summaryrefslogtreecommitdiff
path: root/src/arch/arm/isa/formats
AgeCommit message (Collapse)Author
2013-05-14arm: Add support for the m5fail pseudo-opAndreas Sandberg
2013-02-19scons: Add warning for missing declarationsAndreas Hansson
This patch enables warnings for missing declarations. To avoid issues with SWIG-generated code, the warning is only applied to non-SWIG code.
2013-02-19scons: Fix up numerous warnings about name shadowingAndreas Hansson
This patch address the most important name shadowing warnings (as produced when using gcc/clang with -Wshadow). There are many locations where constructor parameters and function parameters shadow local variables, but these are left unchanged.
2012-03-21ARM: Clean up condCodes in IT blocks.Ali Saidi
2012-03-01ARM: Add limited CP14 support.Matt Horsnell
New kernels attempt to read CP14 what debug architecture is available. These changes add the debug registers and return that none is currently available.
2012-01-31Merge with head, hopefully the last time for this batch.Gabe Black
2012-01-31util: implements "writefile" gem5 op to export file from guest to host ↵Dam Sunwoo
filesystem Usage: m5 writefile <filename> File will be created in the gem5 output folder with the identical filename. Implementation is largely based on the existing "readfile" functionality. Currently does not support exporting of folders.
2012-01-07Merge with main repository.Gabe Black
2011-11-02SE/FS: Get rid of FULL_SYSTEM in the ARM ISA.Gabe Black
2011-10-31GCC: Get everything working with gcc 4.6.1.Gabe Black
And by "everything" I mean all the quick regressions.
2011-09-13CP15 c15: enable execution with accesses to c15 registersChander Sudanthi
Previously, coprocessor accesses to CP15 c15 would fault. This patch enables accesses but prints out a warning, as the registers are not implemented.
2011-08-19ARM: Add support for DIV/SDIV instructions.Ali Saidi
2011-06-17ARM: Add m5ops and related support for workbegin() and workend() to ARM ISA.Gedare Bloom
2011-05-13ARM: Construct the predicate test register for more instruction programatically.Ali Saidi
If one of the condition codes isn't being used in the execution we should only read it if the instruction might be dependent on it. With the preeceding changes there are several more cases where we should dynamically pick instead of assuming as we did before.
2011-05-13ARM: Further break up condition code into NZ, C, V bits.Ali Saidi
Break up the condition code bits into NZ, C, V registers. These are individually written and this removes some incorrect dependencies between instructions.
2011-05-13ARM: Break up condition codes into normal flags, saturation, and simd.Ali Saidi
This change splits out the condcodes from being one monolithic register into three blocks that are updated independently. This allows CPUs to not have to do RMW operations on the flags registers for instructions that don't write all flags.
2011-05-04ARM: Fix small bug with vcvt instructionAli Saidi
2011-03-17ARM: Fix small bug with VLDM/VSTM instructions.Ali Saidi
2011-02-23ARM: Do something for ISB, DSB, DMBAli Saidi
2011-02-23ARM: Adds dummy support for a L2 latency miscreg.Ali Saidi
2011-01-18ARM: The ARM decoder should not panic when decoding undefined holes is arch.Matt Horsnell
This can abort simulations when the fetch unit runs ahead and speculatively decodes instructions that are off the execution path.
2010-11-15ARM: Return an FailUnimp instruction when an unimplemented CP15 register is ↵Ali Saidi
accessed. Just panicing in readMiscReg() doesn't work because a speculative access in the o3 model can end the simulation.
