Age | Commit message (Collapse) | Author |
|
Port PlatformConfig to use the common object list.
Change-Id: If62e596bf1f28b49994da3a2800450d163383755
Signed-off-by: Daniel R. Carvalho <odanrc@yahoo.com.br>
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/20593
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
Port MemConfig to use the common object list.
Change-Id: If421c2745ac3431718a5170314045b456fc64a90
Signed-off-by: Daniel R. Carvalho <odanrc@yahoo.com.br>
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/20592
Tested-by: kokoro <noreply+kokoro@google.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
Port HWPConfig to use the common object list.
Change-Id: I86db6b872808f754193dbf5814dd6c951c8f1980
Signed-off-by: Daniel R. Carvalho <odanrc@yahoo.com.br>
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/20591
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
Port BPConfig to use the common object list.
Change-Id: I5cbd1c67cf743778bc59b5aa3c3dea5ab397b66d
Signed-off-by: Daniel R. Carvalho <odanrc@yahoo.com.br>
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/20590
Tested-by: kokoro <noreply+kokoro@google.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
Factor out ObjectList functionality from CPUConfig.
Change-Id: I34ca55142e14559e584d38b6cca3aa5c20923521
Signed-off-by: Daniel R. Carvalho <odanrc@yahoo.com.br>
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/20589
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
Adding an option to enable DRAM low-power states. The low power
states can have a significant impact on application performance
(sim_ticks) on the order of 2-3x, especially for compute-gpu apps.
The options allows for it to easily be enabled/disabled to compare
performance numbers. The option is disabled by default.
Change-Id: Ib9bddbb792a1a6a4afb5339003472ff8f00a5859
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/18548
Reviewed-by: Wendy Elsasser <wendy.elsasser@arm.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
Change-Id: I9a855d36de7d95b7785ff8a897899037cea6a3d8
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/15320
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
This change introduces the concept of a faux-filesystem.
The faux-filesystem creates a directory structure in m5out
(or whatever output dir the user specifies) where system calls
may be redirected.
This is useful to avoid non-determinism when reading files
with varying path names (e.g., variations from run-to-run if
the simulation is scheduled on a cluster where paths may change).
Also, this changeset allows circumventing host pseudofiles which
have information specific to the host processor (such as cache
hierarchy or processor information). Bypassing host pseudofiles
can be useful when executing runtimes in the absence of an
operating system kernel since runtimes may try to query standard
files (i.e. /proc or /sys) which are not relevant to an
application executing in syscall emulation mode.
Change-Id: I90821b3b403168b904a662fa98b85def1628621c
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/12119
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
This patch adds three flag options to set the prefetcher class of the
L1i cache, L1d cache and L2 cache.
Change-Id: I310fcd9c49f9554d98cd565a32bdb96a3e165486
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/17709
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Tested-by: kokoro <noreply+kokoro@google.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
Use absoluate import paths to be Python 3 compatible. This also
imports absolute_import from __future__ to ensure that Python 2.7
behaves the same way as Python 3.
Change-Id: Ica06ed95814e9cd3e768b3e1785075e36f6e56d0
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/16708
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
Python 2.7 used to return lists for operations such as map and range,
this has changed in Python 3. To make the configs Python 3 compliant,
add explicit conversions from iterators to lists where needed, replace
xrange with range, and fix changes to exec syntax.
This change doesn't fix import paths since that might require us to
restructure the configs slightly.
Change-Id: Idcea8482b286779fc98b4e144ca8f54069c08024
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/16002
Reviewed-by: Gabe Black <gabeblack@google.com>
|
|
The option is now enabled if neither --bare-metal nor --dtb-filename are
given.
This is what fs_bigLITTLE.py already did before this patch.
Change-Id: I9179f8c9fa18edbd1e0f1a65ea2c1de0a26b7921
Reviewed-on: https://gem5-review.googlesource.com/c/15899
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
Added the parameter "--bp-type" to set the branch predictor type
Added the parameter "--list-bp-types" to list all the available branch
predictor types
Change-Id: Ia6aae90c784aef359b6d8233c8383cd7a871aca1
Signed-off-by: Pau Cabre <pau.cabre@metempsy.com>
Reviewed-on: https://gem5-review.googlesource.com/c/14015
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
The option allows to set SimObject params from the CLI.
The existing config scripts have a large number of options that simply set
a single SimObject parameter, and many still are not exposed.
This commit allows users to pass arbitrary parameters from the command
line to prevent the need for this kind of trivial option.
