summaryrefslogtreecommitdiff
path: root/src/arch/arm/insts/vfp.hh
AgeCommit message (Collapse)Author
2018-03-26arch: Fix all override related warnings.Gabe Black
Clang has started(?) reporting override related warnings, something gcc apparently did before, but was disabled in the SConstruct. Rather than disable the warnings in for clang as well, this change fixes the warnings. A future change will re-enable the warnings for gcc. Change-Id: I3cc79e45749b2ae0f9bebb1acadc56a3d3a942da Reviewed-on: https://gem5-review.googlesource.com/9343 Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Maintainer: Gabe Black <gabeblack@google.com>
2017-05-19base, sim, arch: Fix clang 5.0 warningsAndreas Sandberg
Compiling gem5 with recent version of clang (4 and 5) triggers warnings that are treated as errors: * Global templatized static functions result in a warning if they are not used. These should either be declared as static inline or without the static identifier to avoid the warning. * Some templatized classes contain static variables. The instantiated versions of these variables / templates need to be explicitly declared to avoid a compiler warning. Change-Id: Ie8261144836e94ebab7ea04ccccb90927672c257 Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-by: Curtis Dunham <curtis.dunham@arm.com> Reviewed-on: https://gem5-review.googlesource.com/3420 Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
2016-10-13isa,arm: Add missing AArch32 FP instructionsMitch Hayenga
This commit adds missing non-predicated, scalar floating point instructions. Specifically VRINT* floating point integer rounding instructions and VSEL* floating point conditional selects. Change-Id: I23cbd1389f151389ac8beb28a7d18d5f93d000e7 Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-by: Nathanael Premillieu <nathanael.premillieu@arm.com>
2016-02-06style: fix missing spaces in control statementsSteve Reinhardt
Result of running 'hg m5style --skip-all --fix-control -a'.
2014-01-24arm: Add support for ARMv8 (AArch64 & AArch32)ARM gem5 Developers
Note: AArch64 and AArch32 interworking is not supported. If you use an AArch64 kernel you are restricted to AArch64 user-mode binaries. This will be addressed in a later patch. Note: Virtualization is only supported in AArch32 mode. This will also be fixed in a later patch. Contributors: Giacomo Gabrielli (TrustZone, LPAE, system-level AArch64, AArch64 NEON, validation) Thomas Grocutt (AArch32 Virtualization, AArch64 FP, validation) Mbou Eyole (AArch64 NEON, validation) Ali Saidi (AArch64 Linux support, code integration, validation) Edmund Grimley-Evans (AArch64 FP) William Wang (AArch64 Linux support) Rene De Jong (AArch64 Linux support, performance opt.) Matt Horsnell (AArch64 MP, validation) Matt Evans (device models, code integration, validation) Chris Adeniyi-Jones (AArch64 syscall-emulation) Prakash Ramrakhyani (validation) Dam Sunwoo (validation) Chander Sudanthi (validation) Stephan Diestelhorst (validation) Andreas Hansson (code integration, performance opt.) Eric Van Hensbergen (performance opt.) Gabe Black
2012-03-01ARM: fix bits-to-fp conversion function declarations.Giacomo Gabrielli
Add extra declarations to allow the compiler to pick up the right function. Please note that these declarations have been added as part of the clang-related changes.
2012-01-31clang: Enable compiling gem5 using clang 2.9 and 3.0Koan-Sin Tan
This patch adds the necessary flags to the SConstruct and SConscript files for compiling using clang 2.9 and later (on Ubuntu et al and OSX XCode 4.2), and also cleans up a bunch of compiler warnings found by clang. Most of the warnings are related to hidden virtual functions, comparisons with unsigneds >= 0, and if-statements with empty bodies. A number of mismatches between struct and class are also fixed. clang 2.8 is not working as it has problems with class names that occur in multiple namespaces (e.g. Statistics in kernel_stats.hh). clang has a bug (http://llvm.org/bugs/show_bug.cgi?id=7247) which causes confusion between the container std::set and the function Packet::set, and this is currently addressed by not including the entire namespace std, but rather selecting e.g. "using std::vector" in the appropriate places.
