Age | Commit message (Collapse) | Author |
|
This patch 'completes' .json config files generation by adding in the
SimObject references and String-valued parameters not currently
printed.
TickParamValues are also changed to print in the same tick-value
format as in .ini files.
This allows .json files to describe a system as fully as the .ini files
currently do.
This patch adds a new function config_value (which mirrors ini_str) to
each ParamValue and to SimObject. This function can then be explicitly
changed to give different .json and .ini printing behaviour rather than
being written in terms of ini_str.
|
|
This patch changes how faults are passed between methods in an attempt
to copy as few reference-counting pointer instances as possible. This
should avoid unecessary copies being created, contributing to the
increment/decrement of the reference counters.
|
|
Switch from a list to a data structure with better data layout.
|
|
A bit of revamping to get the CP annotate functionality to compile.
|
|
This patch changes two dynamic_cast to safe_cast as we assume the
return value is not NULL (without checking).
|
|
This patch ensures we adhere to the normal ostream usage rules, and
restore the flags after modifying them.
|
|
|
|
|
|
Simple fix to ensure we only iterate until we are done.
|
|
A small fix to ensure the return value is not ignored.
|
|
The changeset ad9c042dce54 made changes to the structures under the network
directory to use a map of buffers instead of vector of buffers.
The reasoning was that not all vnets that are created are used and we
needlessly allocate more buffers than required and then iterate over them
while processing network messages. But the move to map resulted in a slow
down which was pointed out by Andreas Hansson. This patch moves things
back to using vector of message buffers.
|
|
|
|
This patch fixes cases where uncacheable/memory type flags are not set
correctly on a memory op which is split in the LSQ. Without this
patch, request->request if freely used to check flags where the flags
should actually come from the accumulation of request fragment flags.
This patch also fixes a bug where an uncacheable access which passes
through tryToSendRequest more than once can increment
LSQ::numAccessesInMemorySystem more than once.
|
|
This patch closes a number of space gaps in debug messages caused by
the incorrect use of line continuation within strings. (There's also
one consistency change to a similar, but correct, use of line
continuation)
|
|
|
|
The ProbeListener base class automatically registers itself with a
probe manager. Currently, the class does not unregister a itself when
it is destroyed, which makes removing probes listeners somewhat
cumbersome. This patch adds an automatic call to
manager->removeListener in the ProbeListener destructor, which solves
the problem.
|
|
Parsing vectorparams from the command was slightly broken
in that it wouldn't accept the input that the help message
provided to the user and it didn't do the conversion
on the second code path used to convert the string input
to the actual internal representation. This patch fixes these bugs.
|
|
Some places in O3 always iterated over "Impl::MaxThreads" even if a CPU had
fewer threads. This removes a few of those instances.
|
|
Determine if a request has an associated virtual address.
|
|
Static analysis revealed that BaseGlobalEvent::barrier was never
deallocated. This changeset solves this leak by making the barrier
allocation a part of the BaseGlobalEvent instead of storing a pointer
to a separate heap-allocated barrier.
|
|
Static analysis unearther a bunch of uninitialised variables and
members, and this patch addresses the problem. In all cases these
omissions seem benign in the end, but at least fixing them means less
false positives next time round.
|
|
The PC platform has a single IO range that is used both legacy IO and PCI IO
while other platforms may use seperate regions. Provide another mechanism to
configure the legacy IO base address range and set it to the PCI IO address
range for x86.
|
|
|
|
Change the default kernel for AArch64 and since it supports PCI devices
remove the hack that made it use CF. Unfortunately, there isn't really
a half-way here and we need to switch. Current users will get an error
message that the kernel isn't found and hopefully go download a new
kernel that supports PCI.
|
|
This change adds support for a generic pci host bus driver that
has been included in recent Linux kernel instead of the more
bespoke one we've been using to date. It also works with
aarch64 so it provides PCI support for 64-bit ARM Linux.
To make this work a new configuration option pci_io_base is added
to the RealView platform that should be set to the start of
the memory used as memory mapped IO ports (IO ports that are
memory mapped, not regular memory mapped IO). And a parameter
pci_cfg_gen_offsets which specifies if the config space
offsets should be used that the generic driver expects.
