Age | Commit message (Collapse) | Author |
|
Generating dependency/build product information in the isa parser breaks scons
idea of how a build is supposed to work. Arm twisting it into working forced
a lot of false dependencies which slowed down the build.
Change-Id: Iadee8c930fd7c80136d200d69870df7672a6b3ca
Reviewed-on: https://gem5-review.googlesource.com/5081
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
Result of running 'hg m5style --skip-all --fix-white -a'.
|
|
This adds support for FreeBSD/aarch64 FS and SE mode (basic set of syscalls only)
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
We currently don't handle unaligned PCs correctly. There is one check
for unaligned PCs in the TLB when running in aarch64 mode, but this
check does not cover cases where the CPU does not do a TLB lookup when
decoding an instruction (e.g., a branch stays within the same cache
line). Additionally, the Decoder class sometimes throws an assertion
for unaligned PCs which breaks speculation.
This changeset introduces a decoder fault bit field in the ExtMachInst
structure. This field can be used to signal a decoder failure. If set,
the decoder generates an internal gem5fault instruction instead of a
normal instruction. This instruction in turns either panics (fault
type PANIC), returns an PCAlignmentFault (fault type UNALIGNED,
aarch64) or PrefetchAbort (fault type UNALIGNED, aarch32).
The patch causes minor changes to the realview64 regressions, and a
stats bump will follow.
|
|
This class implements a subset of the ARM PMU v3 specification as
described in the ARMv8 reference manual. It supports most of the
features of the PMU, however the following features are known to be
missing:
* Event filtering (e.g., from different privilege levels).
* Access controls (the PMU currently ignores the execution level).
* The chain counter (event no. 0x1E) is unimplemented.
The PMU itself does not implement any events, it merely provides an
interface for the configuration scripts to hook up probes that drive
events. Configuration scripts should call addEventProbe() to configure
custom events or high-level methods to configure architected
events. The Python implementation of addEventProbe() automatically
delays event type registration until after instantiation.
In order to support CPU switching and some combined counters (e.g.,
memory references synthesized from loads and stores), the PMU allows
multiple probes per event type. When creating a system that switches
between CPU models that share the same PMU, PMU events for all of the
CPU models can be registered with the PMU.
Kudos to Matt Horsnell for the initial gem5 implementation of the PMU.
|
|
This patch encompasses several interrelated and interdependent changes
to the ISA generation step. The end goal is to reduce the size of the
generated compilation units for instruction execution and decoding so
that batch compilation can proceed with all CPUs active without
exhausting physical memory.
The ISA parser (src/arch/isa_parser.py) has been improved so that it can
accept 'split [output_type];' directives at the top level of the grammar
and 'split(output_type)' python calls within 'exec {{ ... }}' blocks.
This has the effect of "splitting" the files into smaller compilation
units. I use air-quotes around "splitting" because the files themselves
are not split, but preprocessing directives are inserted to have the same
effect.
Architecturally, the ISA parser has had some changes in how it works.
In general, it emits code sooner. It doesn't generate per-CPU files,
and instead defers to the C preprocessor to create the duplicate copies
for each CPU type. Likewise there are more files emitted and the C
preprocessor does more substitution that used to be done by the ISA parser.
Finally, the build system (SCons) needs to be able to cope with a
dynamic list of source files coming out of the ISA parser. The changes
to the SCons{cript,truct} files support this. In broad strokes, the
targets requested on the command line are hidden from SCons until all
the build dependencies are determined, otherwise it would try, realize
it can't reach the goal, and terminate in failure. Since build steps
(i.e. running the ISA parser) must be taken to determine the file list,
several new build stages have been inserted at the very start of the
build. First, the build dependencies from the ISA parser will be emitted
to arch/$ISA/generated/inc.d, which is then read by a new SCons builder
to finalize the dependencies. (Once inc.d exists, the ISA parser will not
need to be run to complete this step.) Once the dependencies are known,
the 'Environments' are made by the makeEnv() function. This function used
to be called before the build began but now happens during the build.
It is easy to see that this step is quite slow; this is a known issue
and it's important to realize that it was already slow, but there was
no obvious cause to attribute it to since nothing was displayed to the
terminal. Since new steps that used to be performed serially are now in a
potentially-parallel build phase, the pathname handling in the SCons scripts
has been tightened up to deal with chdir() race conditions. In general,
pathnames are computed earlier and more likely to be stored, passed around,
and processed as absolute paths rather than relative paths. In the end,
some of these issues had to be fixed by inserting serializing dependencies
in the build.
