Age | Commit message (Collapse) | Author |
|
This patch takes quite a large step in transitioning from the ad-hoc
RefCountingPtr to the c++11 shared_ptr by adopting its use for all
Faults. There are no changes in behaviour, and the code modifications
are mostly just replacing "new" with "make_shared".
|
|
This patch adds a check to the quiesce operation to ensure that the
CPU does not suspend itself when there are unmasked interrupts
pending. Without this patch there are corner cases when the CPU gets
an interrupt before the quiesce is executed and then never wakes up
again.
|
|
This patch makes the code compile with clang 2.9 and 3.0 again by
making two very minor changes. Firt, it maintains a strict typing in
the forward declaration of the BaseCPUParams. Second, it adds a
FullSystemInt flag of the type unsigned int next to the boolean
FullSystem flag. The FullSystemInt variable can be used in
decode-statements (expands to switch statements) in the instruction
decoder.
|
|
|
|
|
|
By using an underscore, the "." is still available and can unambiguously be
used to refer to members of a structure if an operand is a structure, class,
etc. This change mostly just replaces the appropriate "."s with "_"s, but
there were also a few places where the ISA descriptions where handling the
extensions themselves and had their own regular expressions to update. The
regular expressions in the isa parser were updated as well. It also now
looks for one of the defined type extensions specifically after connecting "_"
where before it would look for any sequence of characters after a "."
following an operand name and try to use it as the extension. This helps to
disambiguate cases where a "_" may legitimately be part of an operand name but
not separate the name from the type suffix.
Because leaving the "_" and suffix on the variable name still leaves a valid
C++ identifier and all extensions need to be consistent in a given context, I
considered leaving them on as a breadcrumb that would show what the intended
type was for that operand. Unfortunately the operands can be referred to in
code templates, the Mem operand in particular, and since the exact type of Mem
can be different for different uses of the same template, that broke things.
|
|
The remaining ones are more complicated and may require adjustments in other
parts of the simulator.
|
|
|
|
|
|
change hwrei back to being a non-control instruction so O3-FS mode will work
add squash in inorder that will catch a hwrei (or any other genric instruction)
that isnt a control inst but changes the PC. Additional testing still needs to be done
for inorder-FS mode but this change will free O3 development back up in the interim
|
|
this always changes the PC and is basically an impromptu branch instruction. why
not speculate on this instead of always be forced to mispredict/squash after the
hwrei gets resolved?
The InOrder model needs this marked as "isControl" so it knows to update the PC
after the ALU executes it. If this isnt marked as control, then it's going to
force the model to check the PC of every instruction at commit (what O3 does?),
and that would be a wasteful check for a very high percentage of instructions.
|
|
This step makes it easy to replace the accessor functions
(which still access a global variable) with ones that access
per-thread curTick values.
|
|
|
|
|
|
This change modifies the way prefetches work. They are now like normal loads
that don't writeback a register. Previously prefetches were supposed to call
prefetch() on the exection context, so they executed with execute() methods
instead of initiateAcc() completeAcc(). The prefetch() methods for all the CPUs
are blank, meaning that they get executed, but don't actually do anything.
On Alpha dead cache copy code was removed and prefetches are now normal ops.
They count as executed operations, but still don't do anything and IsMemRef is
not longer set on them.
On ARM IsDataPrefetch or IsInstructionPreftech is now set on all prefetch
instructions. The timing simple CPU doesn't try to do anything special for
prefetches now and they execute with the normal memory code path.
|
|
This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.
PC type:
Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.
These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.
Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.
Advancing the PC:
The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.
One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.
Variable length instructions:
To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.
ISA parser:
To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.
Return address stack:
The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.
Change in stats:
There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.
TODO:
Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.
|
|
|
|
|
|
|
|
|
|
|
|
It's instantaneous and so it's somewhat bogus, but it's a first step.
|
|
|
|
This instruction basically returns the number of nanoseconds that the CPU
has been running.
|
|
Removing hwrei causes
the instruction after the hwrei to be fetched before the ITB/DTB_CM register is updated in a call pal
call sys and thus the translation fails because the user is attempting to access a super page address.
Minimally, it seems as though some sort of fetch stall or refetch after a hwrei is required. I think
this works currently because the hwrei uses the exec context interface, and the o3 stalls when that occurs.
