summaryrefslogtreecommitdiff
path: root/src/mem/ruby/profiler/Profiler.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/mem/ruby/profiler/Profiler.cc')
-rw-r--r--src/mem/ruby/profiler/Profiler.cc1016
1 files changed, 1016 insertions, 0 deletions
diff --git a/src/mem/ruby/profiler/Profiler.cc b/src/mem/ruby/profiler/Profiler.cc
new file mode 100644
index 000000000..e5579f597
--- /dev/null
+++ b/src/mem/ruby/profiler/Profiler.cc
@@ -0,0 +1,1016 @@
+/*
+ * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ This file has been modified by Kevin Moore and Dan Nussbaum of the
+ Scalable Systems Research Group at Sun Microsystems Laboratories
+ (http://research.sun.com/scalable/) to support the Adaptive
+ Transactional Memory Test Platform (ATMTP).
+
+ Please send email to atmtp-interest@sun.com with feedback, questions, or
+ to request future announcements about ATMTP.
+
+ ----------------------------------------------------------------------
+
+ File modification date: 2008-02-23
+
+ ----------------------------------------------------------------------
+*/
+
+/*
+ * Profiler.C
+ *
+ * Description: See Profiler.h
+ *
+ * $Id$
+ *
+ */
+
+#include "mem/ruby/profiler/Profiler.hh"
+#include "mem/ruby/profiler/CacheProfiler.hh"
+#include "mem/ruby/profiler/AddressProfiler.hh"
+#include "mem/ruby/system/System.hh"
+#include "mem/ruby/network/Network.hh"
+#include "mem/gems_common/PrioHeap.hh"
+#include "mem/protocol/CacheMsg.hh"
+#include "mem/ruby/common/Driver.hh"
+#include "mem/protocol/Protocol.hh"
+#include "mem/gems_common/util.hh"
+#include "mem/gems_common/Map.hh"
+#include "mem/ruby/common/Debug.hh"
+#include "mem/protocol/MachineType.hh"
+
+// Allows use of times() library call, which determines virtual runtime
+#include <sys/times.h>
+
+extern std::ostream * debug_cout_ptr;
+
+static double process_memory_total();
+static double process_memory_resident();
+
+Profiler::Profiler()
+ : m_conflicting_histogram(-1)
+{
+ m_requestProfileMap_ptr = new Map<string, int>;
+ m_L1D_cache_profiler_ptr = new CacheProfiler("L1D_cache");
+ m_L1I_cache_profiler_ptr = new CacheProfiler("L1I_cache");
+
+ m_L2_cache_profiler_ptr = new CacheProfiler("L2_cache");
+
+ m_address_profiler_ptr = new AddressProfiler;
+ m_inst_profiler_ptr = NULL;
+ if (PROFILE_ALL_INSTRUCTIONS) {
+ m_inst_profiler_ptr = new AddressProfiler;
+ }
+
+ m_conflicting_map_ptr = new Map<Address, Time>;
+
+ m_real_time_start_time = time(NULL); // Not reset in clearStats()
+ m_stats_period = 1000000; // Default
+ m_periodic_output_file_ptr = &cerr;
+
+ // for MemoryControl:
+ m_memReq = 0;
+ m_memBankBusy = 0;
+ m_memBusBusy = 0;
+ m_memReadWriteBusy = 0;
+ m_memDataBusBusy = 0;
+ m_memTfawBusy = 0;
+ m_memRefresh = 0;
+ m_memRead = 0;
+ m_memWrite = 0;
+ m_memWaitCycles = 0;
+ m_memInputQ = 0;
+ m_memBankQ = 0;
+ m_memArbWait = 0;
+ m_memRandBusy = 0;
+ m_memNotOld = 0;
+
+
+ int totalBanks = RubyConfig::banksPerRank()
+ * RubyConfig::ranksPerDimm()
+ * RubyConfig::dimmsPerChannel();
+ m_memBankCount.setSize(totalBanks);
+
+ clearStats();
+}
+
+Profiler::~Profiler()
+{
+ if (m_periodic_output_file_ptr != &cerr) {
+ delete m_periodic_output_file_ptr;
+ }
+ delete m_address_profiler_ptr;
+ delete m_L1D_cache_profiler_ptr;
+ delete m_L1I_cache_profiler_ptr;
+ delete m_L2_cache_profiler_ptr;
+ delete m_requestProfileMap_ptr;
+ delete m_conflicting_map_ptr;
+}
+
+void Profiler::wakeup()
+{
+ // FIXME - avoid the repeated code
+
+ Vector<integer_t> perProcInstructionCount;
+ perProcInstructionCount.setSize(RubyConfig::numberOfProcessors());
+
+ Vector<integer_t> perProcCycleCount;
+ perProcCycleCount.setSize(RubyConfig::numberOfProcessors());
+
+ for(int i=0; i < RubyConfig::numberOfProcessors(); i++) {
+ perProcInstructionCount[i] = g_system_ptr->getDriver()->getInstructionCount(i) - m_instructions_executed_at_start[i] + 1;
+ perProcCycleCount[i] = g_system_ptr->getDriver()->getCycleCount(i) - m_cycles_executed_at_start[i] + 1;
+ // The +1 allows us to avoid division by zero
+ }
+
+ integer_t total_misses = m_perProcTotalMisses.sum();
+ integer_t instruction_executed = perProcInstructionCount.sum();
+ integer_t cycles_executed = perProcCycleCount.sum();
+ integer_t transactions_started = m_perProcStartTransaction.sum();
+ integer_t transactions_ended = m_perProcEndTransaction.sum();
+
+ (*m_periodic_output_file_ptr) << "ruby_cycles: " << g_eventQueue_ptr->getTime()-m_ruby_start << endl;
+ (*m_periodic_output_file_ptr) << "total_misses: " << total_misses << " " << m_perProcTotalMisses << endl;
+ (*m_periodic_output_file_ptr) << "instruction_executed: " << instruction_executed << " " << perProcInstructionCount << endl;
