summaryrefslogtreecommitdiff
path: root/src/mem/protocol/MESI_CMP_filter_directory-L2cache.sm
diff options
context:
space:
mode:
Diffstat (limited to 'src/mem/protocol/MESI_CMP_filter_directory-L2cache.sm')
-rw-r--r--src/mem/protocol/MESI_CMP_filter_directory-L2cache.sm2123
1 files changed, 2123 insertions, 0 deletions
diff --git a/src/mem/protocol/MESI_CMP_filter_directory-L2cache.sm b/src/mem/protocol/MESI_CMP_filter_directory-L2cache.sm
new file mode 100644
index 000000000..9085ae33f
--- /dev/null
+++ b/src/mem/protocol/MESI_CMP_filter_directory-L2cache.sm
@@ -0,0 +1,2123 @@
+
+/*
+ * Copyright (c) 1999-2005 Mark D. Hill and David A. Wood
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ * $Id: MSI_MOSI_CMP_directory-L2cache.sm 1.12 05/01/19 15:55:40-06:00 beckmann@s0-28.cs.wisc.edu $
+ *
+ */
+
+machine(L2Cache, "MESI Directory L2 Cache CMP") {
+
+ // L2 BANK QUEUES
+ // From local bank of L2 cache TO the network
+ MessageBuffer DirRequestFromL2Cache, network="To", virtual_network="2", ordered="false"; // this L2 bank -> Memory
+ MessageBuffer L1RequestFromL2Cache, network="To", virtual_network="1", ordered="false"; // this L2 bank -> a local L1
+ MessageBuffer responseFromL2Cache, network="To", virtual_network="3", ordered="false"; // this L2 bank -> a local L1 || Memory
+
+ // FROM the network to this local bank of L2 cache
+ MessageBuffer L1RequestToL2Cache, network="From", virtual_network="0", ordered="false"; // a local L1 -> this L2 bank
+ MessageBuffer responseToL2Cache, network="From", virtual_network="3", ordered="false"; // a local L1 || Memory -> this L2 bank
+ MessageBuffer unblockToL2Cache, network="From", virtual_network="4", ordered="false"; // a local L1 || Memory -> this L2 bank
+
+ // STATES
+ enumeration(State, desc="L2 Cache states", default="L2Cache_State_NP") {
+ // Base states
+ NP, desc="Not present in either cache";
+ SS, desc="L2 cache entry Shared, also present in one or more L1s";
+ M, desc="L2 cache entry Modified, not present in any L1s", format="!b";
+ MT, desc="L2 cache entry Modified in a local L1, assume L2 copy stale", format="!b";
+
+ // L2 replacement
+ M_I, desc="L2 cache replacing, have all acks, sent dirty data to memory, waiting for ACK from memory";
+ MT_I, desc="L2 cache replacing, getting data from exclusive";
+ MCT_I, desc="L2 cache replacing, clean in L2, getting data or ack from exclusive";
+ I_I, desc="L2 replacing clean data, need to inv sharers and then drop data";
+ S_I, desc="L2 replacing dirty data, collecting acks from L1s";
+
+ // Transient States for fetching data from memory
+ ISS, desc="L2 idle, got single L1_GETS, issued memory fetch, have not seen response yet";
+ IS, desc="L2 idle, got L1_GET_INSTR or multiple L1_GETS, issued memory fetch, have not seen response yet";
+ IM, desc="L2 idle, got L1_GETX, issued memory fetch, have not seen response(s) yet";
+
+ // Blocking states
+ SS_MB, desc="Blocked for L1_GETX from SS";
+ SS_SSB, desc="Blocked for L1_GETS from SS";
+ MT_MB, desc="Blocked for L1_GETX from MT";
+ M_MB, desc="Blocked for L1_GETX from M";
+ ISS_MB, desc="Blocked for L1_GETS or L1_GETX from NP, received Mem Data";
+ IS_SSB, desc="Blocked for L1_GET_INSTR from NP, received Mem Data";
+ M_SSB, desc="Blocked for L1_GET_INSTR from M";
+
+ MT_IIB, desc="Blocked for L1_GETS from MT, waiting for unblock and data";
+ MT_IB, desc="Blocked for L1_GETS from MT, got unblock, waiting for data";
+ MT_SB, desc="Blocked for L1_GETS from MT, got data, waiting for unblock";
+
+ // for resolving PUTX/PUTS races
+ PB_MT, desc="Going to MT, got data and unblock, waiting for PUT";
+ PB_SS, desc="Going to SS, got unblock, waiting for PUT";
+ PB_MT_IB, desc="Blocked from MT, got unblock, waiting for data and PUT";
+
+ }
+
+ // EVENTS
+ enumeration(Event, desc="L2 Cache events") {
+ // L2 events
+
+ // events initiated by the local L1s
+ L1_GET_INSTR, desc="a L1I GET INSTR request for a block maped to us";
+ L1_GET_INSTR_ESCAPE, desc="a L1I GET INSTR in an escape action request for a block mapped to us";
+ L1_GETS, desc="a L1D GETS request for a block maped to us";
+ L1_GETS_ESCAPE, desc="a L1D GETS in an escape action request for a block mapped to us";
+ L1_GETX, desc="a L1D GETX request for a block maped to us";
+ L1_GETX_ESCAPE, desc="a L1D GETX in an escape action request for a block mapped to us";
+ L1_UPGRADE, desc="a L1D GETX request for a block maped to us";
+
+ L1_PUTX, desc="L1 replacing data";
+ L1_PUTX_old, desc="L1 replacing data, but no longer sharer";
+ L1_PUTS, desc="L1 replacing clean data";
+ L1_PUTS_old, desc="L1 replacing clean data, but no longer sharer";
+ L1_PUT_PENDING, desc="L1 PUT msg pending (recycled)";
+
+ Fwd_L1_GETX, desc="L1 did not have data, so we supply";
+ Fwd_L1_GETS, desc="L1 did not have data, so we supply";
+ Fwd_L1_GET_INSTR, desc="L1 did not have data, so we supply";
+
+ // events initiated by this L2
+ L2_Replacement, desc="L2 Replacement", format="!r";
+ L2_Replacement_XACT, desc="L2 Replacement of trans. data", format="!r";
+ L2_Replacement_clean, desc="L2 Replacement, but data is clean", format="!r";
+ L2_Replacement_clean_XACT, desc="L2 Replacement of trans. data, but data is clean", format="!r";
+
+ // events from memory controller
+ Mem_Data, desc="data from memory", format="!r";
+ Mem_Ack, desc="ack from memory", format="!r";
+
+ // M->S data writeback
+ WB_Data, desc="data from L1";
+ WB_Data_clean, desc="clean data from L1";
+ Ack, desc="writeback ack";
+ Ack_all, desc="writeback ack";
+ // For transactional memory
+ Nack, desc="filter indicates conflict";
+ Nack_all, desc="all filters have responded, at least one conflict";
+
+ Unblock, desc="Unblock from L1 requestor";
+ Unblock_Cancel, desc="Unblock from L1 requestor (FOR XACT MEMORY)";
+ Exclusive_Unblock, desc="Unblock from L1 requestor";
+
+ Unblock_WaitPUTold, desc="Unblock from L1 requestor, last requestor was replacing so wait for PUT msg";
+ Exclusive_Unblock_WaitPUTold, desc="Unblock from L1 requestor, last requestor was replacing so wait for PUT msg";
+
+ }
+
+ // TYPES
+
+ // CacheEntry
+ structure(Entry, desc="...", interface="AbstractCacheEntry") {
+ State CacheState, desc="cache state";
+ NetDest Sharers, desc="tracks the L1 shares on-chip";
+ MachineID Exclusive, desc="Exclusive holder of block";
+ DataBlock DataBlk, desc="data for the block";
+ bool Dirty, default="false", desc="data is dirty";
+
+ bool Trans, desc="dummy bit for debugging";
+ bool Read, desc="LogTM R bit";
+ bool Write, desc="LogTM W bit";
+ bool L2Miss, desc="Was this block sourced from memory";
+ int L1PutsPending, default="0", desc="how many PUT_ are pending for this entry (being recyled)";
+ }
+
+ // TBE fields
+ structure(TBE, desc="...") {
+ Address Address, desc="Line address for this TBE";
+ Address PhysicalAddress, desc="Physical address for this TBE";
+ State TBEState, desc="Transient state";
+ DataBlock DataBlk, desc="Buffer for the data block";
+ bool Dirty, default="false", desc="Data is Dirty";
+
+ NetDest L1_GetS_IDs, desc="Set of the internal processors that want the block in shared state";
+ MachineID L1_GetX_ID, desc="ID of the L1 cache to forward the block to once we get a response";
+ bool isPrefetch, desc="Set if this was caused by a prefetch";
+
+ int pendingAcks, desc="number of pending acks for invalidates during writeback";
+ bool nack, default="false", desc="has this request been NACKed?";
+ }
+
+ external_type(CacheMemory) {
+ bool cacheAvail(Address);
+ Address cacheProbe(Address);
+ void allocate(Address);
+ void deallocate(Address);
+ Entry lookup(Address);
+ void changePermission(Address, AccessPermission);
+ bool isTagPresent(Address);
+ void setMRU(Address);
+ }
+
+ external_type(TBETable) {
+ TBE lookup(Address);
+ void allocate(Address);
+ void deallocate(Address);
+ bool isPresent(Address);
+ }
+
+ TBETable L2_TBEs, template_hack="<L2Cache_TBE>";
+
+ CacheMemory L2cacheMemory, template_hack="<L2Cache_Entry>", constructor_hack='L2_CACHE_NUM_SETS_BITS,L2_CACHE_ASSOC,MachineType_L2Cache,int_to_string(i)';
+
+ // inclusive cache, returns L2 entries only
+ Entry getL2CacheEntry(Address addr), return_by_ref="yes" {
+ return L2cacheMemory[addr];
+ }
+
+ void changeL2Permission(Address addr, AccessPermission permission) {
+ if (L2cacheMemory.isTagPresent(addr)) {
+ return L2cacheMemory.changePermission(addr, permission);
+ }
+ }
+
+ string getCoherenceRequestTypeStr(CoherenceRequestType type) {
+ return CoherenceRequestType_to_string(type);
+ }
+
+ bool isL2CacheTagPresent(Address addr) {
+ return (L2cacheMemory.isTagPresent(addr));
+ }
+
+ bool isOneSharerLeft(Address addr, MachineID requestor) {
+ assert(L2cacheMemory[addr].Sharers.isElement(requestor));
+ return (L2cacheMemory[addr].Sharers.count() == 1);
+ }
+
+ bool isSharer(Address addr, MachineID requestor) {
+ if (L2cacheMemory.isTagPresent(addr)) {
+ return L2cacheMemory[addr].Sharers.isElement(requestor);
+ } else {
+ return false;
+ }
+ }
+
+ void addSharer(Address addr, MachineID requestor) {
+ DEBUG_EXPR(machineID);
+ DEBUG_EXPR(requestor);
+ DEBUG_EXPR(addr);
+ assert(map_L1CacheMachId_to_L2Cache(addr, requestor) == machineID);
+ L2cacheMemory[addr].Sharers.add(requestor);
+ }
+
+ State getState(Address addr) {
+ if(L2_TBEs.isPresent(addr)) {
+ return L2_TBEs[addr].TBEState;
+ } else if (isL2CacheTagPresent(addr)) {
+ return getL2CacheEntry(addr).CacheState;
+ }
+ return State:NP;
+ }
+
+ string getStateStr(Address addr) {
+ return L2Cache_State_to_string(getState(addr));
+ }
+
+ // when is this called
+ void setState(Address addr, State state) {
+
+ // MUST CHANGE
+ if (L2_TBEs.isPresent(addr)) {
+ L2_TBEs[addr].TBEState := state;
+ }
+
+ if (isL2CacheTagPresent(addr)) {
+ getL2CacheEntry(addr).CacheState := state;
+
+ // Set permission
+ if (state == State:SS ) {
+ changeL2Permission(addr, AccessPermission:Read_Only);
+ } else if (state == State:M) {
+ changeL2Permission(addr, AccessPermission:Read_Write);
+ } else if (state == State:MT) {
+ changeL2Permission(addr, AccessPermission:Stale);
+ } else {
+ changeL2Permission(addr, AccessPermission:Busy);
+ }
+ }
+ }
+
+ Event L1Cache_request_type_to_event(CoherenceRequestType type, Address addr, MachineID requestor) {
+ if (L2cacheMemory.isTagPresent(addr)){ /* Present */
