summaryrefslogtreecommitdiff
path: root/configs/ruby
AgeCommit message (Collapse)Author
2014-10-11ruby: moesi hammer: correct typo in master-slave assignmentNilay Vaish
2014-09-01ruby: message buffers: significant changesNilay Vaish
This patch is the final patch in a series of patches. The aim of the series is to make ruby more configurable than it was. More specifically, the connections between controllers are not at all possible (unless one is ready to make significant changes to the coherence protocol). Moreover the buffers themselves are magically connected to the network inside the slicc code. These connections are not part of the configuration file. This patch makes changes so that these connections will now be made in the python configuration files associated with the protocols. This requires each state machine to expose the message buffers it uses for input and output. So, the patch makes these buffers configurable members of the machines. The patch drops the slicc code that usd to connect these buffers to the network. Now these buffers are exposed to the python configuration system as Master and Slave ports. In the configuration files, any master port can be connected any slave port. The file pyobject.cc has been modified to take care of allocating the actual message buffer. This is inline with how other port connections work.
2014-09-01ruby: Fixes clock domains in configuration filesEmilio Castillo ext:(%2C%20Nilay%20Vaish%20%3Cnilay%40cs.wisc.edu%3E)
This patch fixes scripts related to ruby by adding the ruby clock domain. Now the L1 controllers and the Sequencer shares the cpu clock domain, while the rest of the components use the ruby clock domain. Before this patch, running simulations with the cpu clock set at 2GHz or 1GHz will output the same time results and could distort power measurements. Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2014-04-19config: ruby: remove memory controller from network testNilay Vaish
It is not in use and not required as such.
2014-03-20ruby: garnet: convert network interfaces into clocked objectsNilay Vaish
This helps in configuring the network interfaces from the python script and these objects no longer rely on the network object for the timing information.
2014-03-20config: ruby: rename _cpu_ruby_ports to _cpu_portsNilay Vaish
2014-03-20config: remove ruby_fs.pyNilay Vaish
The patch removes the ruby_fs.py file. The functionality is being moved to fs.py. This would being ruby fs simulations in line with how ruby se simulations are started (using --ruby option). The alpha fs config functions are being combined for classing and ruby memory systems. This required renaming the piobus in ruby to iobus. So, we will have stats being renamed in the stats file for ruby fs regression.
2014-03-17config: ruby: remove piobus from protocolsNilay Vaish
This patch removes the piobus from the protocol config files. The ports are now connected to the piobus in the Ruby.py file.
2014-02-24ruby: correct errors in changeset 4eec7bdde5b0Nilay Vaish
Couple of errors were discovered in 4eec7bdde5b0 which necessitated this patch. Firstly, we create interrupt controllers in the se mode, but no piobus was being created. RubyPort, which earlier used to ignore range changes now forwards those to the piobus. The lack of piobus resulted in segmentation fault. This patch creates a piobus even in se mode. It is not created only when some tester is running. Secondly, I had missed out on modifying port connections for other coherence protocols.
2014-02-23ruby: route all packets through ruby portNilay Vaish
Currently, the interrupt controller in x86 is connected to the io bus directly. Therefore the packets between the io devices and the interrupt controller do not go through ruby. This patch changes ruby port so that these packets arrive at the ruby port first, which then routes them to their destination. Note that the patch does not make these packets go through the ruby network. That would happen in a subsequent patch.
2014-01-10ruby: move all statistics to stats.txt, eliminate ruby.statsNilay Vaish
2014-01-04ruby: add a three level MESI protocol.Nilay Vaish
The first two levels (L0, L1) are private to the core, the third level (L2)is possibly shared. The protocol supports clustered designs. For example, one can have two sets of two cores. Each core has an L0 and L1 cache. There are two L2 controllers where each set accesses only one of the L2 controllers.