+ (*m_periodic_output_file_ptr) << "cycles_executed: " << cycles_executed << " " << perProcCycleCount << endl;
+ (*m_periodic_output_file_ptr) << "transactions_started: " << transactions_started << " " << m_perProcStartTransaction << endl;
+ (*m_periodic_output_file_ptr) << "transactions_ended: " << transactions_ended << " " << m_perProcEndTransaction << endl;
+ (*m_periodic_output_file_ptr) << "L1TBE_usage: " << m_L1tbeProfile << endl;
+ (*m_periodic_output_file_ptr) << "L2TBE_usage: " << m_L2tbeProfile << endl;
+ (*m_periodic_output_file_ptr) << "mbytes_resident: " << process_memory_resident() << endl;
+ (*m_periodic_output_file_ptr) << "mbytes_total: " << process_memory_total() << endl;
+ if (process_memory_total() > 0) {
+ (*m_periodic_output_file_ptr) << "resident_ratio: " << process_memory_resident()/process_memory_total() << endl;
+ }
+ (*m_periodic_output_file_ptr) << "miss_latency: " << m_allMissLatencyHistogram << endl;
+
+ *m_periodic_output_file_ptr << endl;
+
+ if (PROFILE_ALL_INSTRUCTIONS) {
+ m_inst_profiler_ptr->printStats(*m_periodic_output_file_ptr);
+ }
+
+ //g_system_ptr->getNetwork()->printStats(*m_periodic_output_file_ptr);
+ g_eventQueue_ptr->scheduleEvent(this, m_stats_period);
+}
+
+void Profiler::setPeriodicStatsFile(const string& filename)
+{
+ cout << "Recording periodic statistics to file '" << filename << "' every "
+ << m_stats_period << " Ruby cycles" << endl;
+
+ if (m_periodic_output_file_ptr != &cerr) {
+ delete m_periodic_output_file_ptr;
+ }
+
+ m_periodic_output_file_ptr = new ofstream(filename.c_str());
+ g_eventQueue_ptr->scheduleEvent(this, 1);
+}
+
+void Profiler::setPeriodicStatsInterval(integer_t period)
+{
+ cout << "Recording periodic statistics every " << m_stats_period << " Ruby cycles" << endl;
+ m_stats_period = period;
+ g_eventQueue_ptr->scheduleEvent(this, 1);
+}
+
+void Profiler::printConfig(ostream& out) const
+{
+ out << endl;
+ out << "Profiler Configuration" << endl;
+ out << "----------------------" << endl;
+ out << "periodic_stats_period: " << m_stats_period << endl;
+}
+
+void Profiler::print(ostream& out) const
+{
+ out << "[Profiler]";
+}
+
+void Profiler::printStats(ostream& out, bool short_stats)
+{
+ out << endl;
+ if (short_stats) {
+ out << "SHORT ";
+ }
+ out << "Profiler Stats" << endl;
+ out << "--------------" << endl;
+
+ time_t real_time_current = time(NULL);
+ double seconds = difftime(real_time_current, m_real_time_start_time);
+ double minutes = seconds/60.0;
+ double hours = minutes/60.0;
+ double days = hours/24.0;
+ Time ruby_cycles = g_eventQueue_ptr->getTime()-m_ruby_start;
+
+ if (!short_stats) {
+ out << "Elapsed_time_in_seconds: " << seconds << endl;
+ out << "Elapsed_time_in_minutes: " << minutes << endl;
+ out << "Elapsed_time_in_hours: " << hours << endl;
+ out << "Elapsed_time_in_days: " << days << endl;
+ out << endl;
+ }
+
+ // print the virtual runtimes as well
+ struct tms vtime;
+ times(&vtime);
+ seconds = (vtime.tms_utime + vtime.tms_stime) / 100.0;
+ minutes = seconds / 60.0;
+ hours = minutes / 60.0;
+ days = hours / 24.0;
+ out << "Virtual_time_in_seconds: " << seconds << endl;
+ out << "Virtual_time_in_minutes: " << minutes << endl;
+ out << "Virtual_time_in_hours: " << hours << endl;
+ out << "Virtual_time_in_days: " << hours << endl;
+ out << endl;
+
+ out << "Ruby_current_time: " << g_eventQueue_ptr->getTime() << endl;
+ out << "Ruby_start_time: " << m_ruby_start << endl;
+ out << "Ruby_cycles: " << ruby_cycles << endl;
+ out << endl;
+
+ if (!short_stats) {
+ out << "mbytes_resident: " << process_memory_resident() << endl;
+ out << "mbytes_total: " << process_memory_total() << endl;
+ if (process_memory_total() > 0) {
+ out << "resident_ratio: " << process_memory_resident()/process_memory_total() << endl;
+ }
+ out << endl;
+
+ if(m_num_BA_broadcasts + m_num_BA_unicasts != 0){
+ out << endl;
+ out << "Broadcast_percent: " << (float)m_num_BA_broadcasts/(m_num_BA_broadcasts+m_num_BA_unicasts) << endl;
+ }
+ }
+
+ Vector<integer_t> perProcInstructionCount;
+ Vector<integer_t> perProcCycleCount;
+ Vector<double> perProcCPI;
+ Vector<double> perProcMissesPerInsn;
+ Vector<double> perProcInsnPerTrans;
+ Vector<double> perProcCyclesPerTrans;
+ Vector<double> perProcMissesPerTrans;
+
+ perProcInstructionCount.setSize(RubyConfig::numberOfProcessors());
+ perProcCycleCount.setSize(RubyConfig::numberOfProcessors());
+ perProcCPI.setSize(RubyConfig::numberOfProcessors());
+ perProcMissesPerInsn.setSize(RubyConfig::numberOfProcessors());
+
