
+
+ // Transitions from Idle
+ transition({NP,I}, {L1_Replacement, L1_Replacement_XACT}) {
+ ff_deallocateL1CacheBlock;
+ }
+
+ transition({NP,I}, Load, IS) {
+ p_profileRequest;
+ oo_allocateL1DCacheBlock;
+ i_allocateTBE;
+ x_tbeSetPrefetch;
+ x_tbeSetPhysicalAddress;
+ a_issueGETS;
+ uu_profileMiss;
+ k_popMandatoryQueue;
+ }
+
+ transition({NP,I}, Ifetch, IS) {
+ p_profileRequest;
+ pp_allocateL1ICacheBlock;
+ i_allocateTBE;
+ x_tbeSetPhysicalAddress;
+ ai_issueGETINSTR;
+ uu_profileMiss;
+ k_popMandatoryQueue;
+ }
+
+ transition({NP,I}, Store, IM) {
+ p_profileRequest;
+ oo_allocateL1DCacheBlock;
+ i_allocateTBE;
+ x_tbeSetPrefetch;
+ x_tbeSetPhysicalAddress;
+ b_issueGETX;
+ uu_profileMiss;
+ k_popMandatoryQueue;
+ }
+
+ transition({NP, I}, Inv) {
+ fi_sendInvAck;
+ l_popRequestQueue;
+ }
+
+ // Transactional invalidates to blocks in NP or I are
+ // transactional blocks that have been silently replaced
+ // FALSE POSITIVE - can't tell whether block was never in our read/write set or was replaced
+ transition({NP, I}, Inv_X) {
+ fi_sendInvNack;
+ l_popRequestQueue;
+ }
+
+ // for L2 replacements. This happens due to our silent replacements.
+ transition({NP, I}, Replace) {
+ fi_sendInvAck;
+ l_popRequestQueue;
+ }
+
+ // Transitions from Shared
+ transition(S, {Load,Ifetch}) {
+ p_profileRequest;
+ h_load_hit;
+ k_popMandatoryQueue;
+ }
+
+ transition(S, Store, IM) {
+ p_profileRequest;
+ i_allocateTBE;
+ x_tbeSetPrefetch;
+ x_tbeSetPhysicalAddress;
+ b_issueGETX;
+ uu_profileMiss;
+ k_popMandatoryQueue;
+ }
+
+ transition(S, L1_Replacement, I) {
+ ff_deallocateL1CacheBlock;
+ }
+
+ transition(S, L1_Replacement_XACT, I) {
+ q_profileOverflow;
+ qq_xactReplacement;
+ ff_deallocateL1CacheBlock;
+ }
+
+ transition(S, Inv, I) {
+ fi_sendInvAck;
+ l_popRequestQueue;
+ }
+
+ transition(S, Inv_X) {
+ fi_sendInvNack;
+ l_popRequestQueue;
+ }
+
+ // for L2 replacements.
+ transition(S, Replace, I){
+ fi_sendInvAck;
+ l_popRequestQueue;
+ }
+
+ // Transitions from Exclusive
+
+ transition(E, {Load, Ifetch}) {
+ p_profileRequest;
+ h_load_hit;
+ k_popMandatoryQueue;
+ }
+
+ transition(E, Store, M) {
+ p_profileRequest;
+ hh_store_hit;
+ k_popMandatoryQueue;
+ }
+
+ transition(E, L1_Replacement, M_I) {
+ // The data is clean
+ i_allocateTBE;
+ g_issuePUTX; // send data, but hold in case forwarded request
+ ff_deallocateL1CacheBlock;
+ }
+
+ // we can't go to M_I here because we need to maintain transactional read isolation on this line, and M_I allows GETS and GETXs to
+ // be serviced. For correctness we need to make sure we are marked as a transactional reader (if we never read transactionally written data back exclusively) or transactional writer
+ transition(E, L1_Replacement_XACT, E_I) {
+ q_profileOverflow;
+ qq_xactReplacement;
+ // The data is clean
+ i_allocateTBE;
+ g_issuePUTXorPUTS; // send data and hold, but do not release on forwarded requests
+ ff_deallocateL1CacheBlock;
+ }
+
+ transition(E, Inv, I) {
+ // don't send data
+ fi_sendInvAck;
+ l_popRequestQueue;
+ }
+
+ transition(E, Inv_X){
+ fi_sendInvNack;
+ l_popRequestQueue;
+ }
+
+ // for L2 replacements
+ transition(E, Replace, I) {
+ // don't send data
+ fi_sendInvAck;
+ l_popRequestQueue;
+ }
+
+ transition(E, Fwd_GETX, I) {
+ d_sendDataToRequestor;
+ l_popRequestQueue;
+ }
+
+ transition(E, {Fwd_GETS, Fwd_GET_INSTR}, S) {
+ d_sendDataToRequestor;
+ d2_sendDataToL2;
+ l_popRequestQueue;
+ }
+