Change-Id: Ic4bd36948aca4998d2eaf6369c85d3668efa3944
Reviewed-on: https://gem5-review.googlesource.com/c/12985
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
The AtomicSimpleCPU used to be able to access memory directly to speed
up simulation if no caches are used. This is fine as long as no
switching between CPU models is required. In order to switch to a new
CPU model that requires caches, we currently need to checkpoint the
system and restore it into a new configuration. The new
'atomic_noncaching' memory mode provides a solution that avoids this
issue since caches are bypassed in this mode. This changeset removes
the old fastmem option from the AtomicSimpleCPU and introduces a new
CPU, NonCachingSimpleCPU, which derives from the AtomicSimpleCPU.
The NonCachingSimpleCPU uses the same mechanism as the AtomicSimpleCPU
used to use when accessing memory in when fastmem was enabled.
This changeset also introduces a new switcheroo test that tests
switching between a NonCachingSimpleCPU and a TimingSimpleCPU with
caches.
Change-Id: If01893f9b37528b14f530c11ce6f53c097582c21
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/12419
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
Equips the fs.py config routine with an extra commandline option
--generate-dtb that will generate a dtb file automatically before
running the simulation. Only works with ARM systems and gives a warning
if the simulated system is not of --machine-type VExpress_GEM5_V1.
Change-Id: I7766e5459fd9bec2245de83cef103091ebaf7229
Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/5968
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
Change-Id: I0c839bb649a5d2d73080b7e718da3c9b5839cf8c
Signed-off-by: Gedare Bloom <gedare@rtems.org>
Reviewed-on: https://gem5-review.googlesource.com/3264
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
This was added for backwards compatability, but it adds a decent amount
of complexity.
The table below shows what CPU class name to use in place of a given
alias.
+==========+========================================================+
| Alias | CPU class |
+==========+========================================================+
| timing | TimingSimpleCPU |
| atomic | AtomicSimpleCPU |
| minor | MinorCPU |
| detailed | DrivO3CPU |
| kvm | ArmKvmCPU, ArmV8KvmCPU or X86KvmCPU, depending on arch |
| trace | TraceCPU |
+==========+========================================================+
Change-Id: I251c4f64b7869c6b64dd25b36967ae240f01ef08
Reviewed-on: https://gem5-review.googlesource.com/2940
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
Names of DRAM configurations were updated to reflect both
the channel and device data width.
Previous naming format was:
<DEVICE_TYPE>_<DATA_RATE>_<CHANNEL_WIDTH>
The following nomenclature is now used:
<DEVICE_TYPE>_<DATA_RATE>_<n>x<w>
where n = The number of devices per rank on the channel
x = Device width
Total channel width can be calculated by n*w
Example:
A 64-bit DDR4, 2400 channel consisting of 4-bit devices:
n = 16
w = 4
The resulting configuration name is:
DDR4_2400_16x4
Updated scripts to match new naming convention.
Added unique configurations for DDR4 for:
1) 16x4
2) 8x8
3) 4x16
Change-Id: Ibd7f763b7248835c624309143cb9fc29d56a69d1
Reviewed-by: Radhika Jagtap <radhika.jagtap@arm.com>
Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>
|
|
This patch adds the ability for an application to request dist-gem5 to begin/
end synchronization using an m5 op. When toggling on sync, all nodes agree
on the next sync point based on the maximum of all nodes' ticks. CPUs are
suspended until the sync point to avoid sending network messages until sync has
been enabled. Toggling off sync acts like a global execution barrier, where
all CPUs are disabled until every node reaches the toggle off point. This
avoids tricky situations such as one node hitting a toggle off followed by a
toggle on before the other nodes hit the first toggle off.
|
|
This patch breaks out the most basic configuration options into a set
of base options, to allow them to be used also by scripts that do not
involve any ISA, and thus no actual CPUs or devices.
The patch also fixes a few modules so that they can be imported in a
NULL build, and avoid dragging in FSConfig every time Options is
imported.
|
|
dist-gem5 should not be restricted to FullSystem mode.
|
|
|
|
This patch adds changes to the configuration scripts to support elastic
tracing and replay.
The patch adds a command line option to enable elastic tracing in SE mode
and FS mode. When enabled the Elastic Trace cpu probe is attached to O3CPU
and a few O3 CPU parameters are tuned. The Elastic Trace probe writes out
both instruction fetch and data dependency traces. The patch also enables
configuring the TraceCPU to replay traces using the SE and FS script.