+ if(getL2CacheEntry(addr).L1PutsPending > 0 && /* At least one PUT pending */
+ (getL2CacheEntry(addr).CacheState == State:SS || getL2CacheEntry(addr).CacheState == State:MT || getL2CacheEntry(addr).CacheState == State:M )) { /* Base state */
+
+ /* Only allow PUTX/PUTS to go on */
+ if (type != CoherenceRequestType:PUTX &&
+ type != CoherenceRequestType:PUTS) {
+ return Event:L1_PUT_PENDING; // Don't serve any req until the wb is serviced
+ }
+ }
+ }
+ if(type == CoherenceRequestType:GETS) {
+ return Event:L1_GETS;
+ } else if(type == CoherenceRequestType:GETS_ESCAPE) {
+ return Event:L1_GETS_ESCAPE;
+ } else if(type == CoherenceRequestType:GET_INSTR) {
+ return Event:L1_GET_INSTR;
+ } else if(type == CoherenceRequestType:GET_INSTR_ESCAPE) {
+ return Event:L1_GET_INSTR_ESCAPE;
+ } else if (type == CoherenceRequestType:GETX) {
+ return Event:L1_GETX;
+ } else if(type == CoherenceRequestType:GETX_ESCAPE) {
+ return Event:L1_GETX_ESCAPE;
+ } else if (type == CoherenceRequestType:UPGRADE) {
+ if ( isL2CacheTagPresent(addr) && getL2CacheEntry(addr).Sharers.isElement(requestor) ) {
+ return Event:L1_UPGRADE;
+ } else {
+ return Event:L1_GETX;
+ }
+ } else if (type == CoherenceRequestType:PUTX) {
+ if ( isL2CacheTagPresent(addr) && getL2CacheEntry(addr).L1PutsPending > 0) {
+ getL2CacheEntry(addr).L1PutsPending := getL2CacheEntry(addr).L1PutsPending - 1;
+ DEBUG_EXPR("PUTX PutSPending ");
+ DEBUG_EXPR(getL2CacheEntry(addr).L1PutsPending);
+ }
+ if (isSharer(addr, requestor)) {
+ return Event:L1_PUTX;
+ } else {
+ return Event:L1_PUTX_old;
+ }
+ } else if (type == CoherenceRequestType:PUTS) {
+ if ( isL2CacheTagPresent(addr) && getL2CacheEntry(addr).L1PutsPending > 0) {
+ getL2CacheEntry(addr).L1PutsPending := getL2CacheEntry(addr).L1PutsPending - 1;
+ DEBUG_EXPR("PUTS PutSPending ");
+ DEBUG_EXPR(getL2CacheEntry(addr).L1PutsPending);
+ }
+ if (isSharer(addr, requestor)) {
+ return Event:L1_PUTS;
+ } else {
+ return Event:L1_PUTS_old;
+ }
+ } else {
+ DEBUG_EXPR(addr);
+ DEBUG_EXPR(type);
+ error("Invalid L1 forwarded request type");
+ }
+ }
+
+ // ** OUT_PORTS **
+
+ out_port(L1RequestIntraChipL2Network_out, RequestMsg, L1RequestFromL2Cache);
+ out_port(DirRequestIntraChipL2Network_out, RequestMsg, DirRequestFromL2Cache);
+ out_port(responseIntraChipL2Network_out, ResponseMsg, responseFromL2Cache);
+
+
+ // Response IntraChip L2 Network - response msg to this particular L2 bank
+ in_port(responseIntraChipL2Network_in, ResponseMsg, responseToL2Cache) {
+ if (responseIntraChipL2Network_in.isReady()) {
+ peek(responseIntraChipL2Network_in, ResponseMsg) {
+ // test wether it's from a local L1 or an off chip source
+ assert(in_msg.Destination.isElement(machineID));
+ if(machineIDToMachineType(in_msg.Sender) == MachineType:L1Cache) {
+ if(in_msg.Type == CoherenceResponseType:DATA) {
+ if (in_msg.Dirty) {
+ trigger(Event:WB_Data, in_msg.Address);
+ } else {
+ trigger(Event:WB_Data_clean, in_msg.Address);
+ }
+ } else if (in_msg.Type == CoherenceResponseType:ACK) {
+ if ((L2_TBEs[in_msg.Address].pendingAcks - in_msg.AckCount) == 0) {
+ // check whether any previous responses have been NACKs
+ if(L2_TBEs[in_msg.Address].nack == false) {
+ trigger(Event:Ack_all, in_msg.Address);
+ }
+ else {
+ // at least one nack received
+ trigger(Event:Nack_all, in_msg.Address);
+ }
+ } else {
+ trigger(Event:Ack, in_msg.Address);
+ }
+ // for NACKs
+ } else if (in_msg.Type == CoherenceResponseType:NACK) {
+ if ((L2_TBEs[in_msg.Address].pendingAcks - in_msg.AckCount) == 0) {
+ trigger(Event:Nack_all, in_msg.Address);
+ } else {
+ trigger(Event:Nack, in_msg.Address);
+ }
+ } else {
+ error("unknown message type");
+ }
+
+ } else { // external message
+ if(in_msg.Type == CoherenceResponseType:MEMORY_DATA) {
+ trigger(Event:Mem_Data, in_msg.Address); // L2 now has data and all off-chip acks
+ } else if(in_msg.Type == CoherenceResponseType:MEMORY_ACK) {
+ trigger(Event:Mem_Ack, in_msg.Address); // L2 now has data and all off-chip acks
+ } else {
+ error("unknown message type");
+ }
+ }
+ }
+ } // if not ready, do nothing
+ }
+
+ // L1 Request
+ in_port(L1RequestIntraChipL2Network_in, RequestMsg, L1RequestToL2Cache) {
+ if(L1RequestIntraChipL2Network_in.isReady()) {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ /*
+ DEBUG_EXPR(in_msg.Address);
+ DEBUG_EXPR(id);
+ DEBUG_EXPR(getState(in_msg.Address));
+ DEBUG_EXPR(in_msg.Requestor);
+ DEBUG_EXPR(in_msg.Type);
+ DEBUG_EXPR(in_msg.Destination);
+ */
+ assert(machineIDToMachineType(in_msg.Requestor) == MachineType:L1Cache);
+ assert(in_msg.Destination.isElement(machineID));
+ if (L2cacheMemory.isTagPresent(in_msg.Address)) {
+ // The L2 contains the block, so proceeded with handling the request
+ trigger(L1Cache_request_type_to_event(in_msg.Type, in_msg.Address, in_msg.Requestor), in_msg.Address);
+ } else {
+ if (L2cacheMemory.cacheAvail(in_msg.Address)) {
+ // L2 does't have the line, but we have space for it in the L2
+ trigger(L1Cache_request_type_to_event(in_msg.Type, in_msg.Address, in_msg.Requestor), in_msg.Address);
+ } else {
+ // No room in the L2, so we need to make room before handling the request
+ if (L2cacheMemory[ L2cacheMemory.cacheProbe(in_msg.Address) ].Dirty ) {
+ // check whether block is transactional
+ if(L2cacheMemory[ L2cacheMemory.cacheProbe(in_msg.Address) ].Trans == true){
+ trigger(Event:L2_Replacement_XACT, L2cacheMemory.cacheProbe(in_msg.Address));
+ }
+ else{
+ trigger(Event:L2_Replacement, L2cacheMemory.cacheProbe(in_msg.Address));
+ }
+ } else {
+ // check whether block is transactional
+ if(L2cacheMemory[ L2cacheMemory.cacheProbe(in_msg.Address) ].Trans == true){
+ trigger(Event:L2_Replacement_clean_XACT, L2cacheMemory.cacheProbe(in_msg.Address));
+ }
+ else{
+ trigger(Event:L2_Replacement_clean, L2cacheMemory.cacheProbe(in_msg.Address));
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ in_port(L1unblockNetwork_in, ResponseMsg, unblockToL2Cache) {
+ if(L1unblockNetwork_in.isReady()) {
+ peek(L1unblockNetwork_in, ResponseMsg) {
+ assert(in_msg.Destination.isElement(machineID));
+ if (in_msg.Type == CoherenceResponseType:EXCLUSIVE_UNBLOCK) {
+ if (in_msg.RemoveLastOwnerFromDir == true) {
+ if (isSharer(in_msg.Address,in_msg.LastOwnerID)) {
+ trigger(Event:Exclusive_Unblock_WaitPUTold, in_msg.Address);
+ }
+ else { // PUT arrived, requestor already removed from dir
+ trigger(Event:Exclusive_Unblock, in_msg.Address);
+ }
+ }
+ else {
+ trigger(Event:Exclusive_Unblock, in_msg.Address);
+ }
+ } else if (in_msg.Type == CoherenceResponseType:UNBLOCK) {
+ if (in_msg.RemoveLastOwnerFromDir == true) {
+ if (isSharer(in_msg.Address,in_msg.LastOwnerID)) {
+ trigger(Event:Unblock_WaitPUTold, in_msg.Address);
+ }
+ else { // PUT arrived, requestor already removed from dir
+ trigger(Event:Unblock, in_msg.Address);
+ }
+ }
+ else {
+ trigger(Event:Unblock, in_msg.Address);
+ }
+ } else if (in_msg.Type == CoherenceResponseType:UNBLOCK_CANCEL) {
+ trigger(Event:Unblock_Cancel, in_msg.Address);
+ } else {
+ error("unknown unblock message");
+ }
+ }
+ }
+ }
+
+ // ACTIONS
+
+ action(a_issueFetchToMemory, "a", desc="fetch data from memory") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ enqueue(DirRequestIntraChipL2Network_out, RequestMsg, latency="L2_REQUEST_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceRequestType:GETS;
+ out_msg.Requestor := machineID;
+ out_msg.Destination.add(map_Address_to_Directory(address));
+ out_msg.MessageSize := MessageSizeType:Control;
+ }
+ }
+ }
+
+ action(b_forwardRequestToExclusive, "b", desc="Forward request to the exclusive L1") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency="L2_TAG_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := in_msg.Type;
+ out_msg.Requestor := in_msg.Requestor;
+ out_msg.Destination.add(L2cacheMemory[address].Exclusive);
+ out_msg.MessageSize := MessageSizeType:Request_Control;
+ // also pass along timestamp
+ out_msg.Timestamp := in_msg.Timestamp;
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ }
+ }
+ }
+
+ action(c_exclusiveReplacement, "c", desc="Send data to memory") {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="L2_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceResponseType:MEMORY_DATA;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(map_Address_to_Directory(address));
+ out_msg.DataBlk := getL2CacheEntry(address).DataBlk;
+ out_msg.Dirty := getL2CacheEntry(address).Dirty;
+ out_msg.MessageSize := MessageSizeType:Response_Data;
+ }
+ }
+
+ action(ct_exclusiveReplacementFromTBE, "ct", desc="Send data to memory") {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="L2_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceResponseType:MEMORY_DATA;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(map_Address_to_Directory(address));
+ out_msg.DataBlk := L2_TBEs[address].DataBlk;
+ out_msg.Dirty := L2_TBEs[address].Dirty;
+ out_msg.MessageSize := MessageSizeType:Response_Data;
+ }
+ }
+
+
+ //************Transactional memory actions **************
+ //broadcast a write filter lookup request to all L1s except for the requestor
+ action(a_checkL1WriteFiltersExceptRequestor, "wr", desc="Broadcast a Write Filter lookup request"){
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency="L2_TAG_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceRequestType:CHECK_WRITE_FILTER;
+ // make L1s forward responses to requestor
+ out_msg.Requestor := in_msg.Requestor;
+ out_msg.Destination := getLocalL1IDs(machineID);
+ // don't broadcast to requestor
+ out_msg.Destination.remove(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ // also pass along timestamp of requestor
+ out_msg.Timestamp := in_msg.Timestamp;
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ }
+ }
+ }
+
+ //broadcast a read + write filter lookup request to all L1s except for the requestor
+ action(a_checkL1ReadWriteFiltersExceptRequestor, "rwr", desc="Broadcast a Read + Write Filter lookup request"){
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency="L2_TAG_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceRequestType:CHECK_READ_WRITE_FILTER;
+ // make L1 forward responses to requestor
+ out_msg.Requestor := in_msg.Requestor;
+ out_msg.Destination := getLocalL1IDs(machineID);
+ // don't broadcast to requestor