Additionally, these changes don't update the LOCK register and probably break ll/sc. Both o3 changes were
removed since a great deal of manual patching would be required to only remove the hwrei change.
|
|
|
|
|
|
|
|
- insert warnings for deprecated m5ops
- reserve opcodes for Ali's stuff
- remove code for stuff that has been deprecated forever
- simplify m5op_alpha
|
|
--HG--
extra : convert_revision : 1d0b3afdd8254f5b2fb4bbff1fa4a0536f78bb06
|
|
into zamp.eecs.umich.edu:/z/ktlim2/clean/tmp/clean2
src/cpu/base_dyn_inst.hh:
Hand merge. Line is no longer needed because it's handled in the ISA.
--HG--
extra : convert_revision : 0be4067aa38759a5631c6940f0167d48fde2b680
|
|
out-of-order interactions in the 21264.
--HG--
extra : convert_revision : d83940af7d0e8efe891d574ac42c6d70d179e2b1
|
|
--HG--
extra : convert_revision : f799b65f1b2a6bf43605e6870b0f39b473dc492b
|
|
util/m5/Makefile.alpha:
Clean up to make it a bit easier to muck with
util/m5/Makefile.alpha:
Make the makefile more reasonable
util/m5/Makefile.alpha:
Remove authors from copyright.
util/m5/Makefile.alpha:
Updated Authors from bk prs info
util/m5/Makefile.alpha:
bk cp Makefile Makefile.alpha
src/arch/sparc/tlb.cc:
Clean up the cache code a little bit and make sure the uncacbale bit is set when appropriate
src/arch/alpha/isa/decoder.isa:
src/sim/pseudo_inst.cc:
src/sim/pseudo_inst.hh:
Rename AlphaPseudo -> PseudoInst since it's all generic
src/arch/sparc/isa/bitfields.isa:
src/arch/sparc/isa/decoder.isa:
src/arch/sparc/isa/includes.isa:
src/arch/sparc/isa/operands.isa:
Add support for pseudo instructions in sparc
util/m5/Makefile.alpha:
util/m5/Makefile.sparc:
split off alpha make file and sparc make file for m5 app
util/m5/m5.c:
ivle and ivlb aren't used anymore
util/m5/m5op.h:
stdint seems like a more generic better fit here
util/m5/m5op_alpha.S:
move the op ids into their own header file since we can share them between sparc and alpha
--HG--
rename : util/m5/Makefile => util/m5/Makefile.sparc
rename : util/m5/m5op.S => util/m5/m5op_alpha.S
extra : convert_revision : 490ba2e8b8bc6e28bfc009cedec6b686b28e7834
|
|
function into Alpha ISA description. write now just generically
returns a result value if the res pointer is non-null (which means
we can only provide a res pointer if we expect a valid result
value).
--HG--
extra : convert_revision : fb1c315515787f5fbbf7d1af7e428bdbfe8148b8
|
|
--HG--
extra : convert_revision : 383b72c130b20f3d7cde4e08fa36a481f3c0bf7c
|
|
--HG--
extra : convert_revision : c3c2dd5a6e7181ad94194146d7fa2b33b21074fb
|
|
--HG--
extra : convert_revision : 84e25abd4bb2de0c877c883804d39feb019c7030
|
|
file functions to not take faults
--HG--
extra : convert_revision : 1cef0734462ee2e4db12482462c2ab3c134d3675
|
|
--HG--
extra : convert_revision : 8328d002780c0291e7eb264076a62084de88b7a5
|
|
--HG--
extra : convert_revision : f5693e96d376254f777fb0cce7b5be3d36efbea9
|
|
--HG--
extra : convert_revision : ad7058babf2a13bfe543e05f2662dc49a18a8b8b
|
|
--HG--
extra : convert_revision : 9ca241bb71d8a1d022e54485383a88d2abece663
|
|
corresponding to an IPR is readable or writable.
--HG--
extra : convert_revision : 89eebba5eec01e629213997d24c734a6acad0ecb
|
|
--HG--
extra : convert_revision : 5a444e635d20bcca445a10e43592b6c10d25e879
|
|
the miscreg index of a specific IPR.
--HG--
extra : convert_revision : dd235261e7086d6667b1b2bdc4a81b2573e21d53
|
|
functions.
--HG--
extra : convert_revision : e0d12a150b01d05de9bc02bcbc7c22797975a5b9
|
|
1) return the periodicity of checkpoints back into the code (i.e. make m5 checkpoint n m meaningful again).