+ // If we see Fwd_GETS_X this is a FALSE POSITIVE, since we never
+ // modified this block
+ transition(E, {Fwd_GETS_X, Fwd_GETX_X, Fwd_GET_INSTR_X}){
+ // send NACK instead of data
+ e_sendNackToRequestor;
+ l_popRequestQueue;
+ }
+
+ // Transitions from Modified
+ transition(M, {Load, Ifetch}) {
+ p_profileRequest;
+ h_load_hit;
+ k_popMandatoryQueue;
+ }
+
+ transition(M, Store) {
+ p_profileRequest;
+ hh_store_hit;
+ k_popMandatoryQueue;
+ }
+
+ transition(M, L1_Replacement, M_I) {
+ i_allocateTBE;
+ g_issuePUTX; // send data, but hold in case forwarded request
+ ff_deallocateL1CacheBlock;
+ }
+
+ // in order to prevent releasing isolation of transactional data (either written to just read) we need to
+ // mark ourselves as a transactional reader (e.g. SS state in L2) or transactional writer (e.g. M state in L2). We need to transition to the same E_I
+ // state as for transactional replacements from E state, and ignore all requests.
+ transition(M, L1_Replacement_XACT, E_I) {
+ q_profileOverflow;
+ qq_xactReplacement;
+ i_allocateTBE;
+ g_issuePUTXorPUTS; // send data, but do not release on forwarded requests
+ ff_deallocateL1CacheBlock;
+ }
+
+ transition({M_I, E_I}, WB_Ack, I) {
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(M, Inv, I) {
+ f_sendDataToL2;
+ l_popRequestQueue;
+ }
+
+ // for L2 replacement
+ transition(M, Replace, I) {
+ f_sendDataToL2;
+ l_popRequestQueue;
+ }
+
+ transition(M, Inv_X){
+ fi_sendInvNack;
+ l_popRequestQueue;
+ }
+
+ transition(E_I, Inv) {
+ // ack requestor's GETX, but wait for WB_Ack from L2
+ fi_sendInvAck;
+ l_popRequestQueue;
+ }
+
+ // maintain isolation on M or E replacements
+ // took out M_I, since L2 transitions to M upon PUTX, and we should no longer receives invalidates
+ transition(E_I, Inv_X) {
+ fi_sendInvNack;
+ l_popRequestQueue;
+ }
+
+ // allow L2 to get data while we replace
+ transition({M_I, E_I}, Replace, I) {
+ ft_sendDataToL2_fromTBE;
+ s_deallocateTBE;
+ l_popRequestQueue;
+ }
+
+ transition(M, Fwd_GETX, I) {
+ d_sendDataToRequestor;
+ l_popRequestQueue;
+ }
+
+ transition(M, {Fwd_GETS, Fwd_GET_INSTR}, S) {
+ d_sendDataToRequestor;
+ d2_sendDataToL2;
+ l_popRequestQueue;
+ }
+
+ transition(M, {Fwd_GETX_X, Fwd_GETS_X, Fwd_GET_INSTR_X}) {
+ // send NACK instead of data
+ e_sendNackToRequestor;
+ l_popRequestQueue;
+ }
+
+ // for simplicity we ignore all other requests while we wait for L2 to receive the clean data. Otherwise we will incorrectly transfer
+ // ownership and not mark ourselves as a transactional sharer in the L2 directory
+ transition(E_I, {Fwd_GETX, Fwd_GETS, Fwd_GET_INSTR, Fwd_GETS_X, Fwd_GETX_X, Fwd_GET_INSTR_X}) {
+ // send NACK instead of data
+ e_sendNackToRequestor;
+ l_popRequestQueue;
+ }
+
+ transition(M_I, Fwd_GETX, I) {
+ dt_sendDataToRequestor_fromTBE;
+ s_deallocateTBE;
+ l_popRequestQueue;
+ }
+
+ transition(M_I, {Fwd_GETS, Fwd_GET_INSTR}, I) {
+ dt_sendDataToRequestor_fromTBE;
+ d2t_sendDataToL2_fromTBE;
+ s_deallocateTBE;
+ l_popRequestQueue;
+ }
+
+ // don't release isolation on forwarded conflicting requests
+ transition(M_I, {Fwd_GETS_X, Fwd_GETX_X, Fwd_GET_INSTR_X}) {
+ // send NACK instead of data
+ e_sendNackToRequestor;
+ l_popRequestQueue;
+ }
+
+ // Transitions from IS
+ transition({IS, IS_I}, Inv, IS_I) {
+ fi_sendInvAck;
+ l_popRequestQueue;
+ }
+
+ // Only possible when L2 sends us data in SS state. No conflict is possible, so no need to unblock L2