2011-04-15includes: sort all includesNathan Binkert
2010-10-31ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.Gabe Black
This change is a low level and pervasive reorganization of how PCs are managed in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about, the PC and the NPC, and the lsb of the PC signaled whether or not you were in PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next micropc, x86 and ARM introduced variable length instruction sets, and ARM started to keep track of mode bits in the PC. Each CPU model handled PCs in its own custom way that needed to be updated individually to handle the new dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack, the complexity could be hidden in the ISA at the ISA implementation's expense. Areas like the branch predictor hadn't been updated to handle branch delay slots or micropcs, and it turns out that had introduced a significant (10s of percent) performance bug in SPARC and to a lesser extend MIPS. Rather than perpetuate the problem by reworking O3 again to handle the PC features needed by x86, this change was introduced to rework PC handling in a more modular, transparent, and hopefully efficient way. PC type: Rather than having the superset of all possible elements of PC state declared in each of the CPU models, each ISA defines its own PCState type which has exactly the elements it needs. A cross product of canned PCState classes are defined in the new "generic" ISA directory for ISAs with/without delay slots and microcode. These are either typedef-ed or subclassed by each ISA. To read or write this structure through a *Context, you use the new pcState() accessor which reads or writes depending on whether it has an argument. If you just want the address of the current or next instruction or the current micro PC, you can get those through read-only accessors on either the PCState type or the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the move away from readPC. That name is ambiguous since it's not clear whether or not it should be the actual address to fetch from, or if it should have extra bits in it like the PAL mode bit. Each class is free to define its own functions to get at whatever values it needs however it needs to to be used in ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the PC and into a separate field like ARM. These types can be reset to a particular pc (where npc = pc + sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as appropriate), printed, serialized, and compared. There is a branching() function which encapsulates code in the CPU models that checked if an instruction branched or not. Exactly what that means in the context of branch delay slots which can skip an instruction when not taken is ambiguous, and ideally this function and its uses can be eliminated. PCStates also generally know how to advance themselves in various ways depending on if they point at an instruction, a microop, or the last microop of a macroop. More on that later. Ideally, accessing all the PCs at once when setting them will improve performance of M5 even though more data needs to be moved around. This is because often all the PCs need to be manipulated together, and by getting them all at once you avoid multiple function calls. Also, the PCs of a particular thread will have spatial locality in the cache. Previously they were grouped by element in arrays which spread out accesses. Advancing the PC: The PCs were previously managed entirely by the CPU which had to know about PC semantics, try to figure out which dimension to increment the PC in, what to set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction with the PC type itself. Because most of the information about how to increment the PC (mainly what type of instruction it refers to) is contained in the instruction object, a new advancePC virtual function was added to the StaticInst class. Subclasses provide an implementation that moves around the right element of the PC with a minimal amount of decision making. In ISAs like Alpha, the instructions always simply assign NPC to PC without having to worry about micropcs, nnpcs, etc. The added cost of a virtual function call should be outweighed by not having to figure out as much about what to do with the PCs and mucking around with the extra elements. One drawback of making the StaticInsts advance the PC is that you have to actually have one to advance the PC. This would, superficially, seem to require decoding an instruction before fetch could advance. This is, as far as I can tell, realistic. fetch would advance through memory addresses, not PCs, perhaps predicting new memory addresses using existing ones. More sophisticated decisions about control flow would be made later on, after the instruction was decoded, and handed back to fetch. If branching needs to happen, some amount of decoding needs to happen to see that it's a branch, what the target is, etc. This could get a little more complicated if that gets done by the predecoder, but I'm choosing to ignore that for now. Variable length instructions: To handle variable length instructions in x86 and ARM, the predecoder now takes in the current PC by reference to the getExtMachInst function. It can modify the PC however it needs to (by setting NPC to be the PC + instruction length, for instance). This could be improved since the CPU doesn't know if the PC was modified and always has to write it back. ISA parser: To support the new API, all PC related operand types were removed from the parser and replaced with a PCState type. There are two warts on this implementation. First, as with all the other operand types, the PCState still has to have a valid operand type even though it doesn't use it. Second, using syntax like PCS.npc(target) doesn't work for two reasons, this looks like the syntax for operand type overriding, and the parser can't figure out if you're reading or writing. Instructions that use the PCS operand (which I've consistently called it) need to first read it into a local variable, manipulate it, and then write it back out. Return address stack: The return address stack needed a little extra help because, in the presence of branch delay slots, it has to merge together elements of the return PC and the call PC. To handle that, a buildRetPC utility function was added. There are basically only two versions in all the ISAs, but it didn't seem short enough to put into the generic ISA directory. Also, the branch predictor code in O3 and InOrder were adjusted so that they always store the PC of the actual call instruction in the RAS, not the next PC. If the call instruction is a microop, the next PC refers to the next microop in the same macroop which is probably not desirable. The buildRetPC function advances the PC intelligently to the next macroop (in an ISA specific way) so that that case works. Change in stats: There were no change in stats except in MIPS and SPARC in the O3 model. MIPS runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could likely be improved further by setting call/return instruction flags and taking advantage of the RAS. TODO: Add != operators to the PCState classes, defined trivially to be !(a==b). Smooth out places where PCs are split apart, passed around, and put back together later. I think this might happen in SPARC's fault code. Add ISA specific constructors that allow setting PC elements without calling a bunch of accessors. Try to eliminate the need for the branching() function. Factor out Alpha's PAL mode pc bit into a separate flag field, and eliminate places where it's blindly masked out or tested in the PC.
2010-08-25ARM: Implement all ARM SIMD instructions.Gabe Black
2010-06-02ARM: Move code from vfp.hh to vfp.cc.Gabe Black
2010-06-02ARM: Implement conversion to/from half precision.Gabe Black
2010-06-02ARM: Clean up VFPGabe Black
2010-06-02ARM: Clean up the implementation of the VFP instructions.Gabe Black
2010-06-02ARM: Fix vcvtr so that it uses the rounding mode in the FPSCR.Gabe Black
2010-06-02ARM: Compensate for ARM's underflow coming from -before- rounding, but x86's ↵Gabe Black
after.
2010-06-02ARM: Implement flush to zero for destinations as well.Gabe Black
2010-06-02ARM: Fix up nans to match ARM's expected behavior.Gabe Black
2010-06-02ARM: Implement flush to zero mode for VFP, and clean up some corner cases.Gabe Black
2010-06-02ARM: Add barriers that make sure FP operations happen where they're supposed to.Gabe Black
2010-06-02ARM: Implement the floating/fixed point VCVT instructions.Gabe Black
2010-06-02ARM: Add code to extract and record VFP exceptions.Gabe Black
2010-06-02ARM: Add support for VFP vector mode.Gabe Black
2010-06-02ARM: Introduce new VFP base classes that are optionally microops.Gabe Black