2014-01-04ruby: rename MESI_CMP_directory to MESI_Two_LevelNilay Vaish
This is because the next patch introduces a three level hierarchy. --HG-- rename : build_opts/ALPHA_MESI_CMP_directory => build_opts/ALPHA_MESI_Two_Level rename : build_opts/X86_MESI_CMP_directory => build_opts/X86_MESI_Two_Level rename : configs/ruby/MESI_CMP_directory.py => configs/ruby/MESI_Two_Level.py rename : src/mem/protocol/MESI_CMP_directory-L1cache.sm => src/mem/protocol/MESI_Two_Level-L1cache.sm rename : src/mem/protocol/MESI_CMP_directory-L2cache.sm => src/mem/protocol/MESI_Two_Level-L2cache.sm rename : src/mem/protocol/MESI_CMP_directory-dir.sm => src/mem/protocol/MESI_Two_Level-dir.sm rename : src/mem/protocol/MESI_CMP_directory-dma.sm => src/mem/protocol/MESI_Two_Level-dma.sm rename : src/mem/protocol/MESI_CMP_directory-msg.sm => src/mem/protocol/MESI_Two_Level-msg.sm rename : src/mem/protocol/MESI_CMP_directory.slicc => src/mem/protocol/MESI_Two_Level.slicc rename : tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_CMP_directory/config.ini => tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_Two_Level/config.ini rename : tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_CMP_directory/ruby.stats => tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_Two_Level/ruby.stats rename : tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_CMP_directory/simerr => tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_Two_Level/simerr rename : tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_CMP_directory/simout => tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_Two_Level/simout rename : tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_CMP_directory/stats.txt => tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_Two_Level/stats.txt rename : tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_CMP_directory/system.pc.com_1.terminal => tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_Two_Level/system.pc.com_1.terminal rename : tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_CMP_directory/config.ini => tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_Two_Level/config.ini rename : tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_CMP_directory/ruby.stats => tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_Two_Level/ruby.stats rename : tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_CMP_directory/simerr => tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_Two_Level/simerr rename : tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_CMP_directory/simout => tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_Two_Level/simout rename : tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_CMP_directory/stats.txt => tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_Two_Level/stats.txt rename : tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_CMP_directory/config.ini => tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_Two_Level/config.ini rename : tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_CMP_directory/ruby.stats => tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_Two_Level/ruby.stats rename : tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_CMP_directory/simerr => tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_Two_Level/simerr rename : tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_CMP_directory/simout => tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_Two_Level/simout rename : tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_CMP_directory/stats.txt => tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_Two_Level/stats.txt rename : tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_CMP_directory/config.ini => tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_Two_Level/config.ini rename : tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_CMP_directory/ruby.stats => tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_Two_Level/ruby.stats rename : tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_CMP_directory/simerr => tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_Two_Level/simerr rename : tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_CMP_directory/simout => tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_Two_Level/simout rename : tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_CMP_directory/stats.txt => tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_Two_Level/stats.txt rename : tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_CMP_directory/config.ini => tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_Two_Level/config.ini rename : tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_CMP_directory/ruby.stats => tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_Two_Level/ruby.stats rename : tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_CMP_directory/simerr => tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_Two_Level/simerr rename : tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_CMP_directory/simout => tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_Two_Level/simout rename : tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_CMP_directory/stats.txt => tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_Two_Level/stats.txt
2014-01-04ruby: remove cntrl_id from python config scripts.Nilay Vaish
2014-01-04ruby: some small changesNilay Vaish
2013-12-20ruby: mesi: remove owner and sharer fields from directory tagsNilay Vaish
The directory controller should not have the sharer field since there is only one level 2 cache. Anyway the field was not in use. The owner field was being used to track the l2 cache version (in case of distributed l2) that has the cache block under consideration. The information is not required since the version of the level 2 cache can be obtained from a subset of the address bits.
2013-09-06ruby: network: correct naming of routersNilay Vaish
The routers are created before the network class. This results in the routers becoming children of the first link they are connected to and they get generic names like int_node and node_b. This patch creates the network object first and passes it to the topology creation function. Now the routers are children of the network object and names are much more sensible.
2013-08-20ruby: add option for number of transitions per cycleNilay Vaish
The number of transitions per cycle that a controller can carry out is a proxy for the number of ports that a controller has. This value is currently 32 which is way too high. The patch introduces an option for the number of ports and uses this option in the protocol files to set the number of transitions. The default value is being set to 4. None of the se regressions change. Ruby stats for the fs regression change and are being updated.
2013-08-19config: Move the memory instantiation outside FSConfigAndreas Hansson
This patch moves the instantiation of the memory controller outside FSConfig and instead relies on the mem_ranges to pass the information to the caller (e.g. fs.py or one of the regression scripts). The main motivation for this change is to expose the structural composition of the memory system and allow more tuning and configuration without adding a large number of options to the makeSystem functions. The patch updates the relevant example scripts to maintain the current functionality. As the order that ports are connected to the memory bus changes (in certain regresisons), some bus stats are shuffled around. For example, what used to be layer 0 is now layer 1. Going forward, options will be added to support the addition of multi-channel memory controllers.
2013-06-28ruby: check for compatibility between mem size and num dirsNilay Vaish
The configuration scripts provided for ruby assume that the available physical memory is equally distributed amongst the directory controllers. But there is no check to ensure this assumption has been adhered to. This patch adds the required check.