+ out_msg.Destination.remove(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ // also pass along timestamp of requestor
+ out_msg.Timestamp := in_msg.Timestamp;
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ }
+ }
+ }
+
+ // These are to send out filter checks to those NACKers in our sharers or exclusive ptr list
+ action(a_checkNackerL1WriteFiltersExceptRequestor, "wrn", desc="Broadcast a Write Filter lookup request"){
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ // check if the L2 miss bit is set - if it is, send check filter requests to those in our Sharers list only
+ if(getL2CacheEntry(address).L2Miss == true){
+ // check whether we are the only sharer on the list. If so, no need to broadcast.
+ if(isSharer(address, in_msg.Requestor) == true && isOneSharerLeft(address, in_msg.Requestor) == true){
+ // no filter check needed
+ APPEND_TRANSITION_COMMENT("L2 Miss: No need to check L1 write filter ");
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ }
+ else{
+ enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency="L2_TAG_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceRequestType:CHECK_WRITE_FILTER;
+ // make L1s forward responses to requestor
+ out_msg.Requestor := in_msg.Requestor;
+ assert(getL2CacheEntry(address).Sharers.count() > 0);
+ out_msg.Destination := getL2CacheEntry(address).Sharers;
+ // don't broadcast to requestor
+ out_msg.Destination.remove(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ // also pass along timestamp of requestor
+ out_msg.Timestamp := in_msg.Timestamp;
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ APPEND_TRANSITION_COMMENT(" requestor: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ APPEND_TRANSITION_COMMENT(" dest: ");
+ APPEND_TRANSITION_COMMENT(out_msg.Destination);
+ }
+ }
+ }
+ else{
+ // This is a read request, so check whether we have a writer
+ if(getL2CacheEntry(address).Sharers.count() == 0 && getL2CacheEntry(address).Exclusive != in_msg.Requestor){
+ enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency="L2_TAG_LATENCY") {
+ // we have a writer, and it is not us
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceRequestType:CHECK_WRITE_FILTER;
+ // make L1s forward responses to requestor
+ out_msg.Requestor := in_msg.Requestor;
+ out_msg.Destination.add(getL2CacheEntry(address).Exclusive);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ // also pass along timestamp of requestor
+ out_msg.Timestamp := in_msg.Timestamp;
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ APPEND_TRANSITION_COMMENT(" requestor: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ APPEND_TRANSITION_COMMENT(" dest: ");
+ APPEND_TRANSITION_COMMENT(out_msg.Destination);
+ }
+ }
+ else{
+ APPEND_TRANSITION_COMMENT("L1 replacement: No need to check L1 write filter");
+ APPEND_TRANSITION_COMMENT(" requestor: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ APPEND_TRANSITION_COMMENT(" exclusive: ");
+ APPEND_TRANSITION_COMMENT(getL2CacheEntry(address).Exclusive);
+ // we should not have any sharers
+ assert( getL2CacheEntry(address).Sharers.count() == 0 );
+ }
+ }
+ }
+ }
+
+ action(a_checkNackerL1ReadWriteFiltersExceptRequestor, "wrrn", desc="Broadcast a Read + Write Filter lookup request"){
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ // check if the L2 miss bit is set - if it is, send check filter requests to those in our Sharers list only
+ if(getL2CacheEntry(address).L2Miss == true){
+ // check whether we are the only sharer on the list. If so, no need to broadcast.
+ if(isSharer(address, in_msg.Requestor) == true && isOneSharerLeft(address, in_msg.Requestor) == true){
+ // no filter check needed
+ APPEND_TRANSITION_COMMENT("L2 Miss: No need to check L1 read/write filter");
+ APPEND_TRANSITION_COMMENT(" requestor: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ }
+ else{
+ enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency="L2_TAG_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceRequestType:CHECK_READ_WRITE_FILTER;
+ // make L1s forward responses to requestor
+ out_msg.Requestor := in_msg.Requestor;
+ assert(getL2CacheEntry(address).Sharers.count() > 0);
+ out_msg.Destination := getL2CacheEntry(address).Sharers;
+ // don't broadcast to requestor
+ out_msg.Destination.remove(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ // also pass along timestamp of requestor
+ out_msg.Timestamp := in_msg.Timestamp;
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ APPEND_TRANSITION_COMMENT(" requestor: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ APPEND_TRANSITION_COMMENT(" dest: ");
+ APPEND_TRANSITION_COMMENT(out_msg.Destination);
+ }
+ }
+ }
+ else{
+ // This is a write request, so check whether we have readers not including us or a writer that is not us
+ if(getL2CacheEntry(address).Sharers.count() == 0 && getL2CacheEntry(address).Exclusive != in_msg.Requestor){
+ enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency="L2_TAG_LATENCY") {
+ // we have a writer, and it is not us
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceRequestType:CHECK_READ_WRITE_FILTER;
+ // make L1s forward responses to requestor
+ out_msg.Requestor := in_msg.Requestor;
+ out_msg.Destination.add(getL2CacheEntry(address).Exclusive);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ // also pass along timestamp of requestor
+ out_msg.Timestamp := in_msg.Timestamp;
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ APPEND_TRANSITION_COMMENT(" requestor: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ APPEND_TRANSITION_COMMENT(" dest: ");
+ APPEND_TRANSITION_COMMENT(out_msg.Destination);
+ }
+ }
+ else if(getL2CacheEntry(address).Sharers.count() > 0){
+ // this should never happen - since we allow silent S replacements but we always track exclusive L1
+ assert(false);
+ if(isSharer(address, in_msg.Requestor) == true && isOneSharerLeft(address, in_msg.Requestor) == true){
+ // no filter check needed
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ APPEND_TRANSITION_COMMENT(" L1 replacement: No need to check L1 read/write filter - we are only reader");
+ }
+ else{
+ // reader(s) exist that is not us
+ enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency="L2_TAG_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceRequestType:CHECK_READ_WRITE_FILTER;
+ // make L1s forward responses to requestor
+ out_msg.Requestor := in_msg.Requestor;
+ out_msg.Destination := getL2CacheEntry(address).Sharers;
+ // don't check our own filter
+ out_msg.Destination.remove(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ // also pass along timestamp of requestor
+ out_msg.Timestamp := in_msg.Timestamp;
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ APPEND_TRANSITION_COMMENT(" requestor: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ APPEND_TRANSITION_COMMENT(" dest: ");
+ APPEND_TRANSITION_COMMENT(out_msg.Destination);
+ }
+ }
+ }
+ else{
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(getL2CacheEntry(address).Sharers);
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(getL2CacheEntry(address).Exclusive);
+ APPEND_TRANSITION_COMMENT(" L1 replacement: No need to check L1 read/write filter");
+ }
+ }
+ }
+ }
+
+ // send data but force L1 requestor to wait for filter responses
+ action(f_sendDataToGetSRequestor, "f", desc="Send data from cache to reqeustor") {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="L2_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := L2_TBEs[address].PhysicalAddress;
+ out_msg.Type := CoherenceResponseType:L2_DATA;
+ out_msg.Sender := machineID;
+ out_msg.Destination := L2_TBEs[address].L1_GetS_IDs; // internal nodes
+ out_msg.DataBlk := getL2CacheEntry(address).DataBlk;
+ out_msg.Dirty := getL2CacheEntry(address).Dirty;
+ out_msg.MessageSize := MessageSizeType:Response_Data;
+
+ // wait for the filter responses from other L1s
+ out_msg.AckCount := 0 - (numberOfL1CachePerChip() - 1);
+ }
+ }
+
+ // send exclusive data
+ action(f_sendExclusiveDataToGetSRequestor, "fx", desc="Send data from cache to reqeustor") {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="L2_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := L2_TBEs[address].PhysicalAddress;
+ out_msg.Type := CoherenceResponseType:L2_DATA_EXCLUSIVE;
+ out_msg.Sender := machineID;
+ out_msg.Destination := L2_TBEs[address].L1_GetS_IDs; // internal nodes
+ out_msg.DataBlk := getL2CacheEntry(address).DataBlk;
+ out_msg.Dirty := getL2CacheEntry(address).Dirty;
+ out_msg.MessageSize := MessageSizeType:Response_Data;
+
+ // wait for the filter responses from other L1s
+ out_msg.AckCount := 0 - (numberOfL1CachePerChip() - 1);
+ }
+ }
+
+ action(f_sendDataToGetXRequestor, "fxx", desc="Send data from cache to reqeustor") {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="L2_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := L2_TBEs[address].PhysicalAddress;
+ out_msg.Type := CoherenceResponseType:L2_DATA;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(L2_TBEs[address].L1_GetX_ID); // internal nodes
+ out_msg.DataBlk := getL2CacheEntry(address).DataBlk;
+ out_msg.Dirty := getL2CacheEntry(address).Dirty;
+ out_msg.MessageSize := MessageSizeType:Response_Data;
+
+ // wait for the filter responses from other L1s
+ out_msg.AckCount := 0 - (numberOfL1CachePerChip() - 1);
+ }
+ }
+
+ action(f_sendDataToRequestor, "fd", desc="Send data from cache to reqeustor") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="L2_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceResponseType:L2_DATA;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(in_msg.Requestor);
+ out_msg.DataBlk := getL2CacheEntry(address).DataBlk;
+ out_msg.Dirty := getL2CacheEntry(address).Dirty;
+ out_msg.MessageSize := MessageSizeType:Response_Data;
+
+ // different ack counts for different situations
+ if(in_msg.Type == CoherenceRequestType:GET_INSTR_ESCAPE || in_msg.Type == CoherenceRequestType:GETX_ESCAPE){
+ // no acks needed
+ out_msg.AckCount := 0;
+ }
+ else{
+
+ // ORIGINAL
+ if( false ) {
+ out_msg.AckCount := 0 - (numberOfL1CachePerChip() - 1);
+ }
+
+ else{
+ // NEW***
+ // differentiate btw read and write requests
+ if(in_msg.Type == CoherenceRequestType:GET_INSTR){
+ if(getL2CacheEntry(address).L2Miss == true){
+ // check whether we are the only sharer on the list. If so, no need to broadcast.