+ perProcInsnPerTrans.setSize(RubyConfig::numberOfProcessors());
+ perProcCyclesPerTrans.setSize(RubyConfig::numberOfProcessors());
+ perProcMissesPerTrans.setSize(RubyConfig::numberOfProcessors());
+
+ for(int i=0; i < RubyConfig::numberOfProcessors(); i++) {
+ perProcInstructionCount[i] = g_system_ptr->getDriver()->getInstructionCount(i) - m_instructions_executed_at_start[i] + 1;
+ perProcCycleCount[i] = g_system_ptr->getDriver()->getCycleCount(i) - m_cycles_executed_at_start[i] + 1;
+ // The +1 allows us to avoid division by zero
+ perProcCPI[i] = double(ruby_cycles)/perProcInstructionCount[i];
+ perProcMissesPerInsn[i] = 1000.0 * (double(m_perProcTotalMisses[i]) / double(perProcInstructionCount[i]));
+
+ int trans = m_perProcEndTransaction[i];
+ if (trans == 0) {
+ perProcInsnPerTrans[i] = 0;
+ perProcCyclesPerTrans[i] = 0;
+ perProcMissesPerTrans[i] = 0;
+ } else {
+ perProcInsnPerTrans[i] = perProcInstructionCount[i] / double(trans);
+ perProcCyclesPerTrans[i] = ruby_cycles / double(trans);
+ perProcMissesPerTrans[i] = m_perProcTotalMisses[i] / double(trans);
+ }
+ }
+
+ integer_t total_misses = m_perProcTotalMisses.sum();
+ integer_t user_misses = m_perProcUserMisses.sum();
+ integer_t supervisor_misses = m_perProcSupervisorMisses.sum();
+ integer_t instruction_executed = perProcInstructionCount.sum();
+ integer_t cycles_executed = perProcCycleCount.sum();
+ integer_t transactions_started = m_perProcStartTransaction.sum();
+ integer_t transactions_ended = m_perProcEndTransaction.sum();
+
+ double instructions_per_transaction = (transactions_ended != 0) ? double(instruction_executed) / double(transactions_ended) : 0;
+ double cycles_per_transaction = (transactions_ended != 0) ? (RubyConfig::numberOfProcessors() * double(ruby_cycles)) / double(transactions_ended) : 0;
+ double misses_per_transaction = (transactions_ended != 0) ? double(total_misses) / double(transactions_ended) : 0;
+
+ out << "Total_misses: " << total_misses << endl;
+ out << "total_misses: " << total_misses << " " << m_perProcTotalMisses << endl;
+ out << "user_misses: " << user_misses << " " << m_perProcUserMisses << endl;
+ out << "supervisor_misses: " << supervisor_misses << " " << m_perProcSupervisorMisses << endl;
+ out << endl;
+ out << "instruction_executed: " << instruction_executed << " " << perProcInstructionCount << endl;
+ out << "cycles_executed: " << cycles_executed << " " << perProcCycleCount << endl;
+ out << "cycles_per_instruction: " << (RubyConfig::numberOfProcessors()*double(ruby_cycles))/double(instruction_executed) << " " << perProcCPI << endl;
+ out << "misses_per_thousand_instructions: " << 1000.0 * (double(total_misses) / double(instruction_executed)) << " " << perProcMissesPerInsn << endl;
+ out << endl;
+ out << "transactions_started: " << transactions_started << " " << m_perProcStartTransaction << endl;
+ out << "transactions_ended: " << transactions_ended << " " << m_perProcEndTransaction << endl;
+ out << "instructions_per_transaction: " << instructions_per_transaction << " " << perProcInsnPerTrans << endl;
+ out << "cycles_per_transaction: " << cycles_per_transaction << " " << perProcCyclesPerTrans << endl;
+ out << "misses_per_transaction: " << misses_per_transaction << " " << perProcMissesPerTrans << endl;
+
+ out << endl;
+
+ m_L1D_cache_profiler_ptr->printStats(out);
+ m_L1I_cache_profiler_ptr->printStats(out);
+ m_L2_cache_profiler_ptr->printStats(out);
+
+ out << endl;
+
+ if (m_memReq || m_memRefresh) { // if there's a memory controller at all
+ long long int total_stalls = m_memInputQ + m_memBankQ + m_memWaitCycles;
+ double stallsPerReq = total_stalls * 1.0 / m_memReq;
+ out << "Memory control:" << endl;
+ out << " memory_total_requests: " << m_memReq << endl; // does not include refreshes
+ out << " memory_reads: " << m_memRead << endl;
+ out << " memory_writes: " << m_memWrite << endl;
+ out << " memory_refreshes: " << m_memRefresh << endl;
+ out << " memory_total_request_delays: " << total_stalls << endl;
+ out << " memory_delays_per_request: " << stallsPerReq << endl;
+ out << " memory_delays_in_input_queue: " << m_memInputQ << endl;
+ out << " memory_delays_behind_head_of_bank_queue: " << m_memBankQ << endl;
+ out << " memory_delays_stalled_at_head_of_bank_queue: " << m_memWaitCycles << endl;
+ // Note: The following "memory stalls" entries are a breakdown of the
+ // cycles which already showed up in m_memWaitCycles. The order is
+ // significant; it is the priority of attributing the cycles.
+ // For example, bank_busy is before arbitration because if the bank was
+ // busy, we didn't even check arbitration.
