Age | Commit message (Collapse) | Author |
|
set the request to false when the cache port blocks so we dont deadlock.
also, comment out the outstanding address list sanity check for now.
|
|
allow the user to specify how many instructions a pipeline stage can process
on any given cycle (stageWidth...i.e.bandwidth) by setting the parameter through
the python interface rather than compile the code after changing the *.cc file.
(we always had the parameter there, but still used the static 'ThePipeline::StageWidth'
instead)
-
Since StageWidth is now dynamically defined, change the interstage communication
structure to use a vector and get rid of array and array handling index (toNextStageIndex)
since we can just make calls to the list for the same information
|
|
Only execute (resolve) one branch per cycle because handling more than one is
a little more complicated
|
|
use skidbuffer as only location for instructions between stages. before,
we had the insts queue from the prior stage and the skidbuffer for the
current stage, but that gets confusing and this consolidation helps
when handling squash cases
|
|
manage insertion and deletion like a queue but will need
access to internal elements for future changes
Currently, skidbuffer manages any instruction that was
in a stage but could not complete processing, however
we will want to manage all blocked instructions (from prev stage
and from cur. stage) in just one buffer.
|
|
Previous code was marking CPU activity on almost every cycle due to a bug in
tracking the status of pipeline stages. This disables the CPU from sleeping
on long latency stalls and increases simulation time
|
|
--HG--
rename : src/sim/fault.hh => src/sim/fault_fwd.hh
|
|
|
|
This makes sure that the address ranges requested for caches and uncached ports
don't conflict with each other, and that accesses which are always uncached
(message signaled interrupts for instance) don't waste time passing through
caches.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The disk image to use was always being forced to a particular value. This
change changes what disk image is selected as the default based on the
architecture being built. In the future, a more sophisticated system might be
used that selected a path based on certain rules instead of relying on one off
file names.
|
|
Small L1 caches are connected to the TLB walkers when caches are used. This
allows them to participate in the coherence protocol properly.
|
|
Moving the definition of NoFault into fault.hh doesn't bring any new
dependencies with it, and allows some files to include just fault.hh which has
less baggage. NoFault will still be available to everything that includes
faults.hh because it includes fault.hh.
|
|
To use a non const pointer:
typedef RefCountingPtr<Foo> FooPtr;
To use a const pointer:
typedef RefCountingPtr<const Foo> ConstFooPtr;
|
|
|
|
Regex replacement of curTick with curTick() accidentally
changed checkpoint key string for serialization but not
for unserialization.
|
|
|
|
|
|
M5 skips over any simulated time where it doesn't have any work to do. When
the simulation is active, the time skipped is short and the work done at any
point in time is relatively substantial. If the time between events is long
and/or the work to do at each event is small, it's possible for simulated time
to pass faster than real time. When running a benchmark that can be good
because it means the simulation will finish sooner in real time. When
interacting with the real world through, for instance, a serial terminal or
bridge to a real network, this can be a problem. Human or network response time
could be greatly exagerated from the perspective of the simulation and make
simulated events happen "too soon" from an external perspective.
This change adds the capability to force the simulation to run no faster than
real time. It does so by scheduling a periodic event that checks to see if
its simulated period is shorter than its real period. If it is, it stalls the
simulation until they're equal. This is called time syncing.
A future change could add pseudo instructions which turn time syncing on and
off from within the simulation. That would allow time syncing to be used for
the interactive parts of a session but then turned off when running a
benchmark using the m5 utility program inside a script. Time syncing would
probably not happen anyway while running a benchmark because there would be
plenty of work for M5 to do, but the event overhead could be avoided.
|
|
|
|
|
|
Any change of control flow now resets the itstate to 0 mask and 0 condition,
except where the control flow alteration write into the cpsr register. These
case, for example return from an iterrupt, require the predecoder to recover
the itstate.
As there is a window of opportunity between the return from an interrupt
changing the control flow at the head of the pipe and the commit of the update
to the CPSR, the predecoder needs to be able to grab the ITstate early. This
is now handled by setting the forcedItState inside a PCstate for the control
flow altering instruction.
That instruction will have the correct mask/cond, but will not have a valid
itstate until advancePC is called (note this happens to advance the execution).
When the new PCstate is copy constructed it gets the itstate cond/mask, and
upon advancing the PC the itstate becomes valid.
Subsequent advancing invalidates the state and zeroes the cond/mask. This is
handled in isolation for the ARM ISA and should have no impact on other ISAs.
