summaryrefslogtreecommitdiff
path: root/util/config/m5configbase.py
diff options
context:
space:
mode:
Diffstat (limited to 'util/config/m5configbase.py')
-rw-r--r--util/config/m5configbase.py697
1 files changed, 0 insertions, 697 deletions
diff --git a/util/config/m5configbase.py b/util/config/m5configbase.py
deleted file mode 100644
index 2daf5d94d..000000000
--- a/util/config/m5configbase.py
+++ /dev/null
@@ -1,697 +0,0 @@
-from __future__ import generators
-
-import os
-import re
-import sys
-
-#####################################################################
-#
-# M5 Python Configuration Utility
-#
-# The basic idea is to write simple Python programs that build Python
-# objects corresponding to M5 SimObjects for the deisred simulation
-# configuration. For now, the Python emits a .ini file that can be
-# parsed by M5. In the future, some tighter integration between M5
-# and the Python interpreter may allow bypassing the .ini file.
-#
-# Each SimObject class in M5 is represented by a Python class with the
-# same name. The Python inheritance tree mirrors the M5 C++ tree
-# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
-# SimObjects inherit from a single SimObject base class). To specify
-# an instance of an M5 SimObject in a configuration, the user simply
-# instantiates the corresponding Python object. The parameters for
-# that SimObject are given by assigning to attributes of the Python
-# object, either using keyword assignment in the constructor or in
-# separate assignment statements. For example:
-#
-# cache = BaseCache('my_cache', root, size=64*K)
-# cache.hit_latency = 3
-# cache.assoc = 8
-#
-# (The first two constructor arguments specify the name of the created
-# cache and its parent node in the hierarchy.)
-#
-# The magic lies in the mapping of the Python attributes for SimObject
-# classes to the actual SimObject parameter specifications. This
-# allows parameter validity checking in the Python code. Continuing
-# the example above, the statements "cache.blurfl=3" or
-# "cache.assoc='hello'" would both result in runtime errors in Python,
-# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
-# parameter requires an integer, respectively. This magic is done
-# primarily by overriding the special __setattr__ method that controls
-# assignment to object attributes.
-#
-# The Python module provides another class, ConfigNode, which is a
-# superclass of SimObject. ConfigNode implements the parent/child
-# relationship for building the configuration hierarchy tree.
-# Concrete instances of ConfigNode can be used to group objects in the
-# hierarchy, but do not correspond to SimObjects themselves (like a
-# .ini section with "children=" but no "type=".
-#
-# Once a set of Python objects have been instantiated in a hierarchy,
-# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
-# will generate a .ini file. See simple-4cpu.py for an example
-# (corresponding to m5-test/simple-4cpu.ini).
-#
-#####################################################################
-
-#####################################################################
-#
-# ConfigNode/SimObject classes
-#
-# The Python class hierarchy rooted by ConfigNode (which is the base
-# class of SimObject, which in turn is the base class of all other M5
-# SimObject classes) has special attribute behavior. In general, an
-# object in this hierarchy has three categories of attribute-like
-# things:
-#
-# 1. Regular Python methods and variables. These must start with an
-# underscore to be treated normally.
-#
-# 2. SimObject parameters. These values are stored as normal Python
-# attributes, but all assignments to these attributes are checked
-# against the pre-defined set of parameters stored in the class's
-# _param_dict dictionary. Assignments to attributes that do not
-# correspond to predefined parameters, or that are not of the correct
-# type, incur runtime errors.
-#
-# 3. Hierarchy children. The child nodes of a ConfigNode are stored
-# in the node's _children dictionary, but can be accessed using the
-# Python attribute dot-notation (just as they are printed out by the
-# simulator). Children cannot be created using attribute assigment;
-# they must be added by specifying the parent node in the child's
-# constructor or using the '+=' operator.
-
-# The SimObject parameters are the most complex, for a few reasons.
-# First, both parameter descriptions and parameter values are
-# inherited. Thus parameter description lookup must go up the
-# inheritance chain like normal attribute lookup, but this behavior
-# must be explicitly coded since the lookup occurs in each class's
-# _param_dict attribute. Second, because parameter values can be set
-# on SimObject classes (to implement default values), the parameter
-# checking behavior must be enforced on class attribute assignments as
-# well as instance attribute assignments. Finally, because we allow
-# class specialization via inheritance (e.g., see the L1Cache class in
-# the simple-4cpu.py example), we must do parameter checking even on
-# class instantiation. To provide all these features, we use a
-# metaclass to define most of the SimObject parameter behavior for
-# this class hierarchy.