+ // Note: "not old enough" means that since we grouped waiting heads-of-queues
+ // into batches to avoid starvation, a request in a newer batch
+ // didn't try to arbitrate yet because there are older requests waiting.
+ out << " memory_stalls_for_bank_busy: " << m_memBankBusy << endl;
+ out << " memory_stalls_for_random_busy: " << m_memRandBusy << endl;
+ out << " memory_stalls_for_anti_starvation: " << m_memNotOld << endl;
+ out << " memory_stalls_for_arbitration: " << m_memArbWait << endl;
+ out << " memory_stalls_for_bus: " << m_memBusBusy << endl;
+ out << " memory_stalls_for_tfaw: " << m_memTfawBusy << endl;
+ out << " memory_stalls_for_read_write_turnaround: " << m_memReadWriteBusy << endl;
+ out << " memory_stalls_for_read_read_turnaround: " << m_memDataBusBusy << endl;
+ out << " accesses_per_bank: ";
+ for (int bank=0; bank < m_memBankCount.size(); bank++) {
+ out << m_memBankCount[bank] << " ";
+ //if ((bank % 8) == 7) out << " " << endl;
+ }
+ out << endl;
+ out << endl;
+ }
+
+ if (!short_stats) {
+ out << "Busy Controller Counts:" << endl;
+ for(int i=0; i < MachineType_NUM; i++) {
+ for(int j=0; j < MachineType_base_count((MachineType)i); j++) {
+ MachineID machID;
+ machID.type = (MachineType)i;
+ machID.num = j;
+ out << machID << ":" << m_busyControllerCount[i][j] << " ";
+ if ((j+1)%8 == 0) {
+ out << endl;
+ }
+ }
+ out << endl;
+ }
+ out << endl;
+
+ out << "Busy Bank Count:" << m_busyBankCount << endl;
+ out << endl;
+
+ out << "L1TBE_usage: " << m_L1tbeProfile << endl;
+ out << "L2TBE_usage: " << m_L2tbeProfile << endl;
+ out << "StopTable_usage: " << m_stopTableProfile << endl;
+ out << "sequencer_requests_outstanding: " << m_sequencer_requests << endl;
+ out << "store_buffer_size: " << m_store_buffer_size << endl;
+ out << "unique_blocks_in_store_buffer: " << m_store_buffer_blocks << endl;
+ out << endl;
+ }
+
+ if (!short_stats) {
+ out << "All Non-Zero Cycle Demand Cache Accesses" << endl;
+ out << "----------------------------------------" << endl;
+ out << "miss_latency: " << m_allMissLatencyHistogram << endl;
+ for(int i=0; i<m_missLatencyHistograms.size(); i++) {
+ if (m_missLatencyHistograms[i].size() > 0) {
+ out << "miss_latency_" << CacheRequestType(i) << ": " << m_missLatencyHistograms[i] << endl;
+ }
+ }
+ for(int i=0; i<m_machLatencyHistograms.size(); i++) {
+ if (m_machLatencyHistograms[i].size() > 0) {
+ out << "miss_latency_" << GenericMachineType(i) << ": " << m_machLatencyHistograms[i] << endl;
+ }
+ }
+ out << "miss_latency_L2Miss: " << m_L2MissLatencyHistogram << endl;
+
+ out << endl;
+
+ out << "All Non-Zero Cycle SW Prefetch Requests" << endl;
+ out << "------------------------------------" << endl;
+ out << "prefetch_latency: " << m_allSWPrefetchLatencyHistogram << endl;
+ for(int i=0; i<m_SWPrefetchLatencyHistograms.size(); i++) {
+ if (m_SWPrefetchLatencyHistograms[i].size() > 0) {
+ out << "prefetch_latency_" << CacheRequestType(i) << ": " << m_SWPrefetchLatencyHistograms[i] << endl;
+ }
+ }
+ for(int i=0; i<m_SWPrefetchMachLatencyHistograms.size(); i++) {
+ if (m_SWPrefetchMachLatencyHistograms[i].size() > 0) {
+ out << "prefetch_latency_" << GenericMachineType(i) << ": " << m_SWPrefetchMachLatencyHistograms[i] << endl;
+ }
+ }
+ out << "prefetch_latency_L2Miss:" << m_SWPrefetchL2MissLatencyHistogram << endl;
+
+ out << "multicast_retries: " << m_multicast_retry_histogram << endl;
+ out << "gets_mask_prediction_count: " << m_gets_mask_prediction << endl;
+ out << "getx_mask_prediction_count: " << m_getx_mask_prediction << endl;
+ out << "explicit_training_mask: " << m_explicit_training_mask << endl;
+ out << endl;
+
+ if (m_all_sharing_histogram.size() > 0) {
+ out << "all_sharing: " << m_all_sharing_histogram << endl;
+ out << "read_sharing: " << m_read_sharing_histogram << endl;
+ out << "write_sharing: " << m_write_sharing_histogram << endl;
+
+ out << "all_sharing_percent: "; m_all_sharing_histogram.printPercent(out); out << endl;
+ out << "read_sharing_percent: "; m_read_sharing_histogram.printPercent(out); out << endl;
+ out << "write_sharing_percent: "; m_write_sharing_histogram.printPercent(out); out << endl;
+
+ int64 total_miss = m_cache_to_cache + m_memory_to_cache;
+ out << "all_misses: " << total_miss << endl;
+ out << "cache_to_cache_misses: " << m_cache_to_cache << endl;
+ out << "memory_to_cache_misses: " << m_memory_to_cache << endl;