+ if(isSharer(address, in_msg.Requestor) == true && isOneSharerLeft(address, in_msg.Requestor) == true){
+ // no filter check needed
+ APPEND_TRANSITION_COMMENT("We are only sharer");
+ out_msg.AckCount := 0;
+ }
+ else{
+ // wait for ACKs from the other NACKers
+ out_msg.AckCount := 0 - getL2CacheEntry(address).Sharers.count();
+ if(isSharer(address, in_msg.Requestor)){
+ // don't include us
+ out_msg.AckCount := out_msg.AckCount + 1;
+ }
+ APPEND_TRANSITION_COMMENT("Nackers exist");
+ }
+ }
+ else{
+ // This is a read request, so check whether we have a writer
+ if(getL2CacheEntry(address).Sharers.count() == 0 && getL2CacheEntry(address).Exclusive != in_msg.Requestor){
+ // we have a writer and it is not us
+ out_msg.AckCount := 0 - 1;
+
+ APPEND_TRANSITION_COMMENT(" Writer exists ");
+ APPEND_TRANSITION_COMMENT(getL2CacheEntry(address).Exclusive);
+ }
+ else{
+ // we should have no sharers!
+ assert(getL2CacheEntry(address).Sharers.count() == 0);
+ assert(getL2CacheEntry(address).Exclusive == in_msg.Requestor);
+
+ APPEND_TRANSITION_COMMENT(" Sharers or we are writer exist, ok to read ");
+ APPEND_TRANSITION_COMMENT(" sharers: ");
+ APPEND_TRANSITION_COMMENT(getL2CacheEntry(address).Sharers);
+ APPEND_TRANSITION_COMMENT(" exclusive: ");
+ APPEND_TRANSITION_COMMENT(getL2CacheEntry(address).Exclusive);
+ out_msg.AckCount := 0;
+ }
+ }
+ }
+ else if(in_msg.Type == CoherenceRequestType:GETX){
+ if(getL2CacheEntry(address).L2Miss == true){
+ // check whether we are the only sharer on the list. If so, no need to broadcast.
+ if(isSharer(address, in_msg.Requestor) == true && isOneSharerLeft(address, in_msg.Requestor) == true){
+ // no filter check needed
+ APPEND_TRANSITION_COMMENT(" L2Miss and we are only sharer ");
+ out_msg.AckCount := 0;
+ }
+ else{
+ // nackers exist
+ out_msg.AckCount := 0 - getL2CacheEntry(address).Sharers.count();
+ if(isSharer(address, in_msg.Requestor)){
+ // don't include us
+ out_msg.AckCount := out_msg.AckCount + 1;
+ }
+ APPEND_TRANSITION_COMMENT("Nackers exist");
+ }
+ }
+ else{
+ // This is a write request, so check whether we have readers not including us or a writer that is not us
+ if(getL2CacheEntry(address).Sharers.count() == 0 && getL2CacheEntry(address).Exclusive != in_msg.Requestor){
+ // we have a writer and it is not us
+ out_msg.AckCount := 0 - 1;
+
+ APPEND_TRANSITION_COMMENT(" Writer exists ");
+ APPEND_TRANSITION_COMMENT(getL2CacheEntry(address).Exclusive);
+
+ }
+ else if(getL2CacheEntry(address).Sharers.count() > 0){
+ // this shouldn't be possible - we always track exclusive owner, but allow silent S replacements
+ assert(false);
+
+ if(isSharer(address, in_msg.Requestor) == true && isOneSharerLeft(address, in_msg.Requestor) == true){
+ // no filter check needed
+ APPEND_TRANSITION_COMMENT(" L1 replacement: No need to check L1 read/write filter - we are only reader");
+ out_msg.AckCount := 0;
+ }
+ else{
+ // reader(s) exist that is not us
+ out_msg.AckCount := 0 - getL2CacheEntry(address).Sharers.count();
+ if(isSharer(address, in_msg.Requestor)){
+ // don't include us
+ out_msg.AckCount := out_msg.AckCount + 1;
+ }
+ APPEND_TRANSITION_COMMENT(" Readers exist ");
+ APPEND_TRANSITION_COMMENT(getL2CacheEntry(address).Sharers);
+ }
+ }
+ else{
+ // we should always have no sharers!
+ assert(getL2CacheEntry(address).Sharers.count() == 0);
+ assert(getL2CacheEntry(address).Exclusive == in_msg.Requestor);
+
+ out_msg.AckCount := 0;
+
+ APPEND_TRANSITION_COMMENT(" sharers: ");
+ APPEND_TRANSITION_COMMENT(getL2CacheEntry(address).Sharers);
+ APPEND_TRANSITION_COMMENT(" exclusive: ");
+ APPEND_TRANSITION_COMMENT(getL2CacheEntry(address).Exclusive);
+ APPEND_TRANSITION_COMMENT(" L1 replacement: No need to check L1 read/write filter");
+ }
+ }
+ } // for GETX
+ else{
+ // unknown request type
+ APPEND_TRANSITION_COMMENT(in_msg.Type);
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ assert(false);
+ }
+ }
+ } // for original vs new code
+ APPEND_TRANSITION_COMMENT(" requestor: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ APPEND_TRANSITION_COMMENT(" AckCount: ");
+ APPEND_TRANSITION_COMMENT(out_msg.AckCount);
+ }
+ }
+ }
+
+ action(f_sendExclusiveDataToRequestor, "fdx", desc="Send data from cache to reqeustor") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="L2_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceResponseType:L2_DATA_EXCLUSIVE;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(in_msg.Requestor);
+ out_msg.DataBlk := getL2CacheEntry(address).DataBlk;
+ out_msg.Dirty := getL2CacheEntry(address).Dirty;
+ out_msg.MessageSize := MessageSizeType:Response_Data;
+
+ // different ack counts depending on situation
+ // IMPORTANT: assuming data sent exclusively for GETS request
+ if(in_msg.Type == CoherenceRequestType:GETS_ESCAPE){
+ // no acks needed
+ out_msg.AckCount := 0;
+ }
+ else{
+
+ // ORIGINAL :
+ if( false ){
+ // request filter checks from all L1s
+ out_msg.AckCount := 0 - (numberOfL1CachePerChip() - 1);
+ }
+ else{
+ // NEW***
+ if(getL2CacheEntry(address).L2Miss == true){
+ // check whether we are the only sharer on the list. If so, no need to broadcast.
+ if(isSharer(address, in_msg.Requestor) == true && isOneSharerLeft(address, in_msg.Requestor) == true){
+ // no filter check needed
+ APPEND_TRANSITION_COMMENT("We are only sharer");
+ out_msg.AckCount := 0;
+ }
+ else{
+ // wait for ACKs from the other NACKers
+ out_msg.AckCount := 0 - getL2CacheEntry(address).Sharers.count();
+ if(isSharer(address, in_msg.Requestor)){
+ // don't include us
+ out_msg.AckCount := out_msg.AckCount + 1;
+ }
+ APPEND_TRANSITION_COMMENT("Nackers exist");
+ }
+ }
+ else{
+ // This is a read request, so check whether we have a writer
+ if(getL2CacheEntry(address).Sharers.count() == 0 && getL2CacheEntry(address).Exclusive != in_msg.Requestor){
+ // we have a writer and it is not us
+ out_msg.AckCount := 0 - 1;
+
+ APPEND_TRANSITION_COMMENT(" Writer exists ");
+ APPEND_TRANSITION_COMMENT(getL2CacheEntry(address).Exclusive);
+ }
+ else{
+ // we should always have no sharers!