-#
-#####################################################################
-
-# The metaclass for ConfigNode (and thus for everything that derives
-# from ConfigNode, including SimObject). This class controls how new
-# classes that derive from ConfigNode are instantiated, and provides
-# inherited class behavior (just like a class controls how instances
-# of that class are instantiated, and provides inherited instance
-# behavior).
-class MetaConfigNode(type):
-
- # __new__ is called before __init__, and is where the statements
- # in the body of the class definition get loaded into the class's
- # __dict__. We intercept this to filter out parameter assignments
- # and only allow "private" attributes to be passed to the base
- # __new__ (starting with underscore).
- def __new__(cls, name, bases, dict):
- priv_keys = [k for k in dict.iterkeys() if k.startswith('_')]
- priv_dict = {}
- for k in priv_keys: priv_dict[k] = dict[k]; del dict[k]
- # entries left in dict will get passed to __init__, where we'll
- # deal with them as params.
- return super(MetaConfigNode, cls).__new__(cls, name, bases, priv_dict)
-
- # initialization: start out with an empty param dict (makes life
- # simpler if we can assume _param_dict is always valid). Also
- # build inheritance list to simplify searching for inherited
- # params. Finally set parameters specified in class definition
- # (if any).
- def __init__(cls, name, bases, dict):
- super(MetaConfigNode, cls).__init__(cls, name, bases, {})
- # initialize _param_dict to empty
- cls._param_dict = {}
- # __mro__ is the ordered list of classes Python uses for
- # method resolution. We want to pick out the ones that have a
- # _param_dict attribute for doing parameter lookups.
- cls._param_bases = \
- [c for c in cls.__mro__ if hasattr(c, '_param_dict')]
- # initialize attributes with values from class definition
- for (pname, value) in dict.items():
- try:
- setattr(cls, pname, value)
- except Exception, exc:
- print "Error setting '%s' to '%s' on class '%s'\n" \
- % (pname, value, cls.__name__), exc
-
- # set the class's parameter dictionary (called when loading
- # class descriptions)
- def set_param_dict(cls, param_dict):
- # should only be called once (current one should be empty one
- # from __init__)
- assert not cls._param_dict
- cls._param_dict = param_dict
- # initialize attributes with default values
- for (pname, param) in param_dict.items():
- try:
- setattr(cls, pname, param.default)
- except Exception, exc:
- print "Error setting '%s' default on class '%s'\n" \
- % (pname, cls.__name__), exc
-
- # Set the class's parameter dictionary given a code string of
- # parameter initializers (as from an object description file).
- # Note that the caller must pass in the namespace in which to
- # execute the code (usually the caller's globals()), since if we
- # call globals() from inside this function all we get is this
- # module's internal scope.
- def init_params(cls, init_code, ctx):
- dict = {}
- try:
- exec fixPythonIndentation(init_code) in ctx, dict
- except Exception, exc:
- print "Error in %s.init_params:" % cls.__name__, exc
- raise
- cls.set_param_dict(dict)
-
- # Lookup a parameter description by name in the given class. Use
- # the _param_bases list defined in __init__ to go up the
- # inheritance hierarchy if necessary.
- def lookup_param(cls, param_name):
- for c in cls._param_bases:
- param = c._param_dict.get(param_name)
- if param: return param
- return None
-
- # Set attribute (called on foo.attr_name = value when foo is an
- # instance of class cls).
- def __setattr__(cls, attr_name, value):
- # normal processing for private attributes
- if attr_name.startswith('_'):
- object.__setattr__(cls, attr_name, value)
- return
- # no '_': must be SimObject param
- param = cls.lookup_param(attr_name)
- if not param:
- raise AttributeError, \
- "Class %s has no parameter %s" % (cls.__name__, attr_name)
- # It's ok: set attribute by delegating to 'object' class.