2010-11-08ARM: Add support for M5 ops in the ARM ISAAli Saidi
2010-10-31ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.Gabe Black
This change is a low level and pervasive reorganization of how PCs are managed in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about, the PC and the NPC, and the lsb of the PC signaled whether or not you were in PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next micropc, x86 and ARM introduced variable length instruction sets, and ARM started to keep track of mode bits in the PC. Each CPU model handled PCs in its own custom way that needed to be updated individually to handle the new dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack, the complexity could be hidden in the ISA at the ISA implementation's expense. Areas like the branch predictor hadn't been updated to handle branch delay slots or micropcs, and it turns out that had introduced a significant (10s of percent) performance bug in SPARC and to a lesser extend MIPS. Rather than perpetuate the problem by reworking O3 again to handle the PC features needed by x86, this change was introduced to rework PC handling in a more modular, transparent, and hopefully efficient way. PC type: Rather than having the superset of all possible elements of PC state declared in each of the CPU models, each ISA defines its own PCState type which has exactly the elements it needs. A cross product of canned PCState classes are defined in the new "generic" ISA directory for ISAs with/without delay slots and microcode. These are either typedef-ed or subclassed by each ISA. To read or write this structure through a *Context, you use the new pcState() accessor which reads or writes depending on whether it has an argument. If you just want the address of the current or next instruction or the current micro PC, you can get those through read-only accessors on either the PCState type or the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the move away from readPC. That name is ambiguous since it's not clear whether or not it should be the actual address to fetch from, or if it should have extra bits in it like the PAL mode bit. Each class is free to define its own functions to get at whatever values it needs however it needs to to be used in ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the PC and into a separate field like ARM. These types can be reset to a particular pc (where npc = pc + sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as appropriate), printed, serialized, and compared. There is a branching() function which encapsulates code in the CPU models that checked if an instruction branched or not. Exactly what that means in the context of branch delay slots which can skip an instruction when not taken is ambiguous, and ideally this function and its uses can be eliminated. PCStates also generally know how to advance themselves in various ways depending on if they point at an instruction, a microop, or the last microop of a macroop. More on that later. Ideally, accessing all the PCs at once when setting them will improve performance of M5 even though more data needs to be moved around. This is because often all the PCs need to be manipulated together, and by getting them all at once you avoid multiple function calls. Also, the PCs of a particular thread will have spatial locality in the cache. Previously they were grouped by element in arrays which spread out accesses. Advancing the PC: The PCs were previously managed entirely by the CPU which had to know about PC semantics, try to figure out which dimension to increment the PC in, what to set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction with the PC type itself. Because most of the information about how to increment the PC (mainly what type of instruction it refers to) is contained in the instruction object, a new advancePC virtual function was added to the StaticInst class. Subclasses provide an implementation that moves around the right element of the PC with a minimal amount of decision making. In ISAs like Alpha, the instructions always simply assign NPC to PC without having to worry about micropcs, nnpcs, etc. The added cost of a virtual function call should be outweighed by not having to figure out as much about what to do with the PCs and mucking around with the extra elements. One drawback of making the StaticInsts advance the PC is that you have to actually have one to advance the PC. This would, superficially, seem to require decoding an instruction before fetch could advance. This is, as far as I can tell, realistic. fetch would advance through memory addresses, not PCs, perhaps predicting new memory addresses using existing ones. More sophisticated decisions about control flow would be made later on, after the instruction was decoded, and handed back to fetch. If branching needs to happen, some amount of decoding needs to happen to see that it's a branch, what the target is, etc. This could get a little more complicated if that gets done by the predecoder, but I'm choosing to ignore that for now. Variable length instructions: To handle variable length instructions in x86 and ARM, the predecoder now takes in the current PC by reference to the getExtMachInst function. It can modify the PC however it needs to (by setting NPC to be the PC + instruction length, for instance). This could be improved since the CPU doesn't know if the PC was modified and always has to write it back. ISA parser: To support the new API, all PC related operand types were removed from the parser and replaced with a PCState type. There are two warts on this implementation. First, as with all the other operand types, the PCState still has to have a valid operand type even though it doesn't use it. Second, using syntax like PCS.npc(target) doesn't work for two reasons, this looks like the syntax for operand type overriding, and the parser can't figure out if you're reading or writing. Instructions that use the PCS operand (which I've consistently called it) need to first read it into a local variable, manipulate it, and then write it back out. Return address stack: The return address stack needed a little extra help because, in the presence of branch delay slots, it has to merge together elements of the return PC and the call PC. To handle that, a buildRetPC utility function was added. There are basically only two versions in all the ISAs, but it didn't seem short enough to put into the generic ISA directory. Also, the branch predictor code in O3 and InOrder were adjusted so that they always store the PC of the actual call instruction in the RAS, not the next PC. If the call instruction is a microop, the next PC refers to the next microop in the same macroop which is probably not desirable. The buildRetPC function advances the PC intelligently to the next macroop (in an ISA specific way) so that that case works. Change in stats: There were no change in stats except in MIPS and SPARC in the O3 model. MIPS runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could likely be improved further by setting call/return instruction flags and taking advantage of the RAS. TODO: Add != operators to the PCState classes, defined trivially to be !(a==b). Smooth out places where PCs are split apart, passed around, and put back together later. I think this might happen in SPARC's fault code. Add ISA specific constructors that allow setting PC elements without calling a bunch of accessors. Try to eliminate the need for the branching() function. Factor out Alpha's PAL mode pc bit into a separate flag field, and eliminate places where it's blindly masked out or tested in the PC.