Refer arch/arm/types.hh and arch/arm/predecoder.cc for the details.
|
|
|
|
|
|
Without this change 0 is always used for the youngest sequence number if
a squash occured and the ROB was empty (E.g. an instruction is marked
serializeAfter or a fetch stall prevents other instructions from issuing).
Using 0 there is a race to rename where an instruction that committed the
same cycle as the squashing instruction can have it's renamed state undone
by the squash using sequence number 0.
|
|
I'm not positive this is the correct fix, but it's working right now.
Either we need to do something like this, prevent the misc reg from being renamed at all,
or there something else going on. We need to find the root cause as to why
this is only a problem sometimes.
|
|
This can abort simulations when the fetch unit runs ahead and speculatively
decodes instructions that are off the execution path.
|
|
|
|
The squash inside the fetch unit should not attempt to remove them from the
branch predictor as non-control instructions are not pushed into the predictor.
|
|
This patch prevents the prefetch being added to the instCommit queue twice.
|
|
|
|
|
|
When this condition occurs the cpu should restart the fetch stage to fetch from
the original execution path. Fault handling in the commit stage is cleaned up a
little bit so the control flow is simplier. Finally, if an instruction is being
used to carry a fault it isn't executed, so the fault propagates appropriately.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Use posix clock functions (and librt) if it is available.
Inline a bunch of functions and implement more operators.
* * *
time: more cleanup
|
|
The purpose of this patch is to change the way CacheMemory interfaces with
coherence protocols. Currently, whenever a cache controller (defined in the
protocol under consideration) needs to carry out any operation on a cache
block, it looks up the tag hash map and figures out whether or not the block
exists in the cache. In case it does exist, the operation is carried out
(which requires another lookup). As observed through profiling of different
protocols, multiple such lookups take place for a given cache block. It was
noted that the tag lookup takes anything from 10% to 20% of the simulation
time. In order to reduce this time, this patch is being posted.
I have to acknowledge that the many of the thoughts that went in to this
patch belong to Brad.
Changes to CacheMemory, TBETable and AbstractCacheEntry classes:
1. The lookup function belonging to CacheMemory class now returns a pointer
to a cache block entry, instead of a reference. The pointer is NULL in case
the block being looked up is not present in the cache. Similar change has
been carried out in the lookup function of the TBETable class.
2. Function for setting and getting access permission of a cache block have
been moved from CacheMemory class to AbstractCacheEntry class.
3. The allocate function in CacheMemory class now returns pointer to the
allocated cache entry.
Changes to SLICC:
1. Each action now has implicit variables - cache_entry and tbe. cache_entry,
if != NULL, must point to the cache entry for the address on which the action
is being carried out. Similarly, tbe should also point to the transaction
buffer entry of the address on which the action is being carried out.
2. If a cache entry or a transaction buffer entry is passed on as an
argument to a function, it is presumed that a pointer is being passed on.
3. The cache entry and the tbe pointers received __implicitly__ by the
actions, are passed __explicitly__ to the trigger function.
4. While performing an action, set/unset_cache_entry, set/unset_tbe are to
be used for setting / unsetting cache entry and tbe pointers respectively.
5. is_valid() and is_invalid() has been made available for testing whether
a given pointer 'is not NULL' and 'is NULL' respectively.
6. Local variables are now available, but they are assumed to be pointers
always.
7. It is now possible for an object of the derieved class to make calls to
a function defined in the interface.
8. An OOD token has been introduced in SLICC. It is same as the NULL token
used in C/C++. If you are wondering, OOD stands for Out Of Domain.
9. static_cast can now taken an optional parameter that asks for casting the
given variable to a pointer of the given type.
10. Functions can be annotated with 'return_by_pointer=yes' to return a
pointer.
11. StateMachine has two new variables, EntryType and TBEType. EntryType is
set to the type which inherits from 'AbstractCacheEntry'. There can only be
one such type in the machine. TBEType is set to the type for which 'TBE' is
used as the name.
All the protocols have been modified to conform with the new interface.
|
|
|
|
|
|
This patch updates the output for regression tests that are carried out on
MESI_CMP_directory protocol. The changes made to the protocol in order to
remove the bugs present result in regression failure for the 60.rubytest.
Since the earlier protocol was incorrect, so we certainly cannot relay on the
earlier reference output. Hence, the update.
|
|
The current implementation of MESI CMP directory protocol is broken.
This patch, from Arkaprava Basu, fixes the protocol.
|