- # Note the use of param.make_value() to verify/canonicalize
- # the assigned value
- object.__setattr__(cls, attr_name, param.make_value(value))
-
- # generator that iterates across all parameters for this class and
- # all classes it inherits from
- def all_param_names(cls):
- for c in cls._param_bases:
- for p in c._param_dict.iterkeys():
- yield p
-
-# The ConfigNode class is the root of the special hierarchy. Most of
-# the code in this class deals with the configuration hierarchy itself
-# (parent/child node relationships).
-class ConfigNode(object):
- # Specify metaclass. Any class inheriting from ConfigNode will
- # get this metaclass.
- __metaclass__ = MetaConfigNode
-
- # Constructor. Since bare ConfigNodes don't have parameters, just
- # worry about the name and the parent/child stuff.
- def __init__(self, _name, _parent=None):
- # Type-check _name
- if type(_name) != str:
- if isinstance(_name, ConfigNode):
- # special case message for common error of trying to
- # coerce a SimObject to the wrong type
- raise TypeError, \
- "Attempt to coerce %s to %s" \
- % (_name.__class__.__name__, self.__class__.__name__)
- else:
- raise TypeError, \
- "%s name must be string (was %s, %s)" \
- % (self.__class__.__name__, _name, type(_name))
- # if specified, parent must be a subclass of ConfigNode
- if _parent != None and not isinstance(_parent, ConfigNode):
- raise TypeError, \
- "%s parent must be ConfigNode subclass (was %s, %s)" \
- % (self.__class__.__name__, _name, type(_name))
- self._name = _name
- self._parent = _parent
- if (_parent):
- _parent._add_child(self)
- self._children = {}
- # keep a list of children in addition to the dictionary keys
- # so we can remember the order they were added and print them
- # out in that order.
- self._child_list = []
-
- # When printing (e.g. to .ini file), just give the name.
- def __str__(self):
- return self._name
-
- # Catch attribute accesses that could be requesting children, and
- # satisfy them. Note that __getattr__ is called only if the
- # regular attribute lookup fails, so private and parameter lookups
- # will already be satisfied before we ever get here.
- def __getattr__(self, name):
- try:
- return self._children[name]
- except KeyError:
- raise AttributeError, \
- "Node '%s' has no attribute or child '%s'" \
- % (self._name, name)
-
- # Set attribute. All attribute assignments go through here. Must
- # be private attribute (starts with '_') or valid parameter entry.
- # Basically identical to MetaConfigClass.__setattr__(), except
- # this sets attributes on specific instances rather than on classes.
- def __setattr__(self, attr_name, value):
- if attr_name.startswith('_'):
- object.__setattr__(self, attr_name, value)
- return
- # not private; look up as param
- param = self.__class__.lookup_param(attr_name)
- if not param:
- raise AttributeError, \
- "Class %s has no parameter %s" \
- % (self.__class__.__name__, attr_name)
- # It's ok: set attribute by delegating to 'object' class.
- # Note the use of param.make_value() to verify/canonicalize
- # the assigned value.
- v = param.make_value(value)
- object.__setattr__(self, attr_name, v)
-
- # A little convenient magic: if the parameter is a ConfigNode
- # (or vector of ConfigNodes, or anything else with a
- # '_set_parent_if_none' function attribute) that does not have
- # a parent (and so is not part of the configuration
- # hierarchy), then make this node its parent.
- if hasattr(v, '_set_parent_if_none'):
- v._set_parent_if_none(self)
-
- def _path(self):
- # Return absolute path from root.
- if not self._parent and self._name != 'Universe':
- print >> sys.stderr, "Warning:", self._name, "has no parent"
- parent_path = self._parent and self._parent._path()
- if parent_path and parent_path != 'Universe':
- return parent_path + '.' + self._name
- else:
- return self._name
-
- # Add a child to this node.
- def _add_child(self, new_child):
- # set child's parent before calling this function
- assert new_child._parent == self
- if not isinstance(new_child, ConfigNode):
- raise TypeError, \
- "ConfigNode child must also be of class ConfigNode"
- if new_child._name in self._children:
- raise AttributeError, \
- "Node '%s' already has a child '%s'" \
- % (self._name, new_child._name)
- self._children[new_child._name] = new_child
- self._child_list += [new_child]
-
- # operator overload for '+='. You can say "node += child" to add
- # a child that was created with parent=None. An early attempt
- # at playing with syntax; turns out not to be that useful.