+ out << "cache_to_cache_percent: " << 100.0 * (double(m_cache_to_cache) / double(total_miss)) << endl;
+ out << "memory_to_cache_percent: " << 100.0 * (double(m_memory_to_cache) / double(total_miss)) << endl;
+ out << endl;
+ }
+
+ if (m_conflicting_histogram.size() > 0) {
+ out << "conflicting_histogram: " << m_conflicting_histogram << endl;
+ out << "conflicting_histogram_percent: "; m_conflicting_histogram.printPercent(out); out << endl;
+ out << endl;
+ }
+
+ if (m_outstanding_requests.size() > 0) {
+ out << "outstanding_requests: "; m_outstanding_requests.printPercent(out); out << endl;
+ if (m_outstanding_persistent_requests.size() > 0) {
+ out << "outstanding_persistent_requests: "; m_outstanding_persistent_requests.printPercent(out); out << endl;
+ }
+ out << endl;
+ }
+ }
+
+ if (!short_stats) {
+ out << "Request vs. RubySystem State Profile" << endl;
+ out << "--------------------------------" << endl;
+ out << endl;
+
+ Vector<string> requestProfileKeys = m_requestProfileMap_ptr->keys();
+ requestProfileKeys.sortVector();
+
+ for(int i=0; i<requestProfileKeys.size(); i++) {
+ int temp_int = m_requestProfileMap_ptr->lookup(requestProfileKeys[i]);
+ double percent = (100.0*double(temp_int))/double(m_requests);
+ while (requestProfileKeys[i] != "") {
+ out << setw(10) << string_split(requestProfileKeys[i], ':');
+ }
+ out << setw(11) << temp_int;
+ out << setw(14) << percent << endl;
+ }
+ out << endl;
+
+ out << "filter_action: " << m_filter_action_histogram << endl;
+
+ if (!PROFILE_ALL_INSTRUCTIONS) {
+ m_address_profiler_ptr->printStats(out);
+ }
+
+ if (PROFILE_ALL_INSTRUCTIONS) {
+ m_inst_profiler_ptr->printStats(out);
+ }
+
+ out << endl;
+ out << "Message Delayed Cycles" << endl;
+ out << "----------------------" << endl;
+ out << "Total_delay_cycles: " << m_delayedCyclesHistogram << endl;
+ out << "Total_nonPF_delay_cycles: " << m_delayedCyclesNonPFHistogram << endl;
+ for (int i = 0; i < m_delayedCyclesVCHistograms.size(); i++) {
+ out << " virtual_network_" << i << "_delay_cycles: " << m_delayedCyclesVCHistograms[i] << endl;
+ }
+
+ printResourceUsage(out);
+ }
+
+}
+
+void Profiler::printResourceUsage(ostream& out) const
+{
+ out << endl;
+ out << "Resource Usage" << endl;
+ out << "--------------" << endl;
+
+ integer_t pagesize = getpagesize(); // page size in bytes
+ out << "page_size: " << pagesize << endl;
+
+ rusage usage;
+ getrusage (RUSAGE_SELF, &usage);
+
+ out << "user_time: " << usage.ru_utime.tv_sec << endl;
+ out << "system_time: " << usage.ru_stime.tv_sec << endl;
+ out << "page_reclaims: " << usage.ru_minflt << endl;
+ out << "page_faults: " << usage.ru_majflt << endl;
+ out << "swaps: " << usage.ru_nswap << endl;
+ out << "block_inputs: " << usage.ru_inblock << endl;
+ out << "block_outputs: " << usage.ru_oublock << endl;
+}
+
+void Profiler::clearStats()
+{
+ m_num_BA_unicasts = 0;
+ m_num_BA_broadcasts = 0;
+
+ m_ruby_start = g_eventQueue_ptr->getTime();
+
+ m_instructions_executed_at_start.setSize(RubyConfig::numberOfProcessors());
+ m_cycles_executed_at_start.setSize(RubyConfig::numberOfProcessors());
+ for (int i=0; i < RubyConfig::numberOfProcessors(); i++) {
+ if (g_system_ptr == NULL) {
+ m_instructions_executed_at_start[i] = 0;
+ m_cycles_executed_at_start[i] = 0;
+ } else {
+ m_instructions_executed_at_start[i] = g_system_ptr->getDriver()->getInstructionCount(i);
+ m_cycles_executed_at_start[i] = g_system_ptr->getDriver()->getCycleCount(i);
+ }
+ }
+
+ m_perProcTotalMisses.setSize(RubyConfig::numberOfProcessors());
+ m_perProcUserMisses.setSize(RubyConfig::numberOfProcessors());
+ m_perProcSupervisorMisses.setSize(RubyConfig::numberOfProcessors());
+ m_perProcStartTransaction.setSize(RubyConfig::numberOfProcessors());
+ m_perProcEndTransaction.setSize(RubyConfig::numberOfProcessors());
+
+ for(int i=0; i < RubyConfig::numberOfProcessors(); i++) {
+ m_perProcTotalMisses[i] = 0;
+ m_perProcUserMisses[i] = 0;
+ m_perProcSupervisorMisses[i] = 0;
+ m_perProcStartTransaction[i] = 0;
+ m_perProcEndTransaction[i] = 0;
+ }
+
+ m_busyControllerCount.setSize(MachineType_NUM); // all machines
+ for(int i=0; i < MachineType_NUM; i++) {
+ m_busyControllerCount[i].setSize(MachineType_base_count((MachineType)i));
+ for(int j=0; j < MachineType_base_count((MachineType)i); j++) {
+ m_busyControllerCount[i][j] = 0;
+ }
+ }
+ m_busyBankCount = 0;
+
+ m_delayedCyclesHistogram.clear();