+ APPEND_TRANSITION_COMMENT(address);
+ APPEND_TRANSITION_COMMENT(" requestor: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ APPEND_TRANSITION_COMMENT(" sharers: ");
+ APPEND_TRANSITION_COMMENT(getL2CacheEntry(address).Sharers);
+
+ DEBUG_EXPR(address);
+ DEBUG_EXPR(" requestor: ");
+ DEBUG_EXPR(in_msg.Requestor);
+ DEBUG_EXPR(" sharers: ");
+ DEBUG_EXPR(getL2CacheEntry(address).Sharers);
+
+ assert(getL2CacheEntry(address).Sharers.count() == 0);
+ assert(getL2CacheEntry(address).Exclusive == in_msg.Requestor);
+ APPEND_TRANSITION_COMMENT(" Sharers exist or we are writer, ok to read ");
+ out_msg.AckCount := 0;
+ }
+ }
+ } // for orginal vs new code
+ }
+
+ APPEND_TRANSITION_COMMENT(" requestor: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ APPEND_TRANSITION_COMMENT(" AckCount: ");
+ APPEND_TRANSITION_COMMENT(out_msg.AckCount);
+ }
+ }
+ }
+
+ // send an accumulated ACK to requestor when we don't care about checking filters (for escape actions)
+ action(f_sendAccumulatedAckToRequestor, "faa", desc="Send ACKs to requestor") {
+ // special case: don't send ACK if uniprocessor, since we don't need it (just send data)
+ if((numberOfL1CachePerChip() - 1) > 0){
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="1") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceResponseType:ACK;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ // count all L1s except requestor
+ out_msg.AckCount := numberOfL1CachePerChip() - 1;
+ APPEND_TRANSITION_COMMENT(" Total L1s: ");
+ APPEND_TRANSITION_COMMENT(numberOfL1CachePerChip());
+ APPEND_TRANSITION_COMMENT(" Total ACKS: ");
+ APPEND_TRANSITION_COMMENT(out_msg.AckCount);
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ }
+ }
+ }
+ }
+
+ // special INV used when we receive an escape action request. Sharers cannot NACK this invalidate.
+ action(fwm_sendFwdInvEscapeToSharersMinusRequestor, "fwme", desc="invalidate sharers for request, requestor is sharer") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency="1") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceRequestType:INV_ESCAPE;
+ out_msg.Requestor := in_msg.Requestor;
+ out_msg.Destination := L2cacheMemory[address].Sharers;
+ out_msg.Destination.remove(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Request_Control;
+ //also pass along timestamp
+ out_msg.Timestamp := in_msg.Timestamp;
+ }
+ }
+ }
+
+ action(f_profileRequestor, "prq", desc="Profiles the requestor") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ APPEND_TRANSITION_COMMENT(" requestor: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ }
+ }
+
+ // marks the L2 block as transactional if request was transactional
+ action(f_markBlockTransIfTrans, "\mbt", desc="Mark an L2 block as transactional") {
+ peek(L1unblockNetwork_in, ResponseMsg) {
+ if(in_msg.Transactional == true){
+ L2cacheMemory[address].Trans := true;
+ }
+ }
+ }
+
+ action(q_profileOverflow, "po", desc="profile the overflowed block"){
+ profileOverflow(address, machineID);
+ }
+
+ action(p_profileRequest, "pcc", desc="Profile request msg") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ APPEND_TRANSITION_COMMENT(" request: Timestamp: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Timestamp);
+ APPEND_TRANSITION_COMMENT(" Requestor: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Requestor);
+ APPEND_TRANSITION_COMMENT(" Dest: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Destination);
+ APPEND_TRANSITION_COMMENT(" PA: ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ APPEND_TRANSITION_COMMENT(" Type: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Type);
+ APPEND_TRANSITION_COMMENT(" Mode: ");
+ APPEND_TRANSITION_COMMENT(in_msg.AccessMode);
+ APPEND_TRANSITION_COMMENT(" PF: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Prefetch);
+ }
+ }
+
+ //********************************END***************************
+
+ action(d_sendDataToRequestor, "d", desc="Send data from cache to reqeustor") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="L2_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceResponseType:L2_DATA;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(in_msg.Requestor);
+ out_msg.DataBlk := getL2CacheEntry(address).DataBlk;
+ out_msg.Dirty := getL2CacheEntry(address).Dirty;
+ out_msg.MessageSize := MessageSizeType:Response_Data;
+
+ out_msg.AckCount := 0 - getL2CacheEntry(address).Sharers.count();
+ if (getL2CacheEntry(address).Sharers.isElement(in_msg.Requestor)) {
+ out_msg.AckCount := out_msg.AckCount + 1;
+ }
+ APPEND_TRANSITION_COMMENT(" AckCount: ");
+ APPEND_TRANSITION_COMMENT(out_msg.AckCount);
+ }
+ }
+ }
+
+ // use DATA instead of L2_DATA because L1 doesn't need to wait for acks from L1 filters in this case
+ action(ds_sendSharedDataToRequestor, "ds", desc="Send data from cache to reqeustor") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="L2_RESPONSE_LATENCY") {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceResponseType:L2_DATA;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(in_msg.Requestor);
+ out_msg.DataBlk := getL2CacheEntry(address).DataBlk;
+ out_msg.Dirty := getL2CacheEntry(address).Dirty;
+ out_msg.MessageSize := MessageSizeType:Response_Data;
+ // no ACKS needed because no possible conflicts
+ out_msg.AckCount := 0;
+ }
+ }
+ }
+
+ action(f_sendInvToSharers, "fsi", desc="invalidate sharers for L2 replacement") {
+ enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency="L2_TAG_LATENCY") {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceRequestType:REPLACE;
+ out_msg.Requestor := machineID;
+ out_msg.Destination := L2cacheMemory[address].Sharers;
+ out_msg.MessageSize := MessageSizeType:Request_Control;
+ }
+ }
+
+ action(fwm_sendFwdInvToSharersMinusRequestor, "fwm", desc="invalidate sharers for request, requestor is sharer") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency="L2_TAG_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceRequestType:INV;
+ out_msg.Requestor := in_msg.Requestor;
+ out_msg.Destination := L2cacheMemory[address].Sharers;
+ out_msg.Destination.remove(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Request_Control;
+ //also pass along timestamp
+ out_msg.Timestamp := in_msg.Timestamp;
+ APPEND_TRANSITION_COMMENT(" Sharers: ");
+ APPEND_TRANSITION_COMMENT(L2cacheMemory[address].Sharers);
+ }
+ }
+ }
+
+ // OTHER ACTIONS
+ action(i_allocateTBE, "i", desc="Allocate TBE for internal/external request(isPrefetch=0, number of invalidates=0)") {
+ check_allocate(L2_TBEs);
+ L2_TBEs.allocate(address);
+ L2_TBEs[address].L1_GetS_IDs.clear();
+ L2_TBEs[address].DataBlk := getL2CacheEntry(address).DataBlk;
+ L2_TBEs[address].Dirty := getL2CacheEntry(address).Dirty;
+ L2_TBEs[address].pendingAcks := getL2CacheEntry(address).Sharers.count();
+ }
+
+ action(i_setTBEPhysicalAddress, "ia", desc="Sets the physical address field of the TBE"){
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ L2_TBEs[address].PhysicalAddress := in_msg.PhysicalAddress;
+ }
+ }
+
+ action(s_deallocateTBE, "s", desc="Deallocate external TBE") {
+ L2_TBEs.deallocate(address);
+ }
+
+ action(jj_popL1RequestQueue, "\j", desc="Pop incoming L1 request queue") {
+ profileMsgDelay(0, L1RequestIntraChipL2Network_in.dequeue_getDelayCycles());
+ }
+
+ action(k_popUnblockQueue, "k", desc="Pop incoming unblock queue") {
+ profileMsgDelay(0, L1unblockNetwork_in.dequeue_getDelayCycles());
+ }
+
+
+ action(o_popIncomingResponseQueue, "o", desc="Pop Incoming Response queue") {
+ profileMsgDelay(3, responseIntraChipL2Network_in.dequeue_getDelayCycles());
+ }
+
+
+ action(m_writeDataToCache, "m", desc="Write data from response queue to cache") {
+ peek(responseIntraChipL2Network_in, ResponseMsg) {
+ getL2CacheEntry(address).DataBlk := in_msg.DataBlk;
+ getL2CacheEntry(address).Dirty := in_msg.Dirty;
+ // reset the L2 miss bit
+ getL2CacheEntry(address).L2Miss := false;
+ }
+ }
+
+ // Sets the L2Miss bit in the L2 entry - indicates data was sourced from memory
+ action(m_markL2MissBit, "mi", desc="Set the entry's L2 Miss bit") {
+ getL2CacheEntry(address).L2Miss := true;
+ }
+
+ action(m_copyNackersIntoSharers, "mn", desc="Copy the NACKers list into our sharers list") {
+ peek(L1unblockNetwork_in, ResponseMsg) {
+ assert(in_msg.Nackers.count() > 0);
+ getL2CacheEntry(address).Sharers.clear();
+ // only need to copy into sharers list if we are in special state of "multicast" filter checks
+ if(getL2CacheEntry(address).L2Miss == true){
+ getL2CacheEntry(address).Sharers := in_msg.Nackers;
+ APPEND_TRANSITION_COMMENT(" Unblocker: ");
+ APPEND_TRANSITION_COMMENT(in_msg.Sender);
+ APPEND_TRANSITION_COMMENT(" Nackers: ");
+ APPEND_TRANSITION_COMMENT(getL2CacheEntry(address).Sharers);
+ }
+ }
+ }
+
+ action(mr_writeDataToCacheFromRequest, "mr", desc="Write data from response queue to cache") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ getL2CacheEntry(address).DataBlk := in_msg.DataBlk;
+ getL2CacheEntry(address).Dirty := in_msg.Dirty;
+ // reset the L2 miss bit
+ getL2CacheEntry(address).L2Miss := false;
+ }
+ }
+
+ action(q_updateAck, "q", desc="update pending ack count") {
+ peek(responseIntraChipL2Network_in, ResponseMsg) {
+ L2_TBEs[address].pendingAcks := L2_TBEs[address].pendingAcks - in_msg.AckCount;
+ APPEND_TRANSITION_COMMENT(in_msg.AckCount);
+ APPEND_TRANSITION_COMMENT(" p: ");
+ APPEND_TRANSITION_COMMENT(L2_TBEs[address].pendingAcks);
+ }
+ }
+
+ // For transactional memory. If received NACK instead of ACK
+ action(q_updateNack, "qn", desc="update pending ack count") {
+ peek(responseIntraChipL2Network_in, ResponseMsg) {
+ // set flag indicating we have seen NACK
+ L2_TBEs[address].nack := true;
+ L2_TBEs[address].pendingAcks := L2_TBEs[address].pendingAcks - in_msg.AckCount;
+ APPEND_TRANSITION_COMMENT(in_msg.AckCount);
+ APPEND_TRANSITION_COMMENT(" p: ");
+ APPEND_TRANSITION_COMMENT(L2_TBEs[address].pendingAcks);
+ }
+ }
+
+ action(qq_writeDataToTBE, "\qq", desc="Write data from response queue to TBE") {
+ peek(responseIntraChipL2Network_in, ResponseMsg) {
+ L2_TBEs[address].DataBlk := in_msg.DataBlk;
+ L2_TBEs[address].Dirty := in_msg.Dirty;
+ }
+ }
+
+
+ action(z_stall, "z", desc="Stall") {
+ }
+
+
+ action(ss_recordGetSL1ID, "\s", desc="Record L1 GetS for load response") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ L2_TBEs[address].L1_GetS_IDs.add(in_msg.Requestor);
