summaryrefslogtreecommitdiff
path: root/src/sim
diff options
context:
space:
mode:
Diffstat (limited to 'src/sim')
-rw-r--r--src/sim/cxx_manager.cc11
-rw-r--r--src/sim/cxx_manager.hh2
-rw-r--r--src/sim/drain.cc102
-rw-r--r--src/sim/drain.hh126
4 files changed, 189 insertions, 52 deletions
diff --git a/src/sim/cxx_manager.cc b/src/sim/cxx_manager.cc
index 6d4565dbc..e0b209aa4 100644
--- a/src/sim/cxx_manager.cc
+++ b/src/sim/cxx_manager.cc
@@ -644,20 +644,15 @@ CxxConfigManager::startup()
}
unsigned int
-CxxConfigManager::drain(DrainManager *drain_manager)
+CxxConfigManager::drain()
{
- unsigned int ret = 0;
-
- for (auto i = objectsInOrder.begin(); i != objectsInOrder.end(); ++ i)
- ret += (*i)->drain(drain_manager);
-
- return ret;
+ return DrainManager::instance().tryDrain() ? 0 : 1;
}
void
CxxConfigManager::drainResume()
{
- forEachObject(&SimObject::drainResume);
+ DrainManager::instance().resume();
}
void
diff --git a/src/sim/cxx_manager.hh b/src/sim/cxx_manager.hh
index b2ba31214..458dfcd0c 100644
--- a/src/sim/cxx_manager.hh
+++ b/src/sim/cxx_manager.hh
@@ -283,7 +283,7 @@ class CxxConfigManager
void startup();
/** Drain all objects */
- unsigned int drain(DrainManager *drain_manager);
+ unsigned int drain();
/** Resume from drain */
void drainResume();
diff --git a/src/sim/drain.cc b/src/sim/drain.cc
index 90fb0c18d..384374099 100644
--- a/src/sim/drain.cc
+++ b/src/sim/drain.cc
@@ -38,10 +38,17 @@
*/
#include "sim/drain.hh"
+
+#include "base/misc.hh"
+#include "base/trace.hh"
+#include "debug/Drain.hh"
#include "sim/sim_exit.hh"
+DrainManager DrainManager::_instance;
+
DrainManager::DrainManager()
- : _count(0)
+ : _count(0),
+ _state(DrainState::Running)
{
}
@@ -49,21 +56,108 @@ DrainManager::~DrainManager()
{
}
+bool
+DrainManager::tryDrain()
+{
+ panic_if(_state == DrainState::Drained,
+ "Trying to drain a drained system\n");
+
+ panic_if(_count != 0,
+ "Drain counter must be zero at the start of a drain cycle\n");
+
+ DPRINTF(Drain, "Trying to drain %u objects.\n", drainableCount());
+ _state = DrainState::Draining;
+ for (auto *obj : _allDrainable)
+ _count += obj->drain(&_instance);
+
+ if (_count == 0) {
+ DPRINTF(Drain, "Drain done.\n");
+ _state = DrainState::Drained;
+ return true;
+ } else {
+ DPRINTF(Drain, "Need another drain cycle. %u/%u objects not ready.\n",
+ _count, drainableCount());
+ return false;
+ }
+}
+
+void
+DrainManager::resume()
+{
+ panic_if(_state == DrainState::Running,
+ "Trying to resume a system that is already running\n");
+
+ warn_if(_state == DrainState::Draining,
+ "Resuming a system that isn't fully drained, this is untested and "
+ "likely to break\n");
+
+ panic_if(_count != 0,
+ "Resume called in the middle of a drain cycle. %u objects "
+ "left to drain.\n", _count);
+
+ DPRINTF(Drain, "Resuming %u objects.\n", drainableCount());
+ _state = DrainState::Running;
+ for (auto *obj : _allDrainable)
+ obj->drainResume();
+}
+
+void
+DrainManager::preCheckpointRestore()
+{
+ panic_if(_state != DrainState::Running,
+ "preCheckpointRestore() called on a system that isn't in the "
+ "Running state.\n");
+
+ DPRINTF(Drain, "Applying pre-restore fixes to %u objects.\n",
+ drainableCount());
+ _state = DrainState::Drained;
+ for (auto *obj : _allDrainable)
+ obj->_drainState = DrainState::Drained;
+}