The replay run is designed to resume from checkpoint using atomic cpu to
restore state keeping it consistent with FS run flow. It then switches to
TraceCPU to replay the input traces.
|
|
Add support for automatically discover available platforms. The
Python-side uses functionality similar to what we use when
auto-detecting available CPU models. The machine IDs have been updated
to match the platform configurations. If there isn't a matching
machine ID, the configuration scripts default to -1 which Linux uses
for device tree only platforms.
|
|
Transaction Level Modeling (TLM2.0) is widely used in industry for creating
virtual platforms (IEEE 1666 SystemC). This patch contains a standard compliant
implementation of an external gem5 port, that enables the usage of gem5 as a
TLM initiator component in SystemC based virtual platforms. Both TLM coding
paradigms loosely timed (b_transport) and aproximately timed (nb_transport) are
supported.
Compared to the original patch a TLM memory manager was added. Furthermore, the
transaction object was removed and for each TLM payload a PacketPointer that
points to the original gem5 packet is added as an TLM extension. For event
handling single events are now created.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
|
|
Instead of maintaining two lists, rely entirely on the class
name. There is really no point in causing unecessary confusion.
|
|
This patch adds an example configuration in ext/sst/tests/ that allows
an SST/gem5 instance to simulate a 4-core AArch64 system with SST's
memHierarchy components providing all the caches and memories.
|
|
When using gem5 as a slave simulator, it will not advance the
clock on its own and depends on the master simulator calling
simulate(). This new option lets us use the Python scripts
to do all the configuration while stopping short of actually
simulating anything.
|
|
This patch enables users to speficy --os-type on the command
line. This option is used to take specific actions for an OS type,
such as changing the kernel command line. This patch is part of the
Android KitKat enablement.
|
|
In case /dev/sda1 is not actually the boot partition for an image,
we can override it on the command line or in a benchmark definition.
|
|
This patch gives the user direct influence over the number of DRAM
ranks to make it easier to tune the memory density without affecting
the bandwidth (previously the only means of scaling the device count
was through the number of channels).
The patch also adds some basic sanity checks to ensure that the number
of ranks is a power of two (since we rely on bit slices in the address
decoding).
|
|
This patch adds the --memchecker option, to denote that a MemChecker
should be instantiated for the system. The exact usage of the MemChecker
depends on the system configuration.
For now CacheConfig.py makes use of the option, adding MemCheckerMonitor
instances between CPUs and D-Caches.
Note, however, that currently this only provides limited checking on a
running system; other parts of the system, such as I/O devices are not
monitored, and may cause warnings to be issued by the monitor.
|
|
More documentation at http://gem5.org/Simpoints
Steps to profile, generate, and use SimPoints with gem5:
1. To profile workload and generate SimPoint BBV file, use the
following option:
--simpoint-profile --simpoint-interval <interval length>
Requires single Atomic CPU and fastmem.
<interval length> is in number of instructions.
2. Generate SimPoint analysis using SimPoint 3.2 from UCSD.
(SimPoint 3.2 not included with this flow.)
3. To take gem5 checkpoints based on SimPoint analysis, use the
following option:
--take-simpoint-checkpoint=<simpoint file path>,<weight file
path>,<interval length>,<warmup length>
<simpoint file> and <weight file> is generated by SimPoint analysis
tool from UCSD. SimPoint 3.2 format expected. <interval length> and
<warmup length> are in number of instructions.
4. To resume from gem5 SimPoint checkpoints, use the following option:
--restore-simpoint-checkpoint -r <N> --checkpoint-dir <simpoint
checkpoint path>
<N> is (SimPoint index + 1). E.g., "-r 1" will resume from SimPoint
#0.
|
|
Both options accept template which will, through python string formatting,
have "mem", "disk", and "script" values substituted in from the mdesc.
Additional values can be used on a case by case basis by passing them as
keyword arguments to the fillInCmdLine function. That makes it possible to
have specialized parameters for a particular ISA, for instance.
The first option lets you specify the template directly, and the other lets
you specify a file which has the template in it.
|
|
regressions.
This changes the default ARM system to a Versatile Express-like system that supports
2GB of memory and PCI devices and updates the default kernels/file-systems for
AArch64 ARM systems (64-bit) to support up to 32GB of memory and PCI devices. Some
platforms that are no longer supported have been pruned from the configuration files.
In addition a set of 64-bit ARM regressions have been added to the regression system.
|
|
Adds the parameter --num-work-ids to Options.py and reads the parameter
into the System params in Simulation.py. This parameter enables setting
the number of possible work items to different than 16. Support for this
parameter already exists in src/sim/System.py, so this changeset only
affects the Python config files.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
Make the default memory type DDR3-1600 x64, and use the open-adaptive
page policy. This change is aiming to ensure that users by default are
using a realistic memory system.
|
|
Note: AArch64 and AArch32 interworking is not supported. If you use an AArch64
kernel you are restricted to AArch64 user-mode binaries. This will be addressed
in a later patch.
