summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/arch/x86/isa/main.isa29
-rw-r--r--src/arch/x86/isa/microasm.isa3
-rw-r--r--src/arch/x86/isa/specialize.isa172
3 files changed, 197 insertions, 7 deletions
diff --git a/src/arch/x86/isa/main.isa b/src/arch/x86/isa/main.isa
index d9e90689d..063d7125d 100644
--- a/src/arch/x86/isa/main.isa
+++ b/src/arch/x86/isa/main.isa
@@ -72,17 +72,38 @@
namespace X86ISA;
+////////////////////////////////////////////////////////////////////
+//
+// General infrastructure code. These files provide infrastructure
+// which was developed to support x86 but isn't specific to it.
+//
+
+//Include code to build macroops.
+##include "macroop.isa"
+
//Include the simple microcode assembler. This will hopefully stay
//unspecialized for x86 and can later be made available to other ISAs.
##include "microasm.isa"
-//Include code to build macroops.
-##include "macroop.isa"
+////////////////////////////////////////////////////////////////////
+//
+// X86 only infrastructure code.
+//
-//Include the base class for x86 instructions, and some support code
-//Code in this file should be general and useful everywhere
+//Include the base class for x86 instructions, and some support code.
##include "base.isa"
+//Include code to specialize an instruction template to operate on
+//a particular set of operands. This is specific to x86 and the x86
+//microcode ISA.
+##include "specialize.isa"
+
+////////////////////////////////////////////////////////////////////
+//
+// Code which directly specifies isa components like instructions
+// microops, and the decoder.
+//
+
//Include the definitions for the instruction formats
##include "formats/formats.isa"
diff --git a/src/arch/x86/isa/microasm.isa b/src/arch/x86/isa/microasm.isa
index d3ced71be..592941d04 100644
--- a/src/arch/x86/isa/microasm.isa
+++ b/src/arch/x86/isa/microasm.isa
@@ -103,9 +103,6 @@ let {{
self.reg = match.group("reg")
self.tag = match.group("tag")
self.size = match.group("size")
-}};
-
-let {{
# This function specializes the given piece of code to use a particular
# set of argument types described by "opTypes". These are "implemented"
diff --git a/src/arch/x86/isa/specialize.isa b/src/arch/x86/isa/specialize.isa
new file mode 100644
index 000000000..9cac09770
--- /dev/null
+++ b/src/arch/x86/isa/specialize.isa
@@ -0,0 +1,172 @@
+// -*- mode:c++ -*-
+
+// Copyright (c) 2007 The Hewlett-Packard Development Company
+// All rights reserved.
+//
+// Redistribution and use of this software in source and binary forms,
+// with or without modification, are permitted provided that the
+// following conditions are met:
+//
+// The software must be used only for Non-Commercial Use which means any
+// use which is NOT directed to receiving any direct monetary
+// compensation for, or commercial advantage from such use. Illustrative
+// examples of non-commercial use are academic research, personal study,
+// teaching, education and corporate research & development.
+// Illustrative examples of commercial use are distributing products for
+// commercial advantage and providing services using the software for
+// commercial advantage.
+//
+// If you wish to use this software or functionality therein that may be
+// covered by patents for commercial use, please contact:
+// Director of Intellectual Property Licensing
+// Office of Strategy and Technology
+// Hewlett-Packard Company
+// 1501 Page Mill Road
+// Palo Alto, California 94304
+//
+// Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer. Redistributions
+// in binary form must reproduce the above copyright notice, this list of
+// conditions and the following disclaimer in the documentation and/or
+// other materials provided with the distribution. Neither the name of
+// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission. No right of
+// sublicense is granted herewith. Derivatives of the software and
+// output created using the software may be prepared, but only for
+// Non-Commercial Uses. Derivatives of the software may be shared with
+// others provided: (i) the others agree to abide by the list of
+// conditions herein which includes the Non-Commercial Use restrictions;
+// and (ii) such Derivatives of the software include the above copyright
+// notice to acknowledge the contribution from this software where
+// applicable, this list of conditions and the disclaimer below.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Authors: Gabe Black
+
+////////////////////////////////////////////////////////////////////
+//
+// Code to "specialize" a microcode sequence to use a particular
+// variety of operands
+//
+
+let {{
+ # This code builds up a decode block which decodes based on switchval.
+ # vals is a dict which matches case values with what should be decoded to.
+ # builder is called on the exploded contents of "vals" values to generate
+ # whatever code should be used.
