Age | Commit message (Collapse) | Author |
|
With the hierarchical RegId there are a lot of functions that are
redundant now.
The idea behind the simplification is that instead of having the regId,
telling which kind of register read/write/rename/lookup/etc. and then
the function panic_if'ing if the regId is not of the appropriate type,
we provide an interface that decides what kind of register to read
depending on the register type of the given regId.
Change-Id: I7d52e9e21fc01205ae365d86921a4ceb67a57178
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
[ Fix RISCV build issues ]
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2702
|
|
The ISA code for ARM calculates min and max elements for types using
bit manipulation. That triggers some warnings, treated as errors, as
the compiler can tell that there is an overflow and the sign
flips. Fixed using standard lib definitions instead.
Change-Id: Ie2331b410c7f76d4bd87da5afe9edf20c8ac91b3
Reviewed-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/3481
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
Compiling gem5 with recent version of clang (4 and 5) triggers
warnings that are treated as errors:
* Global templatized static functions result in a warning if they
are not used. These should either be declared as static inline or
without the static identifier to avoid the warning.
* Some templatized classes contain static variables. The
instantiated versions of these variables / templates need to be
explicitly declared to avoid a compiler warning.
Change-Id: Ie8261144836e94ebab7ea04ccccb90927672c257
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/3420
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
Instructions that use the coprocessor interface check the current
program status to determine whether the current context has the
priviledges to read from/write to the coprocessor. Some modes allow
the execution of coprocessor instructions, some others do not allow it,
while some other modes are unexpected (e.g., executing an AArch32
instruction while being in an AArch64 mode).
Previously we would unconditionally trigger a panic if we were in an
unexpected mode. This change removes the panic and replaces it
with an Undefined Instruction fault that triggers if and when a
coprocessor instruction commits in an unexpected mode. This allows
speculative coprocessor instructions from unexpected modes to execute
but prevents them from gettting committed.
Change-Id: If2776d5bae2471cdbaf76d0e1ae655f501bfbf01
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Rekai Gonzalez Alberquilla <rekai.gonzalezalberquilla@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2281
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Weiping Liao <weipingliao@google.com>
|
|
Change-Id: I0e373536897aa5bb4501b00945c2a0836100ddf4
Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
Modify the opClass assigned to AArch64 FP instructions from SimdFloat* to
Float*. Also create the FloatMemRead and FloatMemWrite opClasses, which
distinguishes writes to the INT and FP register banks.
Change the latency of (Simd)FloatMultAcc to 5, based on the Cortex-A72,
where the "latency" of FMADD is 3 if the next instruction is a FMADD and
has only the augend to destination dependency, otherwise it's 7 cycles.
Signed-off-by: Jason Lowe-Power <jason@lowepower.com>
|
|
This commit adds missing non-predicated, scalar floating point
instructions. Specifically VRINT* floating point integer rounding
instructions and VSEL* floating point conditional selects.
Change-Id: I23cbd1389f151389ac8beb28a7d18d5f93d000e7
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Nathanael Premillieu <nathanael.premillieu@arm.com>
|
|
Change-Id: Id2acbc09772be310a0eb9e33295afab07e08a4fa
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
This patch restricts trapping to hypervisor only if we are in the
correct exception level for the trap to happen.
Change-Id: I0a382b6a572ef835ea36d2702b8a81b633bd3df0
|
|
This patch adds the AArch64 instruction hvc which raises an exception
from EL1 into EL2. The host OS uses this instruction to world switch
into the guest.
Change-Id: I930ee43f4f0abd4b35a68eb2a72e44e3ea6570be
|
|
Change-Id: I122918d0e3dfd01ae1a4ca4f19240a069115c8b7
|
|
The ERET instruction doesn't set PSTATE correctly in some cases
(particularly when returning to aarch32 code). Among other things,
this breaks EL0 thumb code when using a 64-bit kernel. This changeset
updates the ERET implementation to match the ARM ARM.
Change-Id: I408e7c69a23cce437859313dfe84e68744b07c98
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Nathanael Premillieu <nathanael.premillieu@arm.com>
|
|
The current implementation of aarch32 FP/SIMD in gem5 assumes that EL1
and higher are all 32-bit. This breaks interprocessing since an
aarch64 EL1 uses different enable/disable bits. This change updates
the permission checks to according to what is prescribed by the ARM
ARM.
Change-Id: Icdcef31b00644cfeebec00216b3993aa1de12b88
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Mitch Hayenga <mitch.hayenga@arm.com>
Reviewed-by: Nathanael Premillieu <nathanael.premillieu@arm.com>
|
|
This patch fixes an issue identified by ASAN where the Neon64Load
operation assumes the packet always contains 16 bytes.
Change-Id: If24a7e461d60cb80970dfbe61d923d7d56926698
Reviewed-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>
|
|
A few warnings (and thus errors) pop up after being added to -Wall:
1. -Wmisleading-indentation
In the auto-generated code there were instances of if/else blocks that
were not indented to gcc's liking. This is addressed