- def __iadd__(self, new_child):
- if new_child._parent != None:
- raise AttributeError, \
- "Node '%s' already has a parent" % new_child._name
- new_child._parent = self
- self._add_child(new_child)
- return self
-
- # Set this instance's parent to 'parent' if it doesn't already
- # have one. See ConfigNode.__setattr__().
- def _set_parent_if_none(self, parent):
- if self._parent == None:
- parent += self
-
- # Print instance info to .ini file.
- def _instantiate(self):
- print '[' + self._path() + ']' # .ini section header
- if self._child_list:
- # instantiate children in same order they were added for
- # backward compatibility (else we can end up with cpu1
- # before cpu0).
- print 'children =', ' '.join([c._name for c in self._child_list])
- self._instantiateParams()
- print
- # recursively dump out children
- for c in self._child_list:
- c._instantiate()
-
- # ConfigNodes have no parameters. Overridden by SimObject.
- def _instantiateParams(self):
- pass
-
-# SimObject is a minimal extension of ConfigNode, implementing a
-# hierarchy node that corresponds to an M5 SimObject. It prints out a
-# "type=" line to indicate its SimObject class, prints out the
-# assigned parameters corresponding to its class, and allows
-# parameters to be set by keyword in the constructor. Note that most
-# of the heavy lifting for the SimObject param handling is done in the
-# MetaConfigNode metaclass.
-
-class SimObject(ConfigNode):
- # initialization: like ConfigNode, but handle keyword-based
- # parameter initializers.
- def __init__(self, _name, _parent=None, **params):
- ConfigNode.__init__(self, _name, _parent)
- for param, value in params.items():
- setattr(self, param, value)
-
- # print type and parameter values to .ini file
- def _instantiateParams(self):
- print "type =", self.__class__._name
- for pname in self.__class__.all_param_names():
- value = getattr(self, pname)
- if value != None:
- print pname, '=', value
-
- def _sim_code(cls):
- name = cls.__name__
- param_names = cls._param_dict.keys()
- param_names.sort()
- code = "BEGIN_DECLARE_SIM_OBJECT_PARAMS(%s)\n" % name
- decls = [" " + cls._param_dict[pname].sim_decl(pname) \
- for pname in param_names]
- code += "\n".join(decls) + "\n"
- code += "END_DECLARE_SIM_OBJECT_PARAMS(%s)\n\n" % name
- code += "BEGIN_INIT_SIM_OBJECT_PARAMS(%s)\n" % name
- inits = [" " + cls._param_dict[pname].sim_init(pname) \
- for pname in param_names]
- code += ",\n".join(inits) + "\n"
- code += "END_INIT_SIM_OBJECT_PARAMS(%s)\n\n" % name
- return code
- _sim_code = classmethod(_sim_code)
-
-#####################################################################
-#
-# Parameter description classes
-#
-# The _param_dict dictionary in each class maps parameter names to
-# either a Param or a VectorParam object. These objects contain the
-# parameter description string, the parameter type, and the default
-# value (loaded from the PARAM section of the .odesc files). The
-# make_value() method on these objects is used to force whatever value
-# is assigned to the parameter to the appropriate type.
-#
-# Note that the default values are loaded into the class's attribute
-# space when the parameter dictionary is initialized (in
-# MetaConfigNode.set_param_dict()); after that point they aren't
-# used.
-#
-#####################################################################
-
-def isNullPointer(value):
- return isinstance(value, NullSimObject)
-
-# Regular parameter.
-class Param(object):
- # Constructor. E.g., Param(Int, "number of widgets", 5)
- def __init__(self, ptype, desc, default=None):
- self.ptype = ptype
- self.ptype_name = self.ptype.__name__
- self.desc = desc
- self.default = default
-
- # Convert assigned value to appropriate type. Force parameter
- # value (rhs of '=') to ptype (or None, which means not set).
- def make_value(self, value):
- # nothing to do if None or already correct type. Also allow NULL
- # pointer to be assigned where a SimObject is expected.