+
+void
+DrainManager::signalDrainDone()
+{
+ if (--_count == 0) {
+ DPRINTF(Drain, "All %u objects drained..\n", drainableCount());
+ exitSimLoop("Finished drain", 0);
+ }
+}
+
+
+void
+DrainManager::registerDrainable(Drainable *obj)
+{
+ std::lock_guard<std::mutex> lock(globalLock);
+ _allDrainable.insert(obj);
+}
+
void
-DrainManager::drainCycleDone()
+DrainManager::unregisterDrainable(Drainable *obj)
+{
+ std::lock_guard<std::mutex> lock(globalLock);
+ _allDrainable.erase(obj);
+}
+
+size_t
+DrainManager::drainableCount() const
{
- exitSimLoop("Finished drain", 0);
+ std::lock_guard<std::mutex> lock(globalLock);
+ return _allDrainable.size();
}
Drainable::Drainable()
- : _drainState(DrainState::Running)
+ : _drainManager(DrainManager::instance()),
+ _drainState(DrainState::Running)
{
+ _drainManager.registerDrainable(this);
}
Drainable::~Drainable()
{
+ _drainManager.unregisterDrainable(this);
}
void
diff --git a/src/sim/drain.hh b/src/sim/drain.hh
index 4ed6074dd..a045bf169 100644
--- a/src/sim/drain.hh
+++ b/src/sim/drain.hh
@@ -40,8 +40,9 @@
#ifndef __SIM_DRAIN_HH__
#define __SIM_DRAIN_HH__
-#include <cassert>
-#include <vector>
+#include <atomic>
+#include <mutex>
+#include <unordered_set>
#include "base/flags.hh"
@@ -76,12 +77,12 @@ enum class DrainState {
/**
* This class coordinates draining of a System.
*
- * When draining a System, we need to make sure that all SimObjects in
- * that system have drained their state before declaring the operation
- * to be successful. This class keeps track of how many objects are
- * still in the process of draining their state. Once it determines
- * that all objects have drained their state, it exits the simulation
- * loop.
+ * When draining the simulator, we need to make sure that all
+ * Drainable objects within the system have ended up in the drained
+ * state before declaring the operation to be successful. This class
+ * keeps track of how many objects are still in the process of
+ * draining. Once it determines that all objects have drained their
+ * state, it exits the simulation loop.
*
* @note A System might not be completely drained even though the
* DrainManager has caused the simulation loop to exit. Draining needs
@@ -91,39 +92,92 @@ enum class DrainState {
*/
class DrainManager
{
- public:
+ private:
DrainManager();
- virtual ~DrainManager();
+#ifndef SWIG
+ DrainManager(DrainManager &) = delete;
+#endif
+ ~DrainManager();
+
+ public:
+ /** Get the singleton DrainManager instance */
+ static DrainManager &instance() { return _instance; }
+
+ /**
+ * Try to drain the system.
+ *
+ * Try to drain the system and return true if all objects are in a
+ * the Drained state at which point the whole simulator is in a
+ * consistent state and ready for checkpointing or CPU
+ * handover. The simulation script must continue simulating until
+ * the simulation loop returns "Finished drain", at which point
+ * this method should be called again. This cycle should continue
+ * until this method returns true.
+ *
+ * @return true if all objects were drained successfully, false if
+ * more simulation is needed.
+ */
+ bool tryDrain();
/**
- * Get the number of objects registered with this DrainManager
- * that are currently draining their state.
+ * Resume normal simulation in a Drained system.
