Age | Commit message (Collapse) | Author |
|
Meant to add these with the previous batch of csets.
|
|
The separate restoreCheckpoint() call is gone; just pass
the checkpoint dir as an optional arg to instantiate().
This change is a precursor to some more extensive
reworking of the startup code.
|
|
Small change to clean up some redundant code.
Should not have any functional impact.
|
|
Enforce that the Python Root SimObject is instantiated only
once. The C++ Root object already panics if more than one is
created. This change avoids the need to track what the root
object is, since it's available from Root.getInstance() (if it
exists). It's now redundant to have the user pass the root
object to functions like instantiate(), checkpoint(), and
restoreCheckpoint(), so that arg is gone. Users who use
configs/common/Simulate.py should not notice.
|
|
|
|
See comments in util/checkpoint-tester.py for details.
|
|
|
|
|
|
--HG--
rename : configs/ruby/MESI_CMP_directory.py => configs/ruby/protocols/MESI_CMP_directory.py
rename : configs/ruby/MI_example.py => configs/ruby/protocols/MI_example.py
rename : configs/ruby/MOESI_CMP_directory.py => configs/ruby/protocols/MOESI_CMP_directory.py
rename : configs/ruby/MOESI_CMP_token.py => configs/ruby/protocols/MOESI_CMP_token.py
rename : configs/ruby/MOESI_hammer.py => configs/ruby/protocols/MOESI_hammer.py
rename : configs/ruby/networks/MeshDirCorners.py => src/mem/ruby/network/topologies/MeshDirCorners.py
|
|
|
|
|
|
The patch includes direct support for the MI example protocol.
|
|
|
|
|
|
Now ruby_fs creates physical memory of the right size.
|
|
The patch creates a specific mesh network where directories are at the corners.
The patch is a good example of how to create an arbitrary network, similar to
the old file specified network, while leveraging scripts and loops when
possible.
|
|
|
|
Most of these frontend configurations share cache configuration code, pull it out so that
changes to caches don't have to require changing multiple config files.
|
|
On the config end, if a shared L2 is created for the system, it is
parameterized to have n sharers as defined by option.num_cpus. In addition to
making the cache sharing aware so that discriminating tag policies can make use
of context_ids to make decisions, I added an occupancy AverageStat and an occ %
stat to each cache so that you could know which contexts are occupying how much
cache on average, both in terms of blocks and percentage. Note that since
devices have context_id -1, having an array of occ stats that correspond to
each context_id will break here, so in FS mode I add an extra bucket for device
blocks. This bucket is explicitly not added in SE mode in order to not only
avoid ugliness in the stats.txt file, but to avoid broken stats (some formulas
break when a bucket is 0).
|
|
|
|
Based on Steve's suggestion, the ugly if-elif statement and multiple protocol
module import calls are removed and replaced with exec statements using the
protocol string.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ruby's memory is now sized according to the size of M5 physical memory.
|
|
Converted both ruby caches and directory memory to use the M5 MemorySize python
type.
|
|
|
|
Cleaned up the ruby profilers by moving the memory controller profiling code
out of the main profiler object and into a separate object similar to the
current CacheProfiler. Both the CacheProfiler and MemCntrlProfiler are
specific to a particular Ruby object, CacheMemory and MemoryControl
respectively. Therefore, these profilers should not be SimObjects and
created by the python configuration system, but instead private objects. This
simplifies the creation of these profilers.
|
|
removed the static function RubySystem::getNumberOfSequencers and replaced
it with a python config variable
|
|
|
|
Reorganized ruby python configuration so that protocol and ruby memory system
configuration code can be shared by multiple front-end configuration files
(i.e. memory tester, full system, and hopefully the regression tester). This
code works for memory tester, but have not tested fs mode.
|
|
This patch includes a rather substantial change to the memory controller
profiler in order to work with the new configuration system. Most
noteably, the mem_cntrl_profiler no longer uses a string map, but instead
a vector. Eventually this support should be removed from the main
profiler and go into a separate object. Each memory controller should have
a pointer to that new mem_cntrl profile object.
|
|
|
|
|
|
As a first step to migrate ruby to the M5 eventqueue, added a clock
variable to the ruby system.
|
|
This patch includes the necessary changes to connect ruby objects using
the python configuration system. Mainly it consists of removing
unnecessary ruby object pointers and connecting the necessary object
pointers using the generated param objects. This patch includes the
slicc changes necessary to connect generated ruby objects together using
the python configuraiton system.
|
|
|
|
rather than in RubySystem object.
|
|
|
|
The necessary companion conversion of Ruby objects generated by SLICC
are converted to M5 SimObjects in the following patch, so this patch
alone does not compile.
Conversion of Garnet network models is also handled in a separate
patch; that code is temporarily disabled from compiling to allow
testing of interim code.
|
|
|
|
|
|
|
|
|
|
Slightly improved the major hack need to correctly assign the number of ports
per core. CPUs have two ports: icache + dcache. MemTester has one port.
|
|
Connects M5 cpu and dma ports directly to ruby sequencers and dma
sequencers. Rubymem also includes a pio port so that pio requests
and be forwarded to a special pio bus connecting to device pio
ports.
|