- if value == None or isinstance(value, self.ptype) or \
- isNullPointer(value) and issubclass(self.ptype, ConfigNode):
- return value
- # this type conversion will raise an exception if it's illegal
- return self.ptype(value)
-
- def sim_decl(self, name):
- return 'Param<%s> %s;' % (self.ptype_name, name)
-
- def sim_init(self, name):
- if self.default == None:
- return 'INIT_PARAM(%s, "%s")' % (name, self.desc)
- else:
- return 'INIT_PARAM_DFLT(%s, "%s", %s)' % \
- (name, self.desc, str(self.default))
-
-# The _VectorParamValue class is a wrapper for vector-valued
-# parameters. The leading underscore indicates that users shouldn't
-# see this class; it's magically generated by VectorParam. The
-# parameter values are stored in the 'value' field as a Python list of
-# whatever type the parameter is supposed to be. The only purpose of
-# storing these instead of a raw Python list is that we can override
-# the __str__() method to not print out '[' and ']' in the .ini file.
-class _VectorParamValue(object):
- def __init__(self, value):
- assert isinstance(value, list) or value == None
- self.value = value
-
- def __str__(self):
- return ' '.join(map(str, self.value))
-
- # Set member instance's parents to 'parent' if they don't already
- # have one. Extends "magic" parenting of ConfigNodes to vectors
- # of ConfigNodes as well. See ConfigNode.__setattr__().
- def _set_parent_if_none(self, parent):
- if self.value and hasattr(self.value[0], '_set_parent_if_none'):
- for v in self.value:
- v._set_parent_if_none(parent)
-
-# Vector-valued parameter description. Just like Param, except that
-# the value is a vector (list) of the specified type instead of a
-# single value.
-class VectorParam(Param):
-
- # Inherit Param constructor. However, the resulting parameter
- # will be a list of ptype rather than a single element of ptype.
- def __init__(self, ptype, desc, default=None):
- Param.__init__(self, ptype, desc, default)
-
- # Convert assigned value to appropriate type. If the RHS is not a
- # list or tuple, it generates a single-element list.
- def make_value(self, value):
- if value == None: return value
- if isinstance(value, list) or isinstance(value, tuple):
- # list: coerce each element into new list
- val_list = [Param.make_value(self, v) for v in iter(value)]
- else:
- # singleton: coerce & wrap in a list
- val_list = [Param.make_value(self, value)]
- # wrap list in _VectorParamValue (see above)
- return _VectorParamValue(val_list)
-
- def sim_decl(self, name):
- return 'VectorParam<%s> %s;' % (self.ptype_name, name)
-
- # sim_init inherited from Param
-
-#####################################################################
-#
-# Parameter Types
-#
-# Though native Python types could be used to specify parameter types
-# (the 'ptype' field of the Param and VectorParam classes), it's more
-# flexible to define our own set of types. This gives us more control
-# over how Python expressions are converted to values (via the
-# __init__() constructor) and how these values are printed out (via
-# the __str__() conversion method). Eventually we'll need these types
-# to correspond to distinct C++ types as well.
-#
-#####################################################################
-
-# Integer parameter type.
-class Int(object):
- # Constructor. Value must be Python int or long (long integer).
- def __init__(self, value):
- t = type(value)
- if t == int or t == long:
- self.value = value
- else:
- raise TypeError, "Int param got value %s %s" % (repr(value), t)
-
- # Use Python string conversion. Note that this puts an 'L' on the
- # end of long integers; we can strip that off here if it gives us
- # trouble.
- def __str__(self):
- return str(self.value)
-
-# Counter, Addr, and Tick are just aliases for Int for now.
-class Counter(Int):
- pass
-
-class Addr(Int):
- pass
-
-class Tick(Int):
- pass
-
-# Boolean parameter type.
-class Bool(object):
-
- # Constructor. Typically the value will be one of the Python bool
- # constants True or False (or the aliases true and false below).
- # Also need to take integer 0 or 1 values since bool was not a
- # distinct type in Python 2.2. Parse a bunch of boolean-sounding
- # strings too just for kicks.
- def __init__(self, value):
- t = type(value)
- if t == bool:
- self.value = value
- elif t == int or t == long:
- if value == 1:
- self.value = True
- elif value == 0:
- self.value = False
- elif t == str:
- v = value.lower()
- if v == "true" or v == "t" or v == "yes" or v == "y":
- self.value = True
- elif v == "false" or v == "f" or v == "no" or v == "n":
- self.value = False
- # if we didn't set it yet, it must not be something we understand
- if not hasattr(self, 'value'):
- raise TypeError, "Bool param got value %s %s" % (repr(value), t)
-
- # Generate printable string version.