+ m_delayedCyclesNonPFHistogram.clear();
+ m_delayedCyclesVCHistograms.setSize(NUMBER_OF_VIRTUAL_NETWORKS);
+ for (int i = 0; i < NUMBER_OF_VIRTUAL_NETWORKS; i++) {
+ m_delayedCyclesVCHistograms[i].clear();
+ }
+
+ m_gets_mask_prediction.clear();
+ m_getx_mask_prediction.clear();
+ m_explicit_training_mask.clear();
+
+ m_missLatencyHistograms.setSize(CacheRequestType_NUM);
+ for(int i=0; i<m_missLatencyHistograms.size(); i++) {
+ m_missLatencyHistograms[i].clear(200);
+ }
+ m_machLatencyHistograms.setSize(GenericMachineType_NUM+1);
+ for(int i=0; i<m_machLatencyHistograms.size(); i++) {
+ m_machLatencyHistograms[i].clear(200);
+ }
+ m_allMissLatencyHistogram.clear(200);
+ m_L2MissLatencyHistogram.clear(200);
+
+ m_SWPrefetchLatencyHistograms.setSize(CacheRequestType_NUM);
+ for(int i=0; i<m_SWPrefetchLatencyHistograms.size(); i++) {
+ m_SWPrefetchLatencyHistograms[i].clear(200);
+ }
+ m_SWPrefetchMachLatencyHistograms.setSize(GenericMachineType_NUM+1);
+ for(int i=0; i<m_SWPrefetchMachLatencyHistograms.size(); i++) {
+ m_SWPrefetchMachLatencyHistograms[i].clear(200);
+ }
+ m_allSWPrefetchLatencyHistogram.clear(200);
+ m_SWPrefetchL2MissLatencyHistogram.clear(200);
+
+ m_multicast_retry_histogram.clear();
+
+ m_L1tbeProfile.clear();
+ m_L2tbeProfile.clear();
+ m_stopTableProfile.clear();
+ m_filter_action_histogram.clear();
+
+ m_sequencer_requests.clear();
+ m_store_buffer_size.clear();
+ m_store_buffer_blocks.clear();
+ m_read_sharing_histogram.clear();
+ m_write_sharing_histogram.clear();
+ m_all_sharing_histogram.clear();
+ m_cache_to_cache = 0;
+ m_memory_to_cache = 0;
+
+ m_predictions = 0;
+ m_predictionOpportunities = 0;
+ m_goodPredictions = 0;
+
+ // clear HashMaps
+ m_requestProfileMap_ptr->clear();
+
+ // count requests profiled
+ m_requests = 0;
+
+ // Conflicting requests
+ m_conflicting_map_ptr->clear();
+ m_conflicting_histogram.clear();
+
+ m_outstanding_requests.clear();
+ m_outstanding_persistent_requests.clear();
+
+ m_L1D_cache_profiler_ptr->clearStats();
+ m_L1I_cache_profiler_ptr->clearStats();
+ m_L2_cache_profiler_ptr->clearStats();
+
+ // for MemoryControl:
+ m_memReq = 0;
+ m_memBankBusy = 0;
+ m_memBusBusy = 0;
+ m_memTfawBusy = 0;
+ m_memReadWriteBusy = 0;
+ m_memDataBusBusy = 0;
+ m_memRefresh = 0;
+ m_memRead = 0;
+ m_memWrite = 0;
+ m_memWaitCycles = 0;
+ m_memInputQ = 0;
+ m_memBankQ = 0;
+ m_memArbWait = 0;
+ m_memRandBusy = 0;
+ m_memNotOld = 0;
+
+ for (int bank=0; bank < m_memBankCount.size(); bank++) {
+ m_memBankCount[bank] = 0;
+ }
+
+ // Flush the prefetches through the system - used so that there are no outstanding requests after stats are cleared
+ //g_eventQueue_ptr->triggerAllEvents();
+
+ // update the start time
+ m_ruby_start = g_eventQueue_ptr->getTime();
+}
+
+void Profiler::addPrimaryStatSample(const CacheMsg& msg, NodeID id)
+{
+ if (Protocol::m_TwoLevelCache) {
+ if (msg.getType() == CacheRequestType_IFETCH) {
+ addL1IStatSample(msg, id);
+ } else {
+ addL1DStatSample(msg, id);
+ }
+ // profile the address after an L1 miss (outside of the processor for CMP)
+ if (Protocol::m_CMP) {
+ addAddressTraceSample(msg, id);
+ }
+ } else {
+ addL2StatSample(CacheRequestType_to_GenericRequestType(msg.getType()),
+ msg.getAccessMode(), msg.getSize(), msg.getPrefetch(), id);
+ addAddressTraceSample(msg, id);
+ }
+}
+
+void Profiler::profileConflictingRequests(const Address& addr)
+{
+ assert(addr == line_address(addr));
+ Time last_time = m_ruby_start;
+ if (m_conflicting_map_ptr->exist(addr)) {
+ last_time = m_conflicting_map_ptr->lookup(addr);
+ }
+ Time current_time = g_eventQueue_ptr->getTime();
+ assert (current_time - last_time > 0);
+ m_conflicting_histogram.add(current_time - last_time);
+ m_conflicting_map_ptr->add(addr, current_time);
+}
+
+void Profiler::addSecondaryStatSample(CacheRequestType requestType, AccessModeType type, int msgSize, PrefetchBit pfBit, NodeID id)
+{
+ addSecondaryStatSample(CacheRequestType_to_GenericRequestType(requestType), type, msgSize, pfBit, id);
+}
+
+void Profiler::addSecondaryStatSample(GenericRequestType requestType, AccessModeType type, int msgSize, PrefetchBit pfBit, NodeID id)
+{
+ addL2StatSample(requestType, type, msgSize, pfBit, id);
+}
+
+void Profiler::addL2StatSample(GenericRequestType requestType, AccessModeType type, int msgSize, PrefetchBit pfBit, NodeID id)
+{
+ m_perProcTotalMisses[id]++;