Minor note:
For the null ISA, we just provide a dummy inc.d so SCons is never
compelled to try to generate it. While it seems slightly wrong to have
anything in src/arch/*/generated (i.e. a non-generated 'generated' file),
it's by far the simplest solution.
|
|
Note: AArch64 and AArch32 interworking is not supported. If you use an AArch64
kernel you are restricted to AArch64 user-mode binaries. This will be addressed
in a later patch.
Note: Virtualization is only supported in AArch32 mode. This will also be fixed
in a later patch.
Contributors:
Giacomo Gabrielli (TrustZone, LPAE, system-level AArch64, AArch64 NEON, validation)
Thomas Grocutt (AArch32 Virtualization, AArch64 FP, validation)
Mbou Eyole (AArch64 NEON, validation)
Ali Saidi (AArch64 Linux support, code integration, validation)
Edmund Grimley-Evans (AArch64 FP)
William Wang (AArch64 Linux support)
Rene De Jong (AArch64 Linux support, performance opt.)
Matt Horsnell (AArch64 MP, validation)
Matt Evans (device models, code integration, validation)
Chris Adeniyi-Jones (AArch64 syscall-emulation)
Prakash Ramrakhyani (validation)
Dam Sunwoo (validation)
Chander Sudanthi (validation)
Stephan Diestelhorst (validation)
Andreas Hansson (code integration, performance opt.)
Eric Van Hensbergen (performance opt.)
Gabe Black
|
|
The ISA class on stores the contents of ID registers on many
architectures. In order to make reset values of such registers
configurable, we make the class inherit from SimObject, which allows
us to use the normal generated parameter headers.
This patch introduces a Python helper method, BaseCPU.createThreads(),
which creates a set of ISAs for each of the threads in an SMT
system. Although it is currently only needed when creating
multi-threaded CPUs, it should always be called before instantiating
the system as this is an obvious place to configure ID registers
identifying a thread/CPU.
|
|
|
|
|
|
These classes are always used together, and merging them will give the ISAs
more flexibility in how they cache things and manage the process.
--HG--
rename : src/arch/x86/predecoder_tables.cc => src/arch/x86/decoder_tables.cc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--HG--
rename : src/arch/alpha/remote_gdb.cc => src/arch/arm/remote_gdb.cc
|
|
for debugging and program introspection.
|
|
|
|
|
|
--HG--
rename : src/arch/arm/predecoder.hh => src/arch/arm/predecoder.cc
|
|
|
|
|
|
that has cruft from 4 different ISAs.
|
|
|
|
|
|
|
|
This code doesn't use the parser at all, and moving it out reduces the
conceptual complexity of that code.
|
|
|
|
--HG--
rename : src/arch/sparc/interrupts.hh => src/arch/arm/interrupts.hh
rename : src/arch/sparc/kernel_stats.hh => src/arch/arm/kernel_stats.hh
rename : src/arch/sparc/stacktrace.cc => src/arch/arm/stacktrace.cc
rename : src/arch/sparc/system.cc => src/arch/arm/system.cc
rename : src/arch/sparc/system.hh => src/arch/arm/system.hh
rename : src/dev/sparc/T1000.py => src/dev/arm/Versatile.py
rename : src/dev/sparc/t1000.cc => src/dev/arm/versatile.cc
rename : src/dev/sparc/t1000.hh => src/dev/arm/versatile.hh
|
|
Implement some fault classes using the curriously recurring template pattern,
similar to SPARCs.
|
|
--HG--
rename : src/arch/sparc/SparcNativeTrace.py => src/arch/arm/ArmNativeTrace.py
rename : src/arch/sparc/nativetrace.cc => src/arch/arm/nativetrace.cc
rename : src/arch/sparc/nativetrace.hh => src/arch/arm/nativetrace.hh
|
|
|
|
This file is for register indices, Num* constants, and register types.
copyRegs and copyMiscRegs were moved to utility.hh and utility.cc.
--HG--
rename : src/arch/alpha/regfile.hh => src/arch/alpha/registers.hh
rename : src/arch/arm/regfile.hh => src/arch/arm/registers.hh
rename : src/arch/mips/regfile.hh => src/arch/mips/registers.hh
rename : src/arch/sparc/regfile.hh => src/arch/sparc/registers.hh
rename : src/arch/x86/regfile.hh => src/arch/x86/registers.hh
|
|
--HG--
rename : src/arch/arm/regfile/misc_regfile.hh => src/arch/arm/misc_regfile.hh
rename : src/arch/arm/regfile/regfile.cc => src/arch/arm/regfile.cc
rename : src/arch/mips/regfile/misc_regfile.cc => src/arch/mips/misc_regfile.cc
rename : src/arch/mips/regfile/misc_regfile.hh => src/arch/mips/misc_regfile.hh
|
|
This object encapsulates (or will eventually) the identity and characteristics
of the ISA in the CPU.
|
|
|
|
|
|
|