+ transition(IS, L2_Data_all_Acks, S) {
+ u_writeDataToL1Cache;
+ // unblock L2 because it blocks on GETS
+ j_sendUnblock;
+ uuu_profileTransactionLoadMiss;
+ h_load_hit;
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ }
+
+ // Made the L2 block on GETS requests, so we are guaranteed to have no races with GETX
+ // We only get into this transition if the writer had to retry his GETX request that invalidated us, and L2 went back to SS
+ transition(IS_I, L2_Data_all_Acks, S) {
+ u_writeDataToL1Cache;
+ // unblock L2 because it blocks on GETS
+ j_sendUnblock;
+ uuu_profileTransactionLoadMiss;
+ h_load_hit;
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ }
+
+ // for L2 replacements
+ transition({IS, IS_I}, Replace, IS_I) {
+ fi_sendInvAck;
+ l_popRequestQueue;
+ }
+
+ // These transitions are for when L2 sends us data, because it has exclusive copy, but L1 filter responses have not arrived
+ transition({IS, IS_I}, Ack){
+ q_updateAckCount;
+ o_popIncomingResponseQueue;
+ }
+
+ transition({IS, IS_I}, Nack) {
+ r_notifyReceiveNack;
+ q_updateNackCount;
+ o_popIncomingResponseQueue;
+ }
+
+ // IS_I also allowed because L2 Inv beat our GETS request, and now L2 is in NP state, ready to service our GETS.
+ transition({IS, IS_I}, L2_Data, IS_S) {
+ u_writeDataToL1Cache;
+ // This message carries the inverse of the ack count
+ q_updateAckCount;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(IS_S, Ack){
+ q_updateAckCount;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(IS_S, Nack) {
+ r_notifyReceiveNack;
+ q_updateNackCount;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(IS_S, Ack_all, S){
+ // tell L2 we succeeded
+ j_sendUnblock;
+ uuu_profileTransactionLoadMiss;
+ h_load_hit;
+ s_deallocateTBE;
+ j_popTriggerQueue;
+ }
+
+ // retry request from I
+ transition(IS_S, Nack_all, I){
+ ff_deallocateL1CacheBlock;
+ // This is also the final NACK
+ r_notifyReceiveNackFinal;
+ // tell L2 we failed
+ jj_sendUnblockCancel;
+ h_load_conflict;
+ s_deallocateTBE;
+ j_popTriggerQueue;
+ }
+
+ // L2 is trying to give us exclusive data
+ // we can go to E because L2 is guaranteed to have only copy (ie no races from other L1s possible)
+ transition({IS, IS_I}, L2_Exclusive_Data, IS_E) {
+ u_writeDataToL1Cache;
+ // This message carries the inverse of the ack count
+ q_updateAckCount;
+ o_popIncomingResponseQueue;
+ }
+
+ transition({IS, IS_I}, L2_Exclusive_Data_all_Acks, E){
+ u_writeDataToL1Cache;
+ // tell L2 we succeeded
+ jj_sendExclusiveUnblock;
+ uuu_profileTransactionLoadMiss;
+ h_load_hit;
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(IS_E, Ack){
+ q_updateAckCount;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(IS_E, Nack) {
+ r_notifyReceiveNack;
+ q_updateNackCount;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(IS_E, Ack_all, E){
+ // tell L2 we succeeded
+ jj_sendExclusiveUnblock;
+ uuu_profileTransactionLoadMiss;
+ h_load_hit;
+ s_deallocateTBE;
+ j_popTriggerQueue;
+ }
+
+ // retry request from I
+ transition(IS_E, Nack_all, I){
+ ff_deallocateL1CacheBlock;
+ // This is also the final NACK
+ r_notifyReceiveNackFinal;
+ // need to tell L2 we failed
+ jj_sendUnblockCancel;
+ h_load_conflict;
+ s_deallocateTBE;
+ j_popTriggerQueue;
+ }
+
+ // Normal case - when L2 doesn't have exclusive line, but L1 has line.
+ // We got NACKed . Try again in state I
+ // IMPORTANT: filters are NOT checked when L2 is in SS, because nobody has modified the line.