To use the pci-host-generic device you need to:
pci_io_base = 0x2f000000 (Valid for VExpress EMM)
pci_cfg_gen_offsets = True
and add the following to your device tree:
pci {
compatible = "pci-host-ecam-generic";
device_type = "pci";
#address-cells = <0x3>;
#size-cells = <0x2>;
#interrupt-cells = <0x1>;
//bus-range = <0x0 0x1>;
// CPU_PHYSICAL(2) SIZE(2)
// Note, some DTS blobs only support 1 size
reg = <0x0 0x30000000 0x0 0x10000000>;
// IO (1), no bus address (2), cpu address (2), size (2)
// MMIO (1), at address (2), cpu address (2), size (2)
ranges = <0x01000000 0x0 0x00000000 0x0 0x2f000000 0x0 0x10000>,
<0x02000000 0x0 0x40000000 0x0 0x40000000 0x0 0x10000000>;
// With gem5 we typically use INTA/B/C/D one per device
interrupt-map = <0x0000 0x0 0x0 0x1 0x1 0x0 0x11 0x1
0x0000 0x0 0x0 0x2 0x1 0x0 0x12 0x1
0x0000 0x0 0x0 0x3 0x1 0x0 0x13 0x1
0x0000 0x0 0x0 0x4 0x1 0x0 0x14 0x1>;
// Only match INTA/B/C/D and not BDF
interrupt-map-mask = <0x0000 0x0 0x0 0x7>;
};
|
|
The new configuration scripts need the ability to splice
a simobject between a pair of ports that are already connected.
The primary use case is when a CommMonitor needs to be
created after the system is configured and then spliced between
the pair of ports it will monitor.
|
|
Updated the stat_config.ini files to reflect new structure.
Moved to a more generic stat naming scheme that can easily handle
multiple CPUs and L2s by letting the script replace pre-defined #
symbols to CPU or L2 ids.
Removed the previous per_switch_cpus sections. Still can be used by
spelling out the stat names if necessary. (Resuming from checkpoints
no longer use switch_cpus. Only fast-forwarding does.)
|
|
This eliminates some default devices and adds in helper functions
to connect the devices defined here to associate with the proper
clock domains.
|
|
This patch updates the stats to reflect the fixes and changes to the
CPU (mainly the o3), and the caches.
|
|
This patch changes the perlbmk regression script from the large to the
medium dataset to reduce the regression run time. For all ISAs and CPU
models, the total perlbmk host CPU time with the large dataset is
roughly 12 hours (constituting >30% of the total regression host
time). There is, most likely, almost no added value in terms of code
coverage for this rather excessive run time.
|
|
This patch avoids building the 'inorder' CPU model for any permutation
of ALPHA, and also removes the ALPHA regressions using the 'inorder'
CPU. The 'minor' CPU is already providing a broader test coverage.
|
|
This patch changes the random number generator from the in-house
Mersenne twister to an implementation relying entirely on C++11 STL.
The format for the checkpointing of the twister is simplified. As the
functionality was never used this should not matter. Note that this
patch does not actually make use of the checkpointing
functionality. As the random number generator is not thread safe, it
may be sensible to create one generator per thread, system, or even
object. Until this is decided the status quo is maintained in that no
generator state is part of the checkpoint.
|
|
This patch tidies up random number generation to ensure that it is
done consistently throughout the code base. In essence this involves a
clean-up of Ruby, and some code simplifications in the traffic
generator.
As part of this patch a bunch of skewed distributions (off-by-one etc)
have been fixed.
Note that a single global random number generator is used, and that
the object instantiation order will impact the behaviour (the sequence
of numbers will be unaffected, but if module A calles random before
module B then they would obviously see a different outcome). The
dependency on the instantiation order is true in any case due to the
execution-model of gem5, so we leave it as is. Also note that the
global ranom generator is not thread safe at this point.
Regressions using the memtest, TrafficGen or any Ruby tester are
affected and will be updated accordingly.
|
|
This patch removes unecessary retries that happened when the bus layer
itself was no longer busy, but the the peer was not yet ready. Instead
of sending a retry that will inevitably not succeed, the bus now
silenty waits until the peer sends a retry.
|
|
Multiple instructions assume only 32-bit load operations are available,
this patch increases load sizes to 64-bit or 128-bit for many load pair and
load multiple instructions.
|
|
Support full-block writes directly rather than requiring RMW:
* a cache line is allocated in the cache upon receipt of a
WriteInvalidateReq, not the WriteInvalidateResp.