+ }
+ }
+
+ action(xx_recordGetXL1ID, "\x", desc="Record L1 GetX for store response") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ L2_TBEs[address].L1_GetX_ID := in_msg.Requestor;
+ }
+ }
+
+ action(set_setMRU, "\set", desc="set the MRU entry") {
+ L2cacheMemory.setMRU(address);
+ }
+
+ action(qq_allocateL2CacheBlock, "\q", desc="Set L2 cache tag equal to tag of block B.") {
+ if (L2cacheMemory.isTagPresent(address) == false) {
+ L2cacheMemory.allocate(address);
+ }
+ }
+
+ action(rr_deallocateL2CacheBlock, "\r", desc="Deallocate L2 cache block. Sets the cache to not present, allowing a replacement in parallel with a fetch.") {
+ L2cacheMemory.deallocate(address);
+ }
+
+ action(t_sendWBAck, "t", desc="Send writeback ACK") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="L2_TAG_LATENCY") {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceResponseType:WB_ACK;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ }
+ }
+ }
+
+ action(ts_sendInvAckToUpgrader, "ts", desc="Send ACK to upgrader") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="L2_TAG_LATENCY") {
+ out_msg.Address := address;
+ out_msg.PhysicalAddress := in_msg.PhysicalAddress;
+ out_msg.Type := CoherenceResponseType:ACK;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ // upgrader doesn't get ack from itself, hence the + 1
+ out_msg.AckCount := 0 - getL2CacheEntry(address).Sharers.count() + 1;
+ APPEND_TRANSITION_COMMENT(" ");
+ APPEND_TRANSITION_COMMENT(in_msg.PhysicalAddress);
+ }
+ }
+ }
+
+ // same as above, but send NACK instead of ACK
+ action(ts_sendInvNackToUpgrader, "tsn", desc="Send NACK to upgrader") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ enqueue(responseIntraChipL2Network_out, ResponseMsg, latency="L2_TAG_LATENCY") {
+ out_msg.Address := address;
+ out_msg.Type := CoherenceResponseType:NACK;
+ out_msg.Sender := machineID;
+ out_msg.Destination.add(in_msg.Requestor);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ // upgrader doesn't get ack from itself, hence the + 1
+ out_msg.AckCount := 0 - getL2CacheEntry(address).Sharers.count() + 1;
+ }
+ }
+ }
+
+ action(uu_profileMiss, "\u", desc="Profile the demand miss") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ profile_L2Cache_miss(convertToGenericType(in_msg.Type), in_msg.AccessMode, MessageSizeTypeToInt(in_msg.MessageSize), in_msg.Prefetch, L1CacheMachIDToProcessorNum(in_msg.Requestor));
+ }
+ }
+
+ action(ww_profileMissNoDir, "\w", desc="Profile this transition at the L2 because Dir won't see the request") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ // profile_request(in_msg.L1CacheStateStr, getStateStr(address), "NA", getCoherenceRequestTypeStr(in_msg.Type));
+ }
+ }
+
+
+
+ action(nn_addSharer, "\n", desc="Add L1 sharer to list") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ addSharer(address, in_msg.Requestor);
+ APPEND_TRANSITION_COMMENT( getL2CacheEntry(address).Sharers );
+ }
+ }
+
+ action(nnu_addSharerFromUnblock, "\nu", desc="Add L1 sharer to list") {
+ peek(L1unblockNetwork_in, ResponseMsg) {
+ addSharer(address, in_msg.Sender);
+ if (in_msg.RemoveLastOwnerFromDir == true) {
+ // We do this to solve some races with PUTX
+ APPEND_TRANSITION_COMMENT("Last owner removed, it was ");
+ APPEND_TRANSITION_COMMENT(in_msg.LastOwnerID);
+ L2cacheMemory[address].Sharers.remove(in_msg.LastOwnerID);
+ assert(in_msg.LastOwnerID == L2cacheMemory[address].Exclusive);
+ }
+ }
+ }
+
+
+ action(kk_removeRequestSharer, "\k", desc="Remove L1 Request sharer from list") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ L2cacheMemory[address].Sharers.remove(in_msg.Requestor);
+ }
+ }
+
+ action(ll_clearSharers, "\l", desc="Remove all L1 sharers from list") {
+ L2cacheMemory[address].Sharers.clear();
+ }
+
+ action(mmu_markExclusiveFromUnblock, "\mu", desc="set the exclusive owner") {
+ peek(L1unblockNetwork_in, ResponseMsg) {
+ if (in_msg.RemoveLastOwnerFromDir == true) {
+ // We do this to solve some races with PUTX
+ APPEND_TRANSITION_COMMENT(" Last owner removed, it was ");
+ APPEND_TRANSITION_COMMENT(in_msg.LastOwnerID);
+ assert(in_msg.LastOwnerID == L2cacheMemory[address].Exclusive);
+ }
+ L2cacheMemory[address].Sharers.clear();
+ L2cacheMemory[address].Exclusive := in_msg.Sender;
+ addSharer(address, in_msg.Sender);
+ }
+ }
+
+ action(zz_recycleL1RequestQueue, "zz", desc="recycle L1 request queue") {
+ peek(L1RequestIntraChipL2Network_in, RequestMsg) {
+ if (in_msg.Type == CoherenceRequestType:PUTX || in_msg.Type == CoherenceRequestType:PUTS) {
+ if (L2cacheMemory.isTagPresent(in_msg.Address)) {
+ getL2CacheEntry(in_msg.Address).L1PutsPending := getL2CacheEntry(in_msg.Address).L1PutsPending + 1;
+ DEBUG_EXPR("RECYCLE PutSPending ");
+ DEBUG_EXPR(getL2CacheEntry(in_msg.Address).L1PutsPending);
+ DEBUG_EXPR(in_msg.Type);
+ DEBUG_EXPR(in_msg.Requestor);
+ }
+ }
+ }
+ L1RequestIntraChipL2Network_in.recycle();
+ }
+
+ //*****************************************************
+ // TRANSITIONS
+ //*****************************************************
+
+ /* Recycle while waiting for PUT */
+ transition({PB_MT, PB_MT_IB, PB_SS}, {L1_GETS, L1_GET_INSTR, L1_GETX, L1_UPGRADE, L1_GETS_ESCAPE, L1_GETX_ESCAPE, L1_GET_INSTR_ESCAPE, L2_Replacement, L2_Replacement_clean, L2_Replacement_XACT, L2_Replacement_clean_XACT}) {
+ f_profileRequestor;
+ zz_recycleL1RequestQueue;
+ }
+
+ transition({IM, IS, ISS, SS_MB, M_MB, ISS_MB, IS_SSB, MT_MB, MT_IIB, MT_IB, MT_SB, M_SSB, SS_SSB},
+ {L2_Replacement, L2_Replacement_clean, L2_Replacement_XACT, L2_Replacement_clean_XACT}) {
+ zz_recycleL1RequestQueue;
+ }
+
+ transition({SS_MB, M_MB, ISS_MB, IS_SSB, MT_MB, MT_IIB, MT_IB, MT_SB, M_SSB, SS_SSB},
+ {L1_GETS, L1_GET_INSTR, L1_GETX, L1_UPGRADE, L1_GETS_ESCAPE, L1_GETX_ESCAPE, L1_GET_INSTR_ESCAPE}) {
+ f_profileRequestor;
+ zz_recycleL1RequestQueue;
+ }
+
+ transition({NP, SS, M, M_I, MT_I, MCT_I, I_I, S_I, ISS, IS, IM, /*SS_MB,*/ SS_SSB, /* MT_MB, M_MB, ISS_MB,*/ IS_SSB, M_SSB, /*MT_IIB, */MT_IB/*, MT_SB*/}, {L1_PUTX,L1_PUTS}) {
+ f_profileRequestor;
+ zz_recycleL1RequestQueue;
+ }
+
+ // occurs when L2 replacement raced with L1 replacement, and L2 finished its replacement first
+ transition({NP, M_I, MCT_I, I_I, S_I, IS, ISS, IM, SS, M, MT, IS_SSB, MT_IB, M_SSB, SS_SSB}, {L1_PUTX_old, L1_PUTS_old}){
+ f_profileRequestor;
+ jj_popL1RequestQueue;
+ }
+
+ // PUT from current (last) exclusive owner, that was replacing the line when it received Fwd req
+ transition(MT_I, {L1_PUTX_old, L1_PUTS_old}) {
+ f_profileRequestor;
+ jj_popL1RequestQueue;
+ }
+
+ transition({SS, M, MT}, {L1_PUT_PENDING}) { // L1_PUT_ msg pending for the block, don't accept new requests until PUT is processed */
+ f_profileRequestor;
+ zz_recycleL1RequestQueue;
+ }
+
+ //===============================================
+ // BASE STATE - I
+
+ // Transitions from I (Idle)
+
+ // When L2 doesn't have block, need to send broadcasst to all L1s to check appropriate filter(s)
+ transition(NP, L1_GETS, ISS) {
+ p_profileRequest;
+ f_profileRequestor;
+ qq_allocateL2CacheBlock;
+ ll_clearSharers;
+ // will mark as exclusive when we get unblocked with success
+ //nn_addSharer;
+ i_allocateTBE;
+ i_setTBEPhysicalAddress;
+ ss_recordGetSL1ID;
+ a_issueFetchToMemory;
+ // for correctness we need to query both read + write filters
+ a_checkL1ReadWriteFiltersExceptRequestor;
+ uu_profileMiss;
+ jj_popL1RequestQueue;
+ }
+
+ // no need to check filters, send accumulated ACK to requestor
+ transition(NP, L1_GETS_ESCAPE, ISS) {
+ p_profileRequest;
+ f_profileRequestor;
+ qq_allocateL2CacheBlock;
+ ll_clearSharers;
+ // will mark as exclusive when we get unblocked with success
+ //nn_addSharer;
+ i_allocateTBE;
+ i_setTBEPhysicalAddress;
+ ss_recordGetSL1ID;
+ a_issueFetchToMemory;
+ // send accumulated ACK
+ f_sendAccumulatedAckToRequestor;
+ uu_profileMiss;
+ jj_popL1RequestQueue;
+ }
+
+ transition(NP, L1_GET_INSTR, IS) {
+ p_profileRequest;
+ f_profileRequestor;
+ qq_allocateL2CacheBlock;
+ ll_clearSharers;
+ nn_addSharer;
+ i_allocateTBE;
+ i_setTBEPhysicalAddress;
+ ss_recordGetSL1ID;
+ a_issueFetchToMemory;
+ // for correctness query the read + write filters
+ a_checkL1ReadWriteFiltersExceptRequestor;
+ uu_profileMiss;
+ jj_popL1RequestQueue;
+ }
+
+ // no need to query filters, send accumluated ACK to requestor
+ transition(NP, L1_GET_INSTR_ESCAPE, IS) {
+ p_profileRequest;
+ f_profileRequestor;
+ qq_allocateL2CacheBlock;
+ ll_clearSharers;
+ nn_addSharer;
+ i_allocateTBE;
+ i_setTBEPhysicalAddress;
+ ss_recordGetSL1ID;
+ a_issueFetchToMemory;
+ // send accumulated ACK
+ f_sendAccumulatedAckToRequestor;
+ uu_profileMiss;
+ jj_popL1RequestQueue;
+ }
+
+ transition(NP, L1_GETX, IM) {
+ p_profileRequest;
+ f_profileRequestor;
+ qq_allocateL2CacheBlock;
+ ll_clearSharers;
+ // nn_addSharer;
+ i_allocateTBE;
+ i_setTBEPhysicalAddress;
+ xx_recordGetXL1ID;
+ a_issueFetchToMemory;
+ // also query the L1 write and read filters
+ a_checkL1ReadWriteFiltersExceptRequestor;
+ uu_profileMiss;
+ jj_popL1RequestQueue;
+ }
+
+ // don't check filters
+ transition(NP, L1_GETX_ESCAPE, IM) {
+ p_profileRequest;
+ f_profileRequestor;
+ qq_allocateL2CacheBlock;
+ ll_clearSharers;
+ // nn_addSharer;
+ i_allocateTBE;
+ i_setTBEPhysicalAddress;
+ xx_recordGetXL1ID;
+ a_issueFetchToMemory;
+ // send accumulated ACK to requestor
+ f_sendAccumulatedAckToRequestor;
+ uu_profileMiss;
+ jj_popL1RequestQueue;
+ }
+
+
+ // transitions from IS/IM
+
+ // force L1s to respond success or failure
+ transition(ISS, Mem_Data, ISS_MB){
+ m_writeDataToCache;
+ m_markL2MissBit;
+ // send exclusive data but force L1 to wait for filter responses
+ f_sendExclusiveDataToGetSRequestor;
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(IS, Mem_Data, IS_SSB){
+ m_writeDataToCache;
+ m_markL2MissBit;
+ // send data but force L1 to wait for filter responses
+ f_sendDataToGetSRequestor;
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(IM, Mem_Data, ISS_MB){
+ m_writeDataToCache;
+ m_markL2MissBit;
+ // send data but force L1 to wait for filter responses
+ f_sendDataToGetXRequestor;
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ }
+
+ // disallow grouping of requestors. There is a correctness problem if we check the wrong
+ // filters as indicated by the original requestor.