Note: Virtualization is only supported in AArch32 mode. This will also be fixed
in a later patch.
Contributors:
Giacomo Gabrielli (TrustZone, LPAE, system-level AArch64, AArch64 NEON, validation)
Thomas Grocutt (AArch32 Virtualization, AArch64 FP, validation)
Mbou Eyole (AArch64 NEON, validation)
Ali Saidi (AArch64 Linux support, code integration, validation)
Edmund Grimley-Evans (AArch64 FP)
William Wang (AArch64 Linux support)
Rene De Jong (AArch64 Linux support, performance opt.)
Matt Horsnell (AArch64 MP, validation)
Matt Evans (device models, code integration, validation)
Chris Adeniyi-Jones (AArch64 syscall-emulation)
Prakash Ramrakhyani (validation)
Dam Sunwoo (validation)
Chander Sudanthi (validation)
Stephan Diestelhorst (validation)
Andreas Hansson (code integration, performance opt.)
Eric Van Hensbergen (performance opt.)
Gabe Black
|
|
This Python script generates an ARM DS-5 Streamline .apc project based
on gem5 run. To successfully convert, the gem5 runs needs to be run
with the context-switch-based stats dump option enabled (The guest
kernel also needs to be patched to allow gem5 interrogate its task
information.) See help for more information.
|
|
A couple of recent changesets added/deleted/edited some variables
that are needed for running the example ruby scripts. This changeset
edits these scripts to bring them to a working state.
|
|
This patch adds support for specifying multi-channel memory
configurations on the command line, e.g. 'se/fs.py
--mem-type=ddr3_1600_x64 --mem-channels=4'. To enable this, it
enhances the functionality of MemConfig and moves the existing
makeMultiChannel class method from SimpleDRAM to the support scripts.
The se/fs.py example scripts are updated to make use of the new
feature.
|
|
This patch adds the notion of voltage domains, and groups clock
domains that operate under the same voltage (i.e. power supply) into
domains. Each clock domain is required to be associated with a voltage
domain, and the latter requires the voltage to be explicitly set.
A voltage domain is an independently controllable voltage supply being
provided to section of the design. Thus, if you wish to perform
dynamic voltage scaling on a CPU, its clock domain should be
associated with a separate voltage domain.
The current implementation of the voltage domain does not take into
consideration cases where there are derived voltage domains running at
ratio of native voltage domains, as with the case where there can be
on-chip buck/boost (charge pumps) voltage regulation logic.
The regression and configuration scripts are updated with a generic
voltage domain for the system, and one for the CPUs.
|
|
This patch contains three fixes to max tick options handling in Options.py and
Simulation.py:
1) Since the global simulator frequency isn't bound until m5.instantiate()
is called, the maxtick resolution needs to happen after this call, since
changes to the global frequency will cause m5.simulate() to misinterpret the
maxtick value. Shuffling this also requires tweaking the checkpoint directory
handling to signal the checkpoint restore tick back to run(). Fixing this
completely and correctly will require storing the simulation frequency into
checkpoints, which is beyond the scope of this patch.
2) The maxtick option in Options.py was defaulted to MaxTicks, so the old code
would always skip over the maxtime part of the conditionals at the beginning
of run(). Change the maxtick default to None, and set the maxtick local
variable in run() appropriately.
3) To clarify whether max ticks settings are relative or absolute, split the
maxtick option into separate options, for relative and absolute. Ensure that
these two options and the maxtime option are handled appropriately to set the
maxtick variable in Simulation.py.
|
|
It also changes the instantiation of physmem in se.py so as to make
use of the memory size supplied by the mem_size option.
|
|
This patch changes the 'clock' option to 'ruby-clock' as it is only
used by Ruby.
|
|
This patch adds a 'sys_clock' command-line option and use it to assign
clocks to the system during instantiation.
As part of this change, the default clock in the System class is
removed and whenever a system is instantiated a system clock value
must be set. A default value is provided for the command-line option.
The configs and tests are updated accordingly.
|
|
This patch adds a 'cpu_clock' command-line option and uses the value
to assign clocks to components running at the CPU speed (L1 and L2
including the L2-bus). The configuration scripts are updated
accordingly.
The 'clock' option is left unchanged in this patch as it is still used
by a number of components. In follow-on patches the latter will be
disambiguated further.
|
|
The --restore-with-cpu option didn't use CpuConfig.cpu_names() to
determine which CPU names are valid, instead it used a static list of
known CPU names. This changeset makes the option parsing code use the
CPU list from the CpuConfig module instead.
|