2013-06-27sim: Add the notion of clock domains to all ClockedObjectsAkash Bagdia
This patch adds the notion of source- and derived-clock domains to the ClockedObjects. As such, all clock information is moved to the clock domain, and the ClockedObjects are grouped into domains. The clock domains are either source domains, with a specific clock period, or derived domains that have a parent domain and a divider (potentially chained). For piece of logic that runs at a derived clock (a ratio of the clock its parent is running at) the necessary derived clock domain is created from its corresponding parent clock domain. For now, the derived clock domain only supports a divider, thus ensuring a lower speed compared to its parent. Multiplier functionality implies a PLL logic that has not been modelled yet (create a separate clock instead). The clock domains should be used as a mechanism to provide a controllable clock source that affects clock for every clocked object lying beneath it. The clock of the domain can (in a future patch) be controlled by a handler responsible for dynamic frequency scaling of the respective clock domains. All the config scripts have been retro-fitted with clock domains. For the System a default SrcClockDomain is created. For CPUs that run at a different speed than the system, there is a seperate clock domain created. This domain incorporates the CPU and the associated caches. As before, Ruby runs under its own clock domain. The clock period of all domains are pre-computed, such that no virtual functions or multiplications are needed when calling clockPeriod. Instead, the clock period is pre-computed when any changes occur. For this to be possible, each clock domain tracks its children.
2013-06-27config: Rename clock option to Ruby clockAkash Bagdia
This patch changes the 'clock' option to 'ruby-clock' as it is only used by Ruby.
2013-05-21ruby: moesi hammer: cosmetic changesNilay Vaish
Updates copyright years, removes space at the end of lines, shortens variable names.
2013-05-21ruby: mesi cmp directory: cosmetic changesNilay Vaish
Updates copyright years, removes space at the end of lines, shortens variable names.
2013-05-21ruby: moesi cmp token: cosmetic changesNilay Vaish
Updates copyright years, removes space at the end of lines, shortens variable names.
2013-05-21ruby: moesi cmp directory: cosmetic changesNilay Vaish
Updates copyright years, removes space at the end of lines, shortens variable names.
2013-05-21configs: ruby: pass the option use_map to directory controllerNilay Vaish
The option was not being passed to directory controllers for the protocols MOESI_CMP_token and MOESI_CMP_directory. This was resulting in an error while instantiating the directory controller as it tries to access the wrong type of memory.
2013-04-17config: ruby network test: remove piobus checkNilay Vaish
2013-03-22ruby: convert Topology to regular classNilay Vaish
The Topology class in Ruby does not need to inherit from SimObject class. This patch turns it into a regular class. The topology object is now created in the constructor of the Network class. All the parameters for the topology class have been moved to the network class.
2013-03-22ruby: network: move routers from topology to networkNilay Vaish
2013-03-06ruby: garnet: fixed: implement functional accessNilay Vaish
2013-01-14config: move ruby objects under ruby_system in obj hierarchyMalek Musleh
This patch moves the contollers to be children of the ruby_system instead of 'system' under the python object hierarchy. This is so that these objects can inherit some of the ruby_system's parameter values without resorting to calling a global system pointer during run-time. Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2012-12-11ruby: add support for prefetching to MESI protocolNilay Vaish
2012-10-27ruby: set the is_icache param for cachesMalek Musleh
This patch sets the is_icache param for the L1 caches used in the MESI and the MOESI CMP directory protocols.
2012-10-27Ruby: Use block size in configuring directory bits in addressJason Power ext:(%2C%20Joel%20Hestness%20%3Chestness%40cs.wisc.edu%3E)
This patch replaces hard coded values used in Ruby's configuration files for setting directory bits with values based on the block size in use.
2012-10-02ruby: changes to simple networkNilay Vaish
This patch makes the Switch structure inherit from BasicRouter, as is done in two other networks.
2012-09-19AddrRange: Simplify AddrRange params Python hierarchyAndreas Hansson
This patch simplifies the Range object hierarchy in preparation for an address range class that also allows striping (e.g. selecting a few bits as matching in addition to the range). To extend the AddrRange class to an AddrRegion, the first step is to simplify the hierarchy such that we can make it as lean as possible before adding the new functionality. The only class using Range and MetaRange is AddrRange, and the three classes are now collapsed into one.
2012-08-16Ruby: Add RubySystem parameter to MemoryControlJason Power
This guarantees that RubySystem object is created before the MemoryController object is created.
2012-08-10Ruby: Clean up topology changesJason Power
This patch moves instantiateTopology into Ruby.py and removes the mem/ruby/network/topologies directory. It also adds some extra inheritance to the topologies to clean up some issues in the existing topologies.