2) to do this, i had to much around with being able to repeatedly schedule and SimLoopExitEvent, which led to changes in how exit simloop events are handled to make this easier.
src/arch/alpha/isa/decoder.isa:
src/mem/cache/cache_impl.hh:
modify arg. order for new calling convention of exitSimLoop.
src/cpu/base.cc:
src/sim/main.cc:
src/sim/pseudo_inst.cc:
src/sim/root.cc:
now, instead of creating a new SimLoopExitEvent, call a wrapper schedExitSimLoop which handles all the default args.
src/sim/sim_events.cc:
src/sim/sim_events.hh:
src/sim/sim_exit.hh:
add the periodicity of checkpointing back into the code.
to facilitate this, there are now two wrappers (instead of just overloading exitSimLoop). exitSimLoop is only for exiting NOW (i.e. at curTick), while schedExitSimLoop schedules and exit event for the future.
--HG--
extra : convert_revision : c61f4bf05517172edd2c83368fd10bb0f0678029
|
|
into zamp.eecs.umich.edu:/z/ktlim2/clean/o3-merge/newmem
configs/boot/micro_memlat.rcS:
configs/boot/micro_tlblat.rcS:
src/arch/alpha/ev5.cc:
src/arch/alpha/isa/decoder.isa:
src/arch/alpha/isa_traits.hh:
src/cpu/base.cc:
src/cpu/base.hh:
src/cpu/base_dyn_inst.hh:
src/cpu/checker/cpu.hh:
src/cpu/checker/cpu_impl.hh:
src/cpu/o3/alpha/cpu_impl.hh:
src/cpu/o3/alpha/params.hh:
src/cpu/o3/checker_builder.cc:
src/cpu/o3/commit_impl.hh:
src/cpu/o3/cpu.cc:
src/cpu/o3/decode_impl.hh:
src/cpu/o3/fetch_impl.hh:
src/cpu/o3/iew.hh:
src/cpu/o3/iew_impl.hh:
src/cpu/o3/inst_queue.hh:
src/cpu/o3/lsq.hh:
src/cpu/o3/lsq_impl.hh:
src/cpu/o3/lsq_unit.hh:
src/cpu/o3/lsq_unit_impl.hh:
src/cpu/o3/regfile.hh:
src/cpu/o3/rename_impl.hh:
src/cpu/o3/thread_state.hh:
src/cpu/ozone/checker_builder.cc:
src/cpu/ozone/cpu.hh:
src/cpu/ozone/cpu_impl.hh:
src/cpu/ozone/front_end.hh:
src/cpu/ozone/front_end_impl.hh:
src/cpu/ozone/lw_back_end.hh:
src/cpu/ozone/lw_back_end_impl.hh:
src/cpu/ozone/lw_lsq.hh:
src/cpu/ozone/lw_lsq_impl.hh:
src/cpu/ozone/thread_state.hh:
src/cpu/simple/base.cc:
src/cpu/simple_thread.cc:
src/cpu/simple_thread.hh:
src/cpu/thread_state.hh:
src/dev/ide_disk.cc:
src/python/m5/objects/O3CPU.py:
src/python/m5/objects/Root.py:
src/python/m5/objects/System.py:
src/sim/pseudo_inst.cc:
src/sim/pseudo_inst.hh:
src/sim/system.hh:
util/m5/m5.c:
Hand merge.
--HG--
rename : arch/alpha/ev5.cc => src/arch/alpha/ev5.cc
rename : arch/alpha/freebsd/system.cc => src/arch/alpha/freebsd/system.cc
rename : arch/alpha/isa/decoder.isa => src/arch/alpha/isa/decoder.isa
rename : arch/alpha/isa/mem.isa => src/arch/alpha/isa/mem.isa
rename : arch/alpha/isa_traits.hh => src/arch/alpha/isa_traits.hh
rename : arch/alpha/linux/system.cc => src/arch/alpha/linux/system.cc
rename : arch/alpha/system.cc => src/arch/alpha/system.cc
rename : arch/alpha/tru64/system.cc => src/arch/alpha/tru64/system.cc
rename : cpu/base.cc => src/cpu/base.cc
rename : cpu/base.hh => src/cpu/base.hh
rename : cpu/base_dyn_inst.hh => src/cpu/base_dyn_inst.hh
rename : cpu/checker/cpu.hh => src/cpu/checker/cpu.hh
rename : cpu/checker/cpu.cc => src/cpu/checker/cpu_impl.hh
rename : cpu/o3/alpha_cpu_builder.cc => src/cpu/o3/alpha/cpu_builder.cc
rename : cpu/checker/o3_cpu_builder.cc => src/cpu/o3/checker_builder.cc
rename : cpu/o3/commit_impl.hh => src/cpu/o3/commit_impl.hh