2010-08-25ARM: Adding a bogus fault that does nothing.Min Kyu Jeong
This fault can used to flush the pipe, not including the faulting instruction. The particular case I needed this was for a self-modifying code. It needed to drain the store queue and force the following instruction to refetch from icache. DCCMVAC cp15 mcr instruction is modified to raise this fault.
2010-08-25ARM: Seperate out the renamable bits in the FPSCR.Gabe Black
2010-08-25ARM: Implement all ARM SIMD instructions.Gabe Black
2010-08-23ARM: Implement DBG instruction that doesn't do much for now.Gene Wu
2010-08-23ARM: Implement DSB, DMB, ISBGene Wu
2010-08-23ARM: Implement CLREXGene Wu
2010-08-23ARM: BX instruction can be contitional if last instruction in a IT blockGene Wu
Branches are allowed to be the last instuction in an IT block. Before it was assumed that they could not. So Branches in thumb2 were Uncond.
2010-08-23ARM: Decode neon memory instructions.Ali Saidi
2010-08-23ARM: Implement some more misc registersAli Saidi
2010-07-15ARM: Make an SRS instruction with a bad mode cause an undefined instruction ↵Gabe Black
fault.
2010-06-02ARM: Decode the neon instruction space.Gabe Black
2010-06-02ARM: Combine some redundant cases in one of the data decode functions.Gabe Black
2010-06-02ARM: Get rid of the binary dumping function in utility.hh.Gabe Black
2010-06-02ARM: Decode to specialized conditional/unconditional versions of instructions.Gabe Black
This is to avoid condition code based dependences from effectively serializing instructions when the instruction doesn't actually use them.
2010-06-02ARM: Make sure undefined unconditional ARM instructions decode as such.Gabe Black
2010-06-02ARM: Implement a version of mcr and mrc that works in user mode.Gabe Black
2010-06-02ARM: Hook the misc instructions into the thumb decoder.Gabe Black
2010-06-02ARM: Move some miscellaneous instructions out of the decoder to share with ↵Gabe Black
thumb.
2010-06-02ARM: Treat LDRD in ARM with an odd index as an undefined instruction.Gabe Black
2010-06-02ARM: Detect a bad offset field for the VFP Ldm/Stm instructions in the decoder.Gabe Black
2010-06-02ARM: Implement the bkpt instruction.Gabe Black
2010-06-02ARM: Make undefined instructions obey predication.Gabe Black
2010-06-02ARM: Implement support for the IT instruction and the ITSTATE bits of CPSR.Gabe Black
2010-06-02ARM: Get rid of some of the old FP implementation.Gabe Black
2010-06-02ARM: Implement the ARM TLB/Tablewalker. Needs performance improvements.Ali Saidi
2010-06-02ARM: Add BKPT instructionAli Saidi
--HG-- rename : src/arch/arm/isa/formats/unknown.isa => src/arch/arm/isa/formats/breakpoint.isa