Age | Commit message (Collapse) | Author |
|
This patch ensures that both Garnet and the simple networks use the bw value
specified in the topology. To do so, the patch generalizes the specification
of bw for basic links. This value is then translated to the specific value
used by the simple and Garnet networks. Since Garent does not support
non-uniformed link bandwidth, the patch also adds a check to ensure all bws are
equal.
--HG--
rename : src/mem/ruby/network/BasicLink.cc => src/mem/ruby/network/simple/SimpleLink.cc
rename : src/mem/ruby/network/BasicLink.hh => src/mem/ruby/network/simple/SimpleLink.hh
rename : src/mem/ruby/network/BasicLink.py => src/mem/ruby/network/simple/SimpleLink.py
|
|
This patch converts links and switches from second class simobjects that were
virtually ignored by the networks (both simple and Garnet) to first class
simobjects that directly correspond to c++ ojbects manipulated by the
topology and network classes. This is especially true for Garnet, where the
links and switches directly correspond to specific C++ objects.
By making this change, many aspects of the Topology class were simplified.
--HG--
rename : src/mem/ruby/network/Network.cc => src/mem/ruby/network/BasicLink.cc
rename : src/mem/ruby/network/Network.hh => src/mem/ruby/network/BasicLink.hh
rename : src/mem/ruby/network/Network.cc => src/mem/ruby/network/garnet/fixed-pipeline/GarnetLink_d.cc
rename : src/mem/ruby/network/Network.hh => src/mem/ruby/network/garnet/fixed-pipeline/GarnetLink_d.hh
rename : src/mem/ruby/network/garnet/fixed-pipeline/GarnetNetwork_d.py => src/mem/ruby/network/garnet/fixed-pipeline/GarnetLink_d.py
rename : src/mem/ruby/network/garnet/fixed-pipeline/GarnetNetwork_d.py => src/mem/ruby/network/garnet/fixed-pipeline/GarnetRouter_d.py
rename : src/mem/ruby/network/Network.cc => src/mem/ruby/network/garnet/flexible-pipeline/GarnetLink.cc
rename : src/mem/ruby/network/Network.hh => src/mem/ruby/network/garnet/flexible-pipeline/GarnetLink.hh
rename : src/mem/ruby/network/garnet/fixed-pipeline/GarnetNetwork_d.py => src/mem/ruby/network/garnet/flexible-pipeline/GarnetLink.py
rename : src/mem/ruby/network/garnet/fixed-pipeline/GarnetNetwork_d.py => src/mem/ruby/network/garnet/flexible-pipeline/GarnetRouter.py
|
|
|
|
Frame buffer and boot linux:
./build/ARM_FS/m5.opt configs/example/fs.py --benchmark=ArmLinuxFrameBuf --kernel=vmlinux.touchkit
Linux from a CF card:
./build/ARM_FS/m5.opt configs/example/fs.py --benchmark=ArmLinuxCflash --kernel=vmlinux.touchkit
Run Android
./build/ARM_FS/m5.opt configs/example/fs.py --benchmark=ArmAndroid --kernel=vmlinux.android
Run MP
./build/ARM_FS/m5.opt configs/example/fs.py --benchmark=ArmLinuxCflash --kernel=vmlinux.mp-2.6.38
|
|
This patch moves the assignment of testsys.switch_cpus, testsys.switch_cpus_1,
switch_cpu_list, and switch_cpu_list1 outside of the for loop so they are
assigned only once, after switch_cpus and switch_cpus_1 are constructed.
|
|
|
|
|
|
|
|
The tester code is in testers/networktest.
The tester can be invoked by configs/example/ruby_network_test.py.
A dummy coherence protocol called Network_test is also addded for network-only simulations and testing. The protocol takes in messages from the tester and just pushes them into the network in the appropriate vnet, without storing any state.
|
|
|
|
|
|
Now, instead of --bench benchname, you can do --bench bench1-bench2-bench3 and it will
set up a simulation that instantiates those three workloads. Only caveat is that now,
for sanity checking, your -n X must match the number of benches in the list.
|
|
|
|
non-cache.
This change fixes the problem for all the cases we actively use. If you want to try
more creative I/O device attachments (E.g. sharing an L2), this won't work. You
would need another level of caching between the I/O device and the cache
(which you actually need anyway with our current code to make sure writes
propagate). This is required so that you can mark the cache in between as
top level and it won't try to send ownership of a block to the I/O device.
Asserts have been added that should catch any issues.
|
|
env was being implicitly imported into Benchmarks.py through SysPaths.py.
This change brings it in explicitly in the file where it's used.
|
|
makeArmSystem creates both bare-metal and Linux systems more cleanly.
machine_type was never optional though listed as an optional argument; a system
such as "RealView_PBX" must now be explicitly specified. Now that it is a
required argument, the placement of the arguments has changed slightly
requiring some changes to calls that create ARM systems.
|
|
|
|
It's confusing (especially to new users), when you are setting some standard
parameters (as defined in Options.py) and they aren't reflected in the simulations
so we might as well link the settings in CacheConfig.py to those in Options.py
|
|
|
|
|
|
|
|
This way things that don't care about work count options and/or aren't called
by something that has those command line options set up doesn't have to build
a fake object to carry in inert values.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This makes sure that the address ranges requested for caches and uncached ports
don't conflict with each other, and that accesses which are always uncached
(message signaled interrupts for instance) don't waste time passing through
caches.