+ // For this transition we only receive NACKs from the exclusive writer
+ transition({IS, IS_I}, Nack_all, I) {
+ // This is also the final NACK
+ r_notifyReceiveNackFinal;
+ // L2 is blocked when L1 is exclusive
+ jj_sendUnblockCancel;
+ h_load_conflict;
+ s_deallocateTBE;
+ j_popTriggerQueue;
+ }
+
+ transition({IS, IS_I}, Inv_X) {
+ fi_sendInvNack;
+ l_popRequestQueue;
+ }
+
+ transition(IS, DataS_fromL1, S) {
+ u_writeDataToL1Cache;
+ j_sendUnblock;
+ uuu_profileTransactionLoadMiss;
+ h_load_hit;
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ }
+
+ // This occurs when there is a race between our GETS and another L1's GETX, and the GETX wins
+ // The L2 is now blocked because our request was forwarded to exclusive L1 (ie MT_IIB)
+ transition(IS_I, DataS_fromL1, S) {
+ u_writeDataToL1Cache;
+ j_sendUnblock;
+ uuu_profileTransactionLoadMiss;
+ h_load_hit;
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ }
+
+ // Transitions from IM
+ transition({IM, SM}, Inv, IM) {
+ fi_sendInvAck;
+ l_popRequestQueue;
+ }
+
+ transition({IM, SM}, Inv_X) {
+ fi_sendInvNack;
+ l_popRequestQueue;
+ }
+
+ // for L2 replacements
+ transition({IM, SM}, Replace, IM) {
+ fi_sendInvAck;
+ l_popRequestQueue;
+ }
+
+ // only possible when L1 exclusive sends us the line
+ transition(IM, Data_all_Acks, M) {
+ u_writeDataToL1Cache;
+ jj_sendExclusiveUnblock;
+ uuu_profileTransactionStoreMiss;
+ hh_store_hit;
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ }
+
+ // L2 is trying to give us data
+ // Don't go to SM because we do not want a S copy on failure. This might cause conflicts for older writers that
+ // nacked us.
+ transition(IM, L2_Data, IM_M) {
+ u_writeDataToL1Cache;
+ // This message carries the inverse of the ack count
+ q_updateAckCount;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(IM, L2_Data_all_Acks, M){
+ u_writeDataToL1Cache;
+ // tell L2 we succeeded
+ jj_sendExclusiveUnblock;
+ uuu_profileTransactionStoreMiss;
+ hh_store_hit;
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(IM_M, Ack){
+ q_updateAckCount;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(IM_M, Nack) {
+ r_notifyReceiveNack;
+ q_updateNackCount;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(IM_M, Ack_all, M){
+ // tell L2 we succeeded
+ jj_sendExclusiveUnblock;
+ uuu_profileTransactionStoreMiss;
+ hh_store_hit;
+ s_deallocateTBE;
+ j_popTriggerQueue;
+ }
+
+ // retry request from I
+ transition(IM_M, Nack_all, I){
+ ff_deallocateL1CacheBlock;
+ // This is also the final NACK
+ r_notifyReceiveNackFinal;
+ // need to tell L2 we failed
+ jj_sendUnblockCancel;
+ hh_store_conflict;
+ s_deallocateTBE;
+ j_popTriggerQueue;
+ }
+
+ // transitions from SM
+ transition({SM, IM}, Ack) {
+ q_updateAckCount;
+ o_popIncomingResponseQueue;
+ }
+
+ // instead of Data we receive Nacks
+ transition({SM, IM}, Nack) {
+ r_notifyReceiveNack;
+ // mark this request as being NACKed
+ q_updateNackCount;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(SM, Ack_all, M) {
+ jj_sendExclusiveUnblock;
+ uuu_profileTransactionStoreMiss;
+ hh_store_hit;
+ s_deallocateTBE;
+ j_popTriggerQueue;
+ }
+
+ // retry in state S
+ transition(SM, Nack_all, S){
+ // This is the final nack
+ r_notifyReceiveNackFinal;
+ // unblock the L2
+ jj_sendUnblockCancel;
+ hh_store_conflict;
+ s_deallocateTBE;
+ j_popTriggerQueue;
+ }
+
+ // retry in state I
+ transition(IM, Nack_all, I){
+ // This is the final NACK
+ r_notifyReceiveNackFinal;
+ // unblock the L2
+ jj_sendUnblockCancel;
+ hh_store_conflict;
+ s_deallocateTBE;
+ j_popTriggerQueue;
+ }
+
+}
+
+
+