+ */
+ void resume();
+
+ /**
+ * Run state fixups before a checkpoint restore operation
*
- * @return Number of objects currently draining.
+ * The drain state of an object isn't stored in a checkpoint since
+ * the whole system is always going to be in the Drained state
+ * when the checkpoint is created. When the checkpoint is restored
+ * at a later stage, recreated objects will be in the Running
+ * state since the state isn't stored in checkpoints. This method
+ * performs state fixups on all Drainable objects and the
+ * DrainManager itself.
*/
- unsigned int getCount() const { return _count; }
+ void preCheckpointRestore();
+
+ /** Check if the system is drained */
+ bool isDrained() { return _state == DrainState::Drained; }
- void setCount(int count) { _count = count; }
+ /** Get the simulators global drain state */
+ DrainState state() { return _state; }
/**
* Notify the DrainManager that a Drainable object has finished
* draining.
*/
- void signalDrainDone() {
- assert(_count > 0);
- if (--_count == 0)
- drainCycleDone();
- }
+ void signalDrainDone();
- protected:
+ public:
+ void registerDrainable(Drainable *obj);
+ void unregisterDrainable(Drainable *obj);
+
+ private:
/**
- * Callback when all registered Drainable objects have completed a
- * drain cycle.
+ * Thread-safe helper function to get the number of Drainable
+ * objects in a system.
*/
- virtual void drainCycleDone();
+ size_t drainableCount() const;
- /** Number of objects still draining. */
- unsigned int _count;
+ /** Lock protecting the set of drainable objects */
+ mutable std::mutex globalLock;
+
+ /** Set of all drainable objects */
+ std::unordered_set<Drainable *> _allDrainable;
+
+ /**
+ * Number of objects still draining. This is flagged atomic since
+ * it can be manipulated by SimObjects living in different
+ * threads.
+ */
+ std::atomic_uint _count;
+
+ /** Global simulator drain state */
+ DrainState _state;
+
+ /** Singleton instance of the drain manager */
+ static DrainManager _instance;
};
/**
@@ -133,17 +187,11 @@ class DrainManager
* An object's internal state needs to be drained when creating a
* checkpoint, switching between CPU models, or switching between
* timing models. Once the internal state has been drained from
- * <i>all</i> objects in the system, the objects are serialized to
+ * <i>all</i> objects in the simulator, the objects are serialized to
* disc or the configuration change takes place. The process works as
* follows (see simulate.py for details):
*
* <ol>
- * <li>An instance of a DrainManager is created to keep track of how
- * many objects need to be drained. The object maintains an
- * internal counter that is decreased every time its
- * CountedDrainEvent::signalDrainDone() method is called. When the
- * counter reaches zero, the simulation is stopped.
- *
* <li>Call Drainable::drain() for every object in the
* system. Draining has completed if all of them return
* zero. Otherwise, the sum of the return values is loaded into
@@ -151,9 +199,9 @@ class DrainManager
* manager is passed as an argument to the drain() method.
*
* <li>Continue simulation. When an object has finished draining its
- * internal state, it calls CountedDrainEvent::signalDrainDone()
- * on the manager. When the counter in the manager reaches zero,
- * the simulation stops.
+ * internal state, it calls DrainManager::signalDrainDone() on the
+ * manager. When the counter in the manager reaches zero, the
+ * simulation stops.
*
* <li>Check if any object still needs draining, if so repeat the
* process above.
@@ -166,6 +214,8 @@ class DrainManager
*/
class Drainable
{
+ friend class DrainManager;
+
public:
Drainable();
virtual ~Drainable();
@@ -210,10 +260,8 @@ class Drainable
void setDrainState(DrainState new_state) { _drainState = new_state; }
private:
+ DrainManager &_drainManager;
DrainState _drainState;
};
-DrainManager *createDrainManager();
-void cleanupDrainManager(DrainManager *drain_manager);
-
#endif