|
|
The disk image to use was always being forced to a particular value. This
change changes what disk image is selected as the default based on the
architecture being built. In the future, a more sophisticated system might be
used that selected a path based on certain rules instead of relying on one off
file names.
|
|
Small L1 caches are connected to the TLB walkers when caches are used. This
allows them to participate in the coherence protocol properly.
|
|
M5 skips over any simulated time where it doesn't have any work to do. When
the simulation is active, the time skipped is short and the work done at any
point in time is relatively substantial. If the time between events is long
and/or the work to do at each event is small, it's possible for simulated time
to pass faster than real time. When running a benchmark that can be good
because it means the simulation will finish sooner in real time. When
interacting with the real world through, for instance, a serial terminal or
bridge to a real network, this can be a problem. Human or network response time
could be greatly exagerated from the perspective of the simulation and make
simulated events happen "too soon" from an external perspective.
This change adds the capability to force the simulation to run no faster than
real time. It does so by scheduling a periodic event that checks to see if
its simulated period is shorter than its real period. If it is, it stalls the
simulation until they're equal. This is called time syncing.
A future change could add pseudo instructions which turn time syncing on and
off from within the simulation. That would allow time syncing to be used for
the interactive parts of a session but then turned off when running a
benchmark using the m5 utility program inside a script. Time syncing would
probably not happen anyway while running a benchmark because there would be
plenty of work for M5 to do, but the event overhead could be avoided.
|
|
Get rid of the Debug class
Get rid of ASSERT and use assert
Use DPRINTFR for ProtocolTrace
|
|
This patch adds an option to the script Ruby.py for setting the parameter
m_random_seed used for randomizing delays in the memory system. The option
can be specified as "--random_seed <seed value>".
|
|
|
|
Most of the messages in the config scripts that report a time value already
print "@ tick" followed by the current tick value, but a few were printing
"@ cycle". Since this is a distinction that's frequently confusing to new
users, this changes those message to the more accurate and consistent "@ tick".
|
|
|
|
Physmem has a parameter to be able to mem map a file, however
it isn't actually used. This changeset utilizes the parameter
so a file can be mmapped.
|
|
This parameter is no longer used, and trying to set it like these scripts were
gives a simobject two parents and causes the simulation to die.
|
|
|
|
|
|
|
|
Use the actual fanouts in the tree specification to scale
cache associativity and mshrs instead of dumb constants.
|
|
|
|
Since ruby only works in timing mode, explicitly requiring the timing cmd line
param to be specified is not necessary.
|
|
|
|
This patch moves the testers to a new subdirectory under src/cpu and includes
the necessary fixes to work with latest m5 initialization patches.
--HG--
rename : configs/example/determ_test.py => configs/example/ruby_direct_test.py
rename : src/cpu/directedtest/DirectedGenerator.cc => src/cpu/testers/directedtest/DirectedGenerator.cc
rename : src/cpu/directedtest/DirectedGenerator.hh => src/cpu/testers/directedtest/DirectedGenerator.hh
rename : src/cpu/directedtest/InvalidateGenerator.cc => src/cpu/testers/directedtest/InvalidateGenerator.cc
rename : src/cpu/directedtest/InvalidateGenerator.hh => src/cpu/testers/directedtest/InvalidateGenerator.hh
rename : src/cpu/directedtest/RubyDirectedTester.cc => src/cpu/testers/directedtest/RubyDirectedTester.cc
rename : src/cpu/directedtest/RubyDirectedTester.hh => src/cpu/testers/directedtest/RubyDirectedTester.hh
rename : src/cpu/directedtest/RubyDirectedTester.py => src/cpu/testers/directedtest/RubyDirectedTester.py
rename : src/cpu/directedtest/SConscript => src/cpu/testers/directedtest/SConscript
rename : src/cpu/directedtest/SeriesRequestGenerator.cc => src/cpu/testers/directedtest/SeriesRequestGenerator.cc
rename : src/cpu/directedtest/SeriesRequestGenerator.hh => src/cpu/testers/directedtest/SeriesRequestGenerator.hh
rename : src/cpu/memtest/MemTest.py => src/cpu/testers/memtest/MemTest.py
rename : src/cpu/memtest/SConscript => src/cpu/testers/memtest/SConscript
rename : src/cpu/memtest/memtest.cc => src/cpu/testers/memtest/memtest.cc
rename : src/cpu/memtest/memtest.hh => src/cpu/testers/memtest/memtest.hh
rename : src/cpu/rubytest/Check.cc => src/cpu/testers/rubytest/Check.cc
rename : src/cpu/rubytest/Check.hh => src/cpu/testers/rubytest/Check.hh
rename : src/cpu/rubytest/CheckTable.cc => src/cpu/testers/rubytest/CheckTable.cc
rename : src/cpu/rubytest/CheckTable.hh => src/cpu/testers/rubytest/CheckTable.hh
rename : src/cpu/rubytest/RubyTester.cc => src/cpu/testers/rubytest/RubyTester.cc
rename : src/cpu/rubytest/RubyTester.hh => src/cpu/testers/rubytest/RubyTester.hh
rename : src/cpu/rubytest/RubyTester.py => src/cpu/testers/rubytest/RubyTester.py
rename : src/cpu/rubytest/SConscript => src/cpu/testers/rubytest/SConscript
|
|
|
|
Patch allows each individual message buffer to have different recycle latencies
and allows the overall recycle latency to be specified at the cmd line. The
patch also adds profiling info to make sure no one processor's requests are
recycled too much.
|
|
|