+ if (type == AccessModeType_SupervisorMode) {
+ m_perProcSupervisorMisses[id]++;
+ } else {
+ m_perProcUserMisses[id]++;
+ }
+ m_L2_cache_profiler_ptr->addStatSample(requestType, type, msgSize, pfBit);
+}
+
+void Profiler::addL1DStatSample(const CacheMsg& msg, NodeID id)
+{
+ m_L1D_cache_profiler_ptr->addStatSample(CacheRequestType_to_GenericRequestType(msg.getType()),
+ msg.getAccessMode(), msg.getSize(), msg.getPrefetch());
+}
+
+void Profiler::addL1IStatSample(const CacheMsg& msg, NodeID id)
+{
+ m_L1I_cache_profiler_ptr->addStatSample(CacheRequestType_to_GenericRequestType(msg.getType()),
+ msg.getAccessMode(), msg.getSize(), msg.getPrefetch());
+}
+
+void Profiler::addAddressTraceSample(const CacheMsg& msg, NodeID id)
+{
+ if (msg.getType() != CacheRequestType_IFETCH) {
+
+ // Note: The following line should be commented out if you want to
+ // use the special profiling that is part of the GS320 protocol
+
+ // NOTE: Unless PROFILE_HOT_LINES or PROFILE_ALL_INSTRUCTIONS are enabled, nothing will be profiled by the AddressProfiler
+ m_address_profiler_ptr->addTraceSample(msg.getAddress(), msg.getProgramCounter(), msg.getType(), msg.getAccessMode(), id, false);
+ }
+}
+
+void Profiler::profileSharing(const Address& addr, AccessType type, NodeID requestor, const Set& sharers, const Set& owner)
+{
+ Set set_contacted(owner);
+ if (type == AccessType_Write) {
+ set_contacted.addSet(sharers);
+ }
+ set_contacted.remove(requestor);
+ int number_contacted = set_contacted.count();
+
+ if (type == AccessType_Write) {
+ m_write_sharing_histogram.add(number_contacted);
+ } else {
+ m_read_sharing_histogram.add(number_contacted);
+ }
+ m_all_sharing_histogram.add(number_contacted);
+
+ if (number_contacted == 0) {
+ m_memory_to_cache++;
+ } else {
+ m_cache_to_cache++;
+ }
+
+}
+
+void Profiler::profileMsgDelay(int virtualNetwork, int delayCycles) {
+ assert(virtualNetwork < m_delayedCyclesVCHistograms.size());
+ m_delayedCyclesHistogram.add(delayCycles);
+ m_delayedCyclesVCHistograms[virtualNetwork].add(delayCycles);
+ if (virtualNetwork != 0) {
+ m_delayedCyclesNonPFHistogram.add(delayCycles);
+ }
+}
+
+// profiles original cache requests including PUTs
+void Profiler::profileRequest(const string& requestStr)
+{
+ m_requests++;
+
+ if (m_requestProfileMap_ptr->exist(requestStr)) {
+ (m_requestProfileMap_ptr->lookup(requestStr))++;
+ } else {
+ m_requestProfileMap_ptr->add(requestStr, 1);
+ }
+}
+
+void Profiler::recordPrediction(bool wasGood, bool wasPredicted)
+{
+ m_predictionOpportunities++;
+ if(wasPredicted){
+ m_predictions++;
+ if(wasGood){
+ m_goodPredictions++;
+ }
+ }
+}
+
+void Profiler::profileFilterAction(int action)
+{
+ m_filter_action_histogram.add(action);
+}
+
+void Profiler::profileMulticastRetry(const Address& addr, int count)
+{
+ m_multicast_retry_histogram.add(count);
+}
+
+void Profiler::startTransaction(int cpu)
+{
+ m_perProcStartTransaction[cpu]++;
+}
+
+void Profiler::endTransaction(int cpu)
+{
+ m_perProcEndTransaction[cpu]++;
+}
+
+void Profiler::controllerBusy(MachineID machID)
+{
+ m_busyControllerCount[(int)machID.type][(int)machID.num]++;
+}
+
+void Profiler::profilePFWait(Time waitTime)
+{
+ m_prefetchWaitHistogram.add(waitTime);
+}
+
+void Profiler::bankBusy()
+{
+ m_busyBankCount++;
+}
+
+// non-zero cycle demand request
+void Profiler::missLatency(Time t, CacheRequestType type, GenericMachineType respondingMach)
+{
+ m_allMissLatencyHistogram.add(t);
+ m_missLatencyHistograms[type].add(t);
+ m_machLatencyHistograms[respondingMach].add(t);
+ if(respondingMach == GenericMachineType_Directory || respondingMach == GenericMachineType_NUM) {
+ m_L2MissLatencyHistogram.add(t);
+ }
+}
+
+// non-zero cycle prefetch request
+void Profiler::swPrefetchLatency(Time t, CacheRequestType type, GenericMachineType respondingMach)
+{
+ m_allSWPrefetchLatencyHistogram.add(t);
+ m_SWPrefetchLatencyHistograms[type].add(t);
+ m_SWPrefetchMachLatencyHistograms[respondingMach].add(t);
+ if(respondingMach == GenericMachineType_Directory || respondingMach == GenericMachineType_NUM) {
+ m_SWPrefetchL2MissLatencyHistogram.add(t);
+ }
+}
+
+void Profiler::profileTransition(const string& component, NodeID id, NodeID version, Address addr,
+ const string& state, const string& event,
+ const string& next_state, const string& note)
+{
+ const int EVENT_SPACES = 20;
+ const int ID_SPACES = 3;
+ const int TIME_SPACES = 7;