+ def doSplitDecode(name, Name, builder, switchVal, vals, default = None):
+ header_output = ''
+ decoder_output = ''
+ decode_block = 'switch(%s) {\n' % switchVal
+ exec_output = ''
+ for (val, todo) in vals.items():
+ (new_header_output,
+ new_decoder_output,
+ new_decode_block,
+ new_exec_output) = builder(name, Name, *todo)
+ header_output += new_header_output
+ decoder_output += new_decoder_output
+ decode_block += '\tcase %s: %s\n' % (val, new_decode_block)
+ exec_output += new_exec_output
+ if default:
+ (new_header_output,
+ new_decoder_output,
+ new_decode_block,
+ new_exec_output) = builder(name, Name, *default)
+ header_output += new_header_output
+ decoder_output += new_decoder_output
+ decode_block += '\tdefault: %s\n' % new_decode_block
+ exec_output += new_exec_output
+ decode_block += '}\n'
+ return (header_output, decoder_output, decode_block, exec_output)
+}};
+
+let {{
+ class OpType(object):
+ parser = re.compile(r"(?P<tag>[A-Z][A-Z]*)(?P<size>[a-z][a-z]*)|(r(?P<reg>[A-Za-z0-9][A-Za-z0-9]*))")
+ def __init__(self, opTypeString):
+ match = OpType.parser.search(opTypeString)
+ if match == None:
+ raise Exception, "Problem parsing operand type %s" % opTypeString
+ self.reg = match.group("reg")
+ self.tag = match.group("tag")
+ self.size = match.group("size")
+
+ # This function specializes the given piece of code to use a particular
+ # set of argument types described by "opTypes". These are "implemented"
+ # in reverse order.
+ def specializeInst(name, Name, code, opTypes):
+ opNum = len(opTypes) - 1
+ while len(opTypes):
+ # print "Building a composite op with tags", opTypes
+ # print "And code", code
+ opNum = len(opTypes) - 1
+ # A regular expression to find the operand placeholders we're
+ # interested in.
+ opRe = re.compile("\\^(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
+
+ # Parse the operand type strign we're working with
+ opType = OpType(opTypes[opNum])
+
+ if opType.reg:
+ #Figure out what to do with fixed register operands
+ if opType.reg in ("Ax", "Bx", "Cx", "Dx"):
+ code = opRe.sub("%%{INTREG_R%s}" % opType.reg.upper(), code)
+ elif opType.reg == "Al":
+ # We need a way to specify register width
+ code = opRe.sub("%{INTREG_RAX}", code)
+ else:
+ print "Didn't know how to encode fixed register %s!" % opType.reg
+ elif opType.tag == None or opType.size == None:
+ raise Exception, "Problem parsing operand tag: %s" % opType.tag
+ elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"):
+ # Use the "reg" field of the ModRM byte to select the register
+ code = opRe.sub("%{(uint8_t)MODRM_REG}", code)
+ elif opType.tag in ("E", "Q", "W"):
+ # This might refer to memory or to a register. We need to
+ # divide it up farther.
+ regCode = opRe.sub("%{(uint8_t)MODRM_RM}", code)
+ regTypes = copy.copy(opTypes)
+ regTypes.pop(-1)
+ # This needs to refer to memory, but we'll fill in the details
+ # later. It needs to take into account unaligned memory
+ # addresses.
+ memCode = opRe.sub("%0", code)
+ memTypes = copy.copy(opTypes)
+ memTypes.pop(-1)
+ return doSplitDecode(name, Name, specializeInst, "MODRM_MOD",
+ {"3" : (regCode, regTypes)}, (memCode, memTypes))
+ elif opType.tag in ("I", "J"):
+ # Immediates are already in the instruction, so don't leave in
+ # those parameters
+ code = opRe.sub("${IMMEDIATE}", code)
+ elif opType.tag == "M":
+ # This needs to refer to memory, but we'll fill in the details
+ # later. It needs to take into account unaligned memory
+ # addresses.
+ code = opRe.sub("%0", code)
+ elif opType.tag in ("PR", "R", "VR"):
+ # There should probably be a check here to verify that mod
+ # is equal to 11b
+ code = opRe.sub("%{(uint8_t)MODRM_RM}", code)
+ else:
+ raise Exception, "Unrecognized tag %s." % opType.tag
+ opTypes.pop(-1)
+
+ # At this point, we've built up "code" to have all the necessary extra
+ # instructions needed to implement whatever types of operands were
+ # specified. Now we'll assemble it it into a StaticInst.
+ return assembleMicro(name, Name, code)
+}};