* only top-level caches allocate the line; the others just pass
the request along and invalidate as necessary.
* to close a timing window between the *Req and the *Resp, a new
metadata bit tracks whether another cache has read a copy of
the new line before the writeback to memory.
|
|
This patch fixes a bug in the cache port where the retry flag was
reset too early, allowing new requests to arrive before the retry was
actually sent, but with the event already scheduled. This caused a
deadlock in the interactions with the O3 LSQ.
The patche fixes the underlying issue by shifting the resetting of the
flag to be done by the event that also calls sendRetry(). The patch
also tidies up the flow control in recvTimingReq and ensures that we
also check if we already have a retry outstanding.
|
|
Previously, they were treated so much like loads that they could stall
at the head of the ROB. Now they are always treated like L1 hits.
If they actually miss, a new request is created at the L1 and tracked
from the MSHRs there if necessary (i.e. if it didn't coalesce with
an existing outstanding load).
|
|
Put the packet type swizzling (that is currently done in a lot of places)
into a refineCommand() member function.
|
|
The o3 cpu relies upon instructions that suspend a thread context being
flagged as "IsQuiesce". If they are not, unpredictable behavior can occur.
This patch fixes that for the x86 ISA.
|
|
For X86, the o3 CPU would get stuck with the commit stage not being
drained if an interrupt arrived while drain was pending. isDrained()
makes sure that pcState.microPC() == 0, thus ensuring that we are at
an instruction boundary. However, when we take an interrupt we
execute:
pcState.upc(romMicroPC(entry));
pcState.nupc(romMicroPC(entry) + 1);
tc->pcState(pcState);
As a result, the MicroPC is no longer zero. This patch ensures the drain is
delayed until no interrupts are present. Once draining, non-synchronous
interrupts are deffered until after the switch.
|
|
Neon memory ops that operate on multiple registers currently have very poor
performance because of interleave/deinterleave micro-ops.
This patch marks the deinterleave/interleave micro-ops as "No_OpClass" such
that they take minumum cycles to execute and are never resource constrained.
Additionaly the micro-ops over-read registers. Although one form may need
to read up to 20 sources, not all do. This adds in new forms so false
dependencies are not modeled. Instructions read their minimum number of
sources.
|
|
Analogous to ee049bf (for x86). Requires a bump of the checkpoint version
and corresponding upgrader code to move the condition code register values
to the new register file.
|
|
This patch substituted the zero register for X31 used as a
destination register. This prevents false dependencies based on
X31.
|
|
This patch changes the CPU configuration used for the full-system ARM
regressions to increase the test coverage. Note that it is only the
core configuration, and not the caches etc.
|
|
A small bug in the bimodal predictor caused significant degradation in
performance on some benchmarks. This was caused by using the wrong
globalHistoryReg during the update phase. This patches fixes the bug
and brings the performance to normal level.
|
|
v7 cbz/cbnz instructions were improperly marked as indirect branches.
|
|
This patch fixes the load blocked/replay mechanism in the o3 cpu. Rather than
flushing the entire pipeline, this patch replays loads once the cache becomes
unblocked.
Additionally, deferred memory instructions (loads which had conflicting stores),
when replayed would not respect the number of functional units (only respected
issue width). This patch also corrects that.
Improvements over 20% have been observed on a microbenchmark designed to
exercise this behavior.
|
|
O3 is supposed to stop fetching instructions once a quiesce is encountered.
However due to a bug, it would continue fetching instructions from the current
fetch buffer. This is because of a break statment that only broke out of the
first of 2 nested loops. It should have broken out of both.
|
|
The o3 cpu could attempt to schedule inactive threads under round-robin SMT
mode.
This is because it maintained an independent priority list of threads from the
active thread list. This priority list could be come stale once threads were
inactive, leading to the cpu trying to fetch/commit from inactive threads.
Additionally the fetch queue is now forcibly flushed of instrctuctions
from the de-scheduled thread.
Relevant output:
24557000: system.cpu: [tid:1]: Calling deactivate thread.
24557000: system.cpu: [tid:1]: Removing from active threads list
24557500: system.cpu:
FullO3CPU: Ticking main, FullO3CPU.
24557500: system.cpu.fetch: Running stage.
24557500: system.cpu.fetch: Attempting to fetch from [tid:1]
|