+ transition({IS, ISS}, {L1_GETX, L1_GETS, L1_GET_INSTR, L1_GETX_ESCAPE, L1_GETS_ESCAPE, L1_GET_INSTR_ESCAPE}) {
+ f_profileRequestor;
+ zz_recycleL1RequestQueue;
+ }
+
+ transition(IM, {L1_GETX, L1_GETS, L1_GET_INSTR, L1_GETX_ESCAPE, L1_GETS_ESCAPE, L1_GET_INSTR_ESCAPE}) {
+ f_profileRequestor;
+ zz_recycleL1RequestQueue;
+ }
+
+ // transitions from SS
+ transition(SS, {L1_GETS, L1_GET_INSTR, L1_GETS_ESCAPE, L1_GET_INSTR_ESCAPE}, SS_SSB) {
+ p_profileRequest;
+ f_profileRequestor;
+ ds_sendSharedDataToRequestor;
+ nn_addSharer;
+ uu_profileMiss;
+ set_setMRU;
+ jj_popL1RequestQueue;
+ }
+
+ // For isolation the L1 filters might return NACKs to the requestor
+ transition(SS, L1_GETX, SS_MB) {
+ p_profileRequest;
+ f_profileRequestor;
+ d_sendDataToRequestor;
+ fwm_sendFwdInvToSharersMinusRequestor;
+ uu_profileMiss;
+ set_setMRU;
+ jj_popL1RequestQueue;
+ }
+
+ // send special INV to sharers - they have to invalidate
+ transition(SS, L1_GETX_ESCAPE, SS_MB) {
+ p_profileRequest;
+ f_profileRequestor;
+ d_sendDataToRequestor;
+ fwm_sendFwdInvEscapeToSharersMinusRequestor;
+ uu_profileMiss;
+ set_setMRU;
+ jj_popL1RequestQueue;
+ }
+
+ // For isolation the L1 filters might return NACKs to the requestor
+ transition(SS, L1_UPGRADE, SS_MB) {
+ f_profileRequestor;
+ fwm_sendFwdInvToSharersMinusRequestor;
+ ts_sendInvAckToUpgrader;
+ uu_profileMiss;
+ set_setMRU;
+ jj_popL1RequestQueue;
+ }
+
+ transition(SS, L2_Replacement_clean, I_I) {
+ i_allocateTBE;
+ f_sendInvToSharers;
+ rr_deallocateL2CacheBlock;
+ }
+
+ transition(SS, L2_Replacement_clean_XACT, I_I) {
+ q_profileOverflow;
+ i_allocateTBE;
+ f_sendInvToSharers;
+ rr_deallocateL2CacheBlock;
+ }
+
+ transition(SS, L2_Replacement, S_I) {
+ i_allocateTBE;
+ f_sendInvToSharers;
+ rr_deallocateL2CacheBlock;
+ }
+
+ transition(SS, L2_Replacement_XACT, S_I) {
+ q_profileOverflow;
+ i_allocateTBE;
+ f_sendInvToSharers;
+ rr_deallocateL2CacheBlock;
+ }
+
+ // Transitions from M
+
+ // send data, but force L1 to wait for filter responses
+ transition(M, L1_GETS, M_MB) {
+ p_profileRequest;
+ f_profileRequestor;
+ f_sendExclusiveDataToRequestor;
+ // selective filter checks, but need to check both read+write in case nackers put NP block into M state
+ a_checkNackerL1ReadWriteFiltersExceptRequestor;
+ uu_profileMiss;
+ set_setMRU;
+ jj_popL1RequestQueue;
+ }
+
+ // don't care about filters
+ transition(M, L1_GETS_ESCAPE, M_MB) {
+ p_profileRequest;
+ f_profileRequestor;
+ f_sendExclusiveDataToRequestor;
+ uu_profileMiss;
+ set_setMRU;
+ jj_popL1RequestQueue;
+ }
+
+ transition(M, L1_GET_INSTR, M_SSB) {
+ p_profileRequest;
+ f_profileRequestor;
+ f_sendDataToRequestor;
+ // NEW - selective filter checks, but need to check both read+write in case nackers put NP block into M state
+ a_checkNackerL1ReadWriteFiltersExceptRequestor;
+ // This should always be _after_ f_sendDataToRequestor and a_checkNackerL1WriteFiltersExceptRequestor, since they
+ // explicitly look at the sharers list!
+ nn_addSharer;
+ uu_profileMiss;
+ set_setMRU;
+ jj_popL1RequestQueue;
+ }
+
+ // don't care about filters
+ transition(M, L1_GET_INSTR_ESCAPE, M_SSB) {
+ p_profileRequest;
+ f_profileRequestor;
+ f_sendDataToRequestor;
+ nn_addSharer;
+ uu_profileMiss;
+ set_setMRU;
+ jj_popL1RequestQueue;
+ }
+
+ transition(M, L1_GETX, M_MB) {
+ p_profileRequest;
+ f_profileRequestor;
+ f_sendDataToRequestor;
+ // selective filter checks
+ a_checkNackerL1ReadWriteFiltersExceptRequestor;
+ // issue filter checks
+ //a_checkL1ReadWriteFiltersExceptRequestor;
+ uu_profileMiss;
+ set_setMRU;
+ jj_popL1RequestQueue;
+ }
+
+ // don't care about filters
+ transition(M, L1_GETX_ESCAPE, M_MB) {
+ p_profileRequest;
+ f_profileRequestor;
+ f_sendDataToRequestor;
+ uu_profileMiss;
+ set_setMRU;
+ jj_popL1RequestQueue;
+ }
+
+ transition(M, L2_Replacement, M_I) {
+ i_allocateTBE;
+ c_exclusiveReplacement;
+ rr_deallocateL2CacheBlock;
+ }
+
+ transition(M, L2_Replacement_clean, M_I) {
+ rr_deallocateL2CacheBlock;
+ }
+
+ transition(M, L2_Replacement_XACT, M_I) {
+ q_profileOverflow;
+ i_allocateTBE;
+ c_exclusiveReplacement;
+ rr_deallocateL2CacheBlock;
+ }
+
+ transition(M, L2_Replacement_clean_XACT, M_I) {
+ q_profileOverflow;
+ rr_deallocateL2CacheBlock;
+ }
+
+
+ // transitions from MT
+ transition(MT, {L1_GETX, L1_GETX_ESCAPE}, MT_MB) {
+ p_profileRequest;
+ f_profileRequestor;
+ b_forwardRequestToExclusive;
+ uu_profileMiss;
+ set_setMRU;
+ jj_popL1RequestQueue;
+ }
+
+
+ transition(MT, {L1_GETS, L1_GET_INSTR, L1_GETS_ESCAPE, L1_GET_INSTR_ESCAPE}, MT_IIB) {
+ p_profileRequest;
+ f_profileRequestor;
+ b_forwardRequestToExclusive;
+ uu_profileMiss;
+ set_setMRU;
+ jj_popL1RequestQueue;
+ }
+
+ transition(MT, L2_Replacement, MT_I) {
+ i_allocateTBE;
+ f_sendInvToSharers;
+ rr_deallocateL2CacheBlock;
+ }
+
+ transition(MT, L2_Replacement_clean, MCT_I) {
+ i_allocateTBE;
+ f_sendInvToSharers;
+ rr_deallocateL2CacheBlock;
+ }
+
+ transition(MT, L2_Replacement_XACT, MT_I) {
+ q_profileOverflow;
+ i_allocateTBE;
+ f_sendInvToSharers;
+ rr_deallocateL2CacheBlock;
+ }
+
+ transition(MT, L2_Replacement_clean_XACT, MCT_I) {
+ q_profileOverflow;
+ i_allocateTBE;
+ f_sendInvToSharers;
+ rr_deallocateL2CacheBlock;
+ }
+
+ transition(MT, L1_PUTX, M) {
+ f_profileRequestor;
+ // this doesn't affect exlusive ptr
+ ll_clearSharers;
+ mr_writeDataToCacheFromRequest;
+ t_sendWBAck;
+ jj_popL1RequestQueue;
+ }
+
+ // This is for the case of transactional read line in E state being replaced from L1. We need to maintain isolation on this
+ // in the event of a future transactional store from another proc, so we maintain this transactional sharer on the list
+ transition(MT, L1_PUTS, SS) {
+ f_profileRequestor;
+ ll_clearSharers;
+ // maintain transactional read isolation
+ nn_addSharer;
+ mr_writeDataToCacheFromRequest;
+ t_sendWBAck;
+ jj_popL1RequestQueue;
+ }
+
+ // transitions from blocking states
+ transition(SS_MB, Unblock_Cancel, SS) {
+ k_popUnblockQueue;
+ }
+
+ transition(M_SSB, Unblock_Cancel, M) {
+ ll_clearSharers;
+ // copy NACKers list from unblock message to our sharers list
+ m_copyNackersIntoSharers;
+ k_popUnblockQueue;
+ }
+
+ transition(MT_MB, Unblock_Cancel, MT) {
+ k_popUnblockQueue;
+ }
+
+ transition(MT_IB, Unblock_Cancel, MT) {
+ k_popUnblockQueue;
+ }
+
+ transition(MT_IIB, Unblock_Cancel, MT){
+ k_popUnblockQueue;
+ }
+
+ // L2 just got the data from memory, but we have Nackers. We can let nacked block reside in M, but GETS request needs to check read+write
+ // signatures to avoid atomicity violations.