2012-07-10ruby: changes how Topologies are createdBrad Beckmann
Instead of just passing a list of controllers to the makeTopology function in src/mem/ruby/network/topologies/<Topo>.py we pass in a function pointer which knows how to make the topology, possibly with some extra state set in the configs/ruby/<protocol>.py file. Thus, we can move all of the files from network/topologies to configs/topologies. A new class BaseTopology is added which all topologies in configs/topologies must inheirit from and follow its API. --HG-- rename : src/mem/ruby/network/topologies/Crossbar.py => configs/topologies/Crossbar.py rename : src/mem/ruby/network/topologies/Mesh.py => configs/topologies/Mesh.py rename : src/mem/ruby/network/topologies/MeshDirCorners.py => configs/topologies/MeshDirCorners.py rename : src/mem/ruby/network/topologies/Pt2Pt.py => configs/topologies/Pt2Pt.py rename : src/mem/ruby/network/topologies/Torus.py => configs/topologies/Torus.py
2012-04-06ruby: set SimpleTiming as the default cpuBrad Beckmann
2012-04-06MEM: Enable multiple distributed generalized memoriesAndreas Hansson
This patch removes the assumption on having on single instance of PhysicalMemory, and enables a distributed memory where the individual memories in the system are each responsible for a single contiguous address range. All memories inherit from an AbstractMemory that encompasses the basic behaviuor of a random access memory, and provides untimed access methods. What was previously called PhysicalMemory is now SimpleMemory, and a subclass of AbstractMemory. All future types of memory controllers should inherit from AbstractMemory. To enable e.g. the atomic CPU and RubyPort to access the now distributed memory, the system has a wrapper class, called PhysicalMemory that is aware of all the memories in the system and their associated address ranges. This class thus acts as an infinitely-fast bus and performs address decoding for these "shortcut" accesses. Each memory can specify that it should not be part of the global address map (used e.g. by the functional memories by some testers). Moreover, each memory can be configured to be reported to the OS configuration table, useful for populating ATAG structures, and any potential ACPI tables. Checkpointing support currently assumes that all memories have the same size and organisation when creating and resuming from the checkpoint. A future patch will enable a more flexible re-organisation. --HG-- rename : src/mem/PhysicalMemory.py => src/mem/AbstractMemory.py rename : src/mem/PhysicalMemory.py => src/mem/SimpleMemory.py rename : src/mem/physical.cc => src/mem/abstract_mem.cc rename : src/mem/physical.hh => src/mem/abstract_mem.hh rename : src/mem/physical.cc => src/mem/simple_mem.cc rename : src/mem/physical.hh => src/mem/simple_mem.hh
2012-04-05Config: corrects the way Ruby attaches to the DMA portsNilay Vaish
With recent changes to the memory system, a port cannot be assigned a peer port twice. While making use of the Ruby memory system in FS mode, DMA ports were assigned peer twice, once for the classic memory system and once for the Ruby memory system. This patch removes this double assignment of peer ports.
2012-03-30Ruby: Remove the physMemPort and instead access memory directlyAndreas Hansson
This patch removes the physMemPort from the RubySequencer and instead uses the system pointer to access the physmem. The system already keeps track of the physmem and the valid memory address ranges, and with this patch we merely make use of that existing functionality. The memory is modified so that it is possible to call the access functions (atomic and functional) without going through the port, and the memory is allowed to be unconnected, i.e. have no ports (since Ruby does not attach it like the conventional memory system).
2012-02-14MEM: Fix master/slave ports in Ruby and non-regression scriptsAndreas Hansson
This patch brings the Ruby and other scripts up to date with the introduction of the master/slave ports.
2012-02-13MEM: Introduce the master/slave port roles in the Python classesAndreas Hansson
This patch classifies all ports in Python as either Master or Slave and enforces a binding of master to slave. Conceptually, a master (such as a CPU or DMA port) issues requests, and receives responses, and conversely, a slave (such as a memory or a PIO device) receives requests and sends back responses. Currently there is no differentiation between coherent and non-coherent masters and slaves. The classification as master/slave also involves splitting the dual role port of the bus into a master and slave port and updating all the system assembly scripts to use the appropriate port. Similarly, the interrupt devices have to have their int_port split into a master and slave port. The intdev and its children have minimal changes to facilitate the extra port. Note that this patch does not enforce any port typing in the C++ world, it merely ensures that the Python objects have a notion of the port roles and are connected in an appropriate manner. This check is carried when two ports are connected, e.g. bus.master = memory.port. The following patches will make use of the classifications and specialise the C++ ports into masters and slaves.
2012-01-30Merge with main repository.Gabe Black
2012-01-30Ruby: Connect system port in Ruby network testAndreas Hansson
This patch moves the connection of the system port to create_system in Ruby.py. Thereby it allows the failing Ruby test (and other Ruby systems) to run again.
2012-01-28SE/FS: Get rid of FULL_SYSTEM in the configs directoryGabe Black
2012-01-23Config: Enable using O3 CPU and Ruby in SE modeNilay Vaish