- def __str__(self):
- if self.value: return "true"
- else: return "false"
-
-# String-valued parameter.
-class String(object):
- # Constructor. Value must be Python string.
- def __init__(self, value):
- t = type(value)
- if t == str:
- self.value = value
- else:
- raise TypeError, "String param got value %s %s" % (repr(value), t)
-
- # Generate printable string version. Not too tricky.
- def __str__(self):
- return self.value
-
-# Special class for NULL pointers. Note the special check in
-# make_param_value() above that lets these be assigned where a
-# SimObject is required.
-class NullSimObject(object):
- # Constructor. No parameters, nothing to do.
- def __init__(self):
- pass
-
- def __str__(self):
- return "NULL"
-
-# The only instance you'll ever need...
-NULL = NullSimObject()
-
-# Enumerated types are a little more complex. The user specifies the
-# type as Enum(foo) where foo is either a list or dictionary of
-# alternatives (typically strings, but not necessarily so). (In the
-# long run, the integer value of the parameter will be the list index
-# or the corresponding dictionary value. For now, since we only check
-# that the alternative is valid and then spit it into a .ini file,
-# there's not much point in using the dictionary.)
-
-# What Enum() must do is generate a new type encapsulating the
-# provided list/dictionary so that specific values of the parameter
-# can be instances of that type. We define two hidden internal
-# classes (_ListEnum and _DictEnum) to serve as base classes, then
-# derive the new type from the appropriate base class on the fly.
-
-
-# Base class for list-based Enum types.
-class _ListEnum(object):
- # Constructor. Value must be a member of the type's map list.
- def __init__(self, value):
- if value in self.map:
- self.value = value
- self.index = self.map.index(value)
- else:
- raise TypeError, "Enum param got bad value '%s' (not in %s)" \
- % (value, self.map)
-
- # Generate printable string version of value.
- def __str__(self):
- return str(self.value)
-
-class _DictEnum(object):
- # Constructor. Value must be a key in the type's map dictionary.
- def __init__(self, value):
- if value in self.map:
- self.value = value
- self.index = self.map[value]
- else:
- raise TypeError, "Enum param got bad value '%s' (not in %s)" \
- % (value, self.map.keys())
-
- # Generate printable string version of value.
- def __str__(self):
- return str(self.value)
-
-# Enum metaclass... calling Enum(foo) generates a new type (class)
-# that derives from _ListEnum or _DictEnum as appropriate.
-class Enum(type):
- # counter to generate unique names for generated classes
- counter = 1
-
- def __new__(cls, map):
- if isinstance(map, dict):
- base = _DictEnum
- keys = map.keys()
- elif isinstance(map, list):
- base = _ListEnum
- keys = map
- else:
- raise TypeError, "Enum map must be list or dict (got %s)" % map
- classname = "Enum%04d" % Enum.counter
- Enum.counter += 1
- # New class derives from selected base, and gets a 'map'
- # attribute containing the specified list or dict.
- return type.__new__(cls, classname, (base,), { 'map': map })
-
-
-#
-# "Constants"... handy aliases for various values.
-#
-
-# For compatibility with C++ bool constants.
-false = False
-true = True
-
-# Some memory range specifications use this as a default upper bound.
-MAX_ADDR = 2**64 - 1
-
-# For power-of-two sizing, e.g. 64*K gives an integer value 65536.
-K = 1024
-M = K*K
-G = K*M
-
-#####################################################################
-
-# Munge an arbitrary Python code string to get it to execute (mostly
-# dealing with indentation). Stolen from isa_parser.py... see
-# comments there for a more detailed description.
-def fixPythonIndentation(s):
- # get rid of blank lines first
- s = re.sub(r'(?m)^\s*\n', '', s);
- if (s != '' and re.match(r'[ \t]', s[0])):
- s = 'if 1:\n' + s
- return s
-
-# Hook to generate C++ parameter code.
-def gen_sim_code(file):
- for objname in sim_object_list:
- print >> file, eval("%s._sim_code()" % objname)
-
-# The final hook to generate .ini files. Called from configuration
-# script once config is built.
-def instantiate(*objs):
- for obj in objs:
- obj._instantiate()
-
-