+ transition({ISS_MB, IS_SSB}, Unblock_Cancel, M){
+ //rr_deallocateL2CacheBlock;
+ // copy NACKers list from unblock message to our sharers list
+ m_copyNackersIntoSharers;
+ k_popUnblockQueue;
+ }
+
+ transition(M_MB, Unblock_Cancel, M) {
+ // copy NACKers list from unblock message to our sharers list
+ m_copyNackersIntoSharers;
+ k_popUnblockQueue;
+ }
+
+ transition(SS_MB, Exclusive_Unblock, MT) {
+ // update actual directory
+ mmu_markExclusiveFromUnblock;
+ // mark block as trans if needed
+ f_markBlockTransIfTrans;
+ k_popUnblockQueue;
+ }
+
+ // PUT from next exclusive surpassed its own ExclusiveUnblock
+ // Perceived as PUTX_old because the directory is outdated
+ transition(SS_MB, {L1_PUTX_old, L1_PUTS_old}) {
+ f_profileRequestor;
+ zz_recycleL1RequestQueue;
+ }
+
+ // PUT from current (old) exclusive, can't do anything with it in this state
+ // Don't know whether exclusive was replacing or not, so wait to see what Unblock says
+ transition(SS_MB, {L1_PUTX, L1_PUTS}) {
+ f_profileRequestor;
+ zz_recycleL1RequestQueue;
+ }
+
+ // Next exclusive informs that last owner was replacing the line when it received Fwd req
+ // Thus, expect a PUTX_old from previous owner
+ transition(SS_MB, Exclusive_Unblock_WaitPUTold, PB_MT) {
+ // update actual directory
+ mmu_markExclusiveFromUnblock;
+ // mark block as trans if needed
+ f_markBlockTransIfTrans;
+ k_popUnblockQueue;
+ }
+
+ transition(PB_MT, {L1_PUTX_old, L1_PUTS_old}, MT) { // OK, PUT_old received, go to MT
+ f_profileRequestor;
+ jj_popL1RequestQueue;
+ }
+
+ // PUT from current (next) exclusive, so recycle
+ // Expecting PUT_old, won't take in new PUT until previous PUT arrives
+ transition(PB_MT, {L1_PUTX, L1_PUTS}) {
+ f_profileRequestor;
+ zz_recycleL1RequestQueue;
+ }
+
+ // L2 blocks on GETS requests in SS state
+ transition(SS_SSB, Unblock, SS) {
+ // mark block as trans if needed
+ f_markBlockTransIfTrans;
+ k_popUnblockQueue;
+ }
+
+ transition({M_SSB, IS_SSB}, Unblock, SS) {
+ // we already added the sharer when we received original request
+ // mark block as trans if needed
+ f_markBlockTransIfTrans;
+ k_popUnblockQueue;
+ }
+
+ transition({M_MB, MT_MB, ISS_MB}, Exclusive_Unblock, MT) {
+ // update actual directory
+ mmu_markExclusiveFromUnblock;
+ // mark block as trans if needed
+ f_markBlockTransIfTrans;
+ k_popUnblockQueue;
+ }
+
+ transition({M_MB, MT_MB, ISS_MB}, Exclusive_Unblock_WaitPUTold, PB_MT) {
+ // update actual directory
+ mmu_markExclusiveFromUnblock;
+ // mark block as trans if needed
+ f_markBlockTransIfTrans;
+ k_popUnblockQueue;
+ }
+
+ // PUT from (not yet) next exclusive surpassed its own ExclusiveUnblock
+ // thus became PUTX_old (since directory is not up-to-date)
+ transition({M_MB, MT_MB, ISS_MB}, {L1_PUTX_old, L1_PUTS_old}) {
+ f_profileRequestor;
+ zz_recycleL1RequestQueue;
+ }
+
+ // PUT from current (previous) owner: recycle until unblock arrives
+ // We don't know whether replacing cache is waiting for WB_Ack or it was replacing when fwd arrived
+ transition({M_MB, MT_MB, ISS_MB}, {L1_PUTX, L1_PUTS}) {
+ f_profileRequestor;
+ zz_recycleL1RequestQueue;
+ }
+
+ // L1 requestor received data from exclusive L1, but writeback data from exclusive L1 hasn't arrived yet
+ transition(MT_IIB, Unblock, MT_IB) {
+ nnu_addSharerFromUnblock;
+ // mark block as trans if needed
+ f_markBlockTransIfTrans;
+ k_popUnblockQueue;
+ }
+
+ // PUT from current (previous) owner: recycle
+ // We don't know whether replacing cache is waiting for WB_Ack or it was replacing when fwd arrived
+ transition(MT_IIB, {L1_PUTX, L1_PUTS}) {
+ f_profileRequestor;
+ zz_recycleL1RequestQueue;
+ }
+
+ transition(MT_IB, {WB_Data, WB_Data_clean}, SS) {
+ m_writeDataToCache;
+ o_popIncomingResponseQueue;
+ }
+
+ // PUT from (not yet) next exclusive, but unblock hasn't arrived yet, so it became PUT_old: recycle
+ transition(MT_IIB, {L1_PUTX_old, L1_PUTS_old}) {
+ f_profileRequestor;
+ zz_recycleL1RequestQueue;
+ }
+
+ transition(MT_IIB, Unblock_WaitPUTold, PB_MT_IB) { // Now arrives Unblock, wait for PUT and WB_Data
+ nnu_addSharerFromUnblock;
+ // mark block as trans if needed
+ f_markBlockTransIfTrans;
+ k_popUnblockQueue;
+ }
+
+ // L1 requestor has not received data from exclusive L1, but we received writeback data from exclusive L1
+ transition(MT_IIB, {WB_Data, WB_Data_clean}, MT_SB) {
+ m_writeDataToCache;
+ o_popIncomingResponseQueue;
+ }
+
+ // PUT_old from previous owner, that was replacing when it received Fwd req
+ transition(PB_MT_IB, {L1_PUTX_old, L1_PUTS_old}, MT_IB) { // Go to MT_IB, and wait for WB_Data
+ f_profileRequestor;
+ jj_popL1RequestQueue;
+ }
+
+ transition(PB_MT_IB, {L1_PUTX, L1_PUTS}) { // Waiting for PUT_old, don't take new PUT in
+ f_profileRequestor;
+ zz_recycleL1RequestQueue;
+ }
+
+ // WB_data from previous owner, we already received unblock, just wait for PUT_old to go to SS
+ transition(PB_MT_IB, {WB_Data, WB_Data_clean}, PB_SS) { // Received Unblock, now arrives WB_Data, wait for PUT
+ m_writeDataToCache;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(PB_SS, {L1_PUTX_old, L1_PUTS_old}, SS) { // Received Unblock and WB_Data, now arrives PUT, go to SS
+ f_profileRequestor;
+ jj_popL1RequestQueue;
+ }
+
+ // PUT from new exclusive owner, while waiting for PUT from previous exclusive owner: recycle
+ transition(PB_SS, {L1_PUTX, L1_PUTS}) {
+ f_profileRequestor;
+ zz_recycleL1RequestQueue;
+ }
+
+ transition(MT_SB, Unblock, SS) {
+ nnu_addSharerFromUnblock;
+ // mark block as trans if needed
+ f_markBlockTransIfTrans;
+ k_popUnblockQueue;
+ }
+
+ transition(MT_SB, Unblock_WaitPUTold, PB_SS) { // Received WB_Data, now arriving Unblock, wait for PUT
+ nnu_addSharerFromUnblock;
+ // mark block as trans if needed
+ f_markBlockTransIfTrans;
+ k_popUnblockQueue;
+ }
+
+ // PUT from (not yet) new exclusive owner, before we receive Unblock from it (became PUT_old because directory is not up-to-date)
+ transition(MT_SB, {L1_PUTX_old, L1_PUTS_old}) {
+ f_profileRequestor;
+ zz_recycleL1RequestQueue;
+ }
+
+ // PUT from current (last) exclusive owner, that was replacing the line when it received Fwd req
+ transition(MT_SB, {L1_PUTX, L1_PUTS}) {
+ kk_removeRequestSharer; // When Unblock arrives, it'll trigger Unblock, not Unblock_WaitPUTold
+ f_profileRequestor;
+ jj_popL1RequestQueue;
+ }
+
+ // writeback states
+ transition({I_I, S_I, MT_I, MCT_I, M_I}, {L1_GETX, L1_UPGRADE, L1_GETS, L1_GET_INSTR, L1_GETX_ESCAPE, L1_GETS_ESCAPE, L1_GET_INSTR_ESCAPE}) {
+ f_profileRequestor;
+ zz_recycleL1RequestQueue;
+ }
+
+ transition(I_I, Ack) {
+ q_updateAck;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(I_I, Ack_all, NP) {
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ }
+
+ transition({MT_I, MCT_I}, WB_Data, M_I) {
+ qq_writeDataToTBE;
+ ct_exclusiveReplacementFromTBE;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(MCT_I, WB_Data_clean, NP) {
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ }
+
+ // L1 never changed Dirty data
+ transition(MT_I, Ack_all, M_I) {
+ ct_exclusiveReplacementFromTBE;
+ o_popIncomingResponseQueue;
+ }
+
+ // clean data that L1 exclusive never wrote
+ transition(MCT_I, Ack_all, NP) {
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(MT_I, WB_Data_clean, NP) {
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(S_I, Ack) {
+ q_updateAck;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(S_I, Ack_all, M_I) {
+ ct_exclusiveReplacementFromTBE;
+ o_popIncomingResponseQueue;
+ }
+
+ transition(M_I, Mem_Ack, NP) {
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ }
+}
+