+ const int COMP_SPACES = 10;
+ const int STATE_SPACES = 6;
+
+ if ((g_debug_ptr->getDebugTime() > 0) &&
+ (g_eventQueue_ptr->getTime() >= g_debug_ptr->getDebugTime())) {
+ (* debug_cout_ptr).flags(ios::right);
+ (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " ";
+ (* debug_cout_ptr) << setw(ID_SPACES) << id << " ";
+ (* debug_cout_ptr) << setw(ID_SPACES) << version << " ";
+ (* debug_cout_ptr) << setw(COMP_SPACES) << component;
+ (* debug_cout_ptr) << setw(EVENT_SPACES) << event << " ";
+ for (int i=0; i < RubyConfig::numberOfProcessors(); i++) {
+
+ if (i == id) {
+ (* debug_cout_ptr).flags(ios::right);
+ (* debug_cout_ptr) << setw(STATE_SPACES) << state;
+ (* debug_cout_ptr) << ">";
+ (* debug_cout_ptr).flags(ios::left);
+ (* debug_cout_ptr) << setw(STATE_SPACES) << next_state;
+ } else {
+ // cout << setw(STATE_SPACES) << " " << " " << setw(STATE_SPACES) << " ";
+ }
+ }
+ (* debug_cout_ptr) << " " << addr << " " << note;
+
+ (* debug_cout_ptr) << endl;
+ }
+}
+
+// Helper function
+static double process_memory_total()
+{
+ const double MULTIPLIER = 4096.0/(1024.0*1024.0); // 4kB page size, 1024*1024 bytes per MB,
+ ifstream proc_file;
+ proc_file.open("/proc/self/statm");
+ int total_size_in_pages = 0;
+ int res_size_in_pages = 0;
+ proc_file >> total_size_in_pages;
+ proc_file >> res_size_in_pages;
+ return double(total_size_in_pages)*MULTIPLIER; // size in megabytes
+}
+
+static double process_memory_resident()
+{
+ const double MULTIPLIER = 4096.0/(1024.0*1024.0); // 4kB page size, 1024*1024 bytes per MB,
+ ifstream proc_file;
+ proc_file.open("/proc/self/statm");
+ int total_size_in_pages = 0;
+ int res_size_in_pages = 0;
+ proc_file >> total_size_in_pages;
+ proc_file >> res_size_in_pages;
+ return double(res_size_in_pages)*MULTIPLIER; // size in megabytes
+}
+
+void Profiler::profileGetXMaskPrediction(const Set& pred_set)
+{
+ m_getx_mask_prediction.add(pred_set.count());
+}
+
+void Profiler::profileGetSMaskPrediction(const Set& pred_set)
+{
+ m_gets_mask_prediction.add(pred_set.count());
+}
+
+void Profiler::profileTrainingMask(const Set& pred_set)
+{
+ m_explicit_training_mask.add(pred_set.count());
+}
+
+// For MemoryControl:
+void Profiler::profileMemReq(int bank) {
+ m_memReq++;
+ m_memBankCount[bank]++;
+}
+
+void Profiler::profileMemBankBusy() { m_memBankBusy++; }
+void Profiler::profileMemBusBusy() { m_memBusBusy++; }
+void Profiler::profileMemReadWriteBusy() { m_memReadWriteBusy++; }
+void Profiler::profileMemDataBusBusy() { m_memDataBusBusy++; }
+void Profiler::profileMemTfawBusy() { m_memTfawBusy++; }
+void Profiler::profileMemRefresh() { m_memRefresh++; }
+void Profiler::profileMemRead() { m_memRead++; }
+void Profiler::profileMemWrite() { m_memWrite++; }
+void Profiler::profileMemWaitCycles(int cycles) { m_memWaitCycles += cycles; }
+void Profiler::profileMemInputQ(int cycles) { m_memInputQ += cycles; }
+void Profiler::profileMemBankQ(int cycles) { m_memBankQ += cycles; }
+void Profiler::profileMemArbWait(int cycles) { m_memArbWait += cycles; }
+void Profiler::profileMemRandBusy() { m_memRandBusy++; }
+void Profiler::profileMemNotOld() { m_memNotOld++; }
+
+int64 Profiler::getTotalInstructionsExecuted() const
+{
+ int64 sum = 1; // Starting at 1 allows us to avoid division by zero
+ for(int i=0; i < RubyConfig::numberOfProcessors(); i++) {
+ sum += (g_system_ptr->getDriver()->getInstructionCount(i) - m_instructions_executed_at_start[i]);
+ }
+ return sum;
+}
+
+int64 Profiler::getTotalTransactionsExecuted() const
+{
+ int64 sum = m_perProcEndTransaction.sum();
+ if (sum > 0) {
+ return sum;
+ } else {
+ return 1; // Avoid division by zero errors
+ }
+}
+
+
+// The following case statement converts CacheRequestTypes to GenericRequestTypes
+// allowing all profiling to be done with a single enum type instead of slow strings
+GenericRequestType Profiler::CacheRequestType_to_GenericRequestType(const CacheRequestType& type) {
+ switch (type) {
+ case CacheRequestType_LD:
+ return GenericRequestType_LD;
+ break;
+ case CacheRequestType_ST:
+ return GenericRequestType_ST;
+ break;
+ case CacheRequestType_ATOMIC:
+ return GenericRequestType_ATOMIC;
+ break;
+ case CacheRequestType_IFETCH:
+ return GenericRequestType_IFETCH;
+ break;
+ case CacheRequestType_NULL:
+ return GenericRequestType_NULL;
+ break;
+ default:
+ ERROR_MSG("Unexpected cache request type");
+ }
+}
+