rename : cpu/o3/cpu.cc => src/cpu/o3/cpu.cc
rename : cpu/o3/fetch_impl.hh => src/cpu/o3/fetch_impl.hh
rename : cpu/o3/iew.hh => src/cpu/o3/iew.hh
rename : cpu/o3/iew_impl.hh => src/cpu/o3/iew_impl.hh
rename : cpu/o3/inst_queue.hh => src/cpu/o3/inst_queue.hh
rename : cpu/o3/inst_queue_impl.hh => src/cpu/o3/inst_queue_impl.hh
rename : cpu/o3/lsq_impl.hh => src/cpu/o3/lsq_impl.hh
rename : cpu/o3/lsq_unit.hh => src/cpu/o3/lsq_unit.hh
rename : cpu/o3/lsq_unit_impl.hh => src/cpu/o3/lsq_unit_impl.hh
rename : cpu/o3/mem_dep_unit_impl.hh => src/cpu/o3/mem_dep_unit_impl.hh
rename : cpu/o3/rename.hh => src/cpu/o3/rename.hh
rename : cpu/o3/rename_impl.hh => src/cpu/o3/rename_impl.hh
rename : cpu/o3/thread_state.hh => src/cpu/o3/thread_state.hh
rename : cpu/o3/tournament_pred.cc => src/cpu/o3/tournament_pred.cc
rename : cpu/o3/tournament_pred.hh => src/cpu/o3/tournament_pred.hh
rename : cpu/checker/cpu_builder.cc => src/cpu/ozone/checker_builder.cc
rename : cpu/ozone/cpu.hh => src/cpu/ozone/cpu.hh
rename : cpu/ozone/cpu_builder.cc => src/cpu/ozone/cpu_builder.cc
rename : cpu/ozone/cpu_impl.hh => src/cpu/ozone/cpu_impl.hh
rename : cpu/ozone/front_end.hh => src/cpu/ozone/front_end.hh
rename : cpu/ozone/front_end_impl.hh => src/cpu/ozone/front_end_impl.hh
rename : cpu/ozone/inorder_back_end_impl.hh => src/cpu/ozone/inorder_back_end_impl.hh
rename : cpu/ozone/inst_queue_impl.hh => src/cpu/ozone/inst_queue_impl.hh
rename : cpu/ozone/lw_back_end.hh => src/cpu/ozone/lw_back_end.hh
rename : cpu/ozone/lw_back_end_impl.hh => src/cpu/ozone/lw_back_end_impl.hh
rename : cpu/ozone/lw_lsq.hh => src/cpu/ozone/lw_lsq.hh
rename : cpu/ozone/lw_lsq_impl.hh => src/cpu/ozone/lw_lsq_impl.hh
rename : cpu/ozone/simple_params.hh => src/cpu/ozone/simple_params.hh
rename : cpu/ozone/thread_state.hh => src/cpu/ozone/thread_state.hh
rename : cpu/simple/cpu.cc => src/cpu/simple/base.cc
rename : cpu/cpu_exec_context.cc => src/cpu/simple_thread.cc
rename : cpu/thread_state.hh => src/cpu/thread_state.hh
rename : dev/ide_disk.hh => src/dev/ide_disk.hh
rename : python/m5/objects/BaseCPU.py => src/python/m5/objects/BaseCPU.py
rename : python/m5/objects/AlphaFullCPU.py => src/python/m5/objects/O3CPU.py
rename : python/m5/objects/OzoneCPU.py => src/python/m5/objects/OzoneCPU.py
rename : python/m5/objects/Root.py => src/python/m5/objects/Root.py
rename : python/m5/objects/System.py => src/python/m5/objects/System.py
rename : sim/eventq.hh => src/sim/eventq.hh
rename : sim/pseudo_inst.cc => src/sim/pseudo_inst.cc
rename : sim/pseudo_inst.hh => src/sim/pseudo_inst.hh
rename : sim/serialize.cc => src/sim/serialize.cc
rename : sim/stat_control.cc => src/sim/stat_control.cc
rename : sim/stat_control.hh => src/sim/stat_control.hh
rename : sim/system.hh => src/sim/system.hh
extra : convert_revision : 135d90e43f6cea89f9460ba4e23f4b0b85886e7d
|
|
configs/common/Benchmarks.py:
add annotate test app
src/SConscript:
add annotate.cc to lis
src/arch/alpha/isa/decoder.isa:
add annotate instructions
src/base/traceflags.py:
Add annotate trace flag
src/sim/pseudo_inst.cc:
src/sim/pseudo_inst.hh:
add annotate pseudo ops
util/m5/m5op.S:
util/m5/m5op.h:
add anotate ops
--HG--
extra : convert_revision : 7f965c0d84e41ce34f2ec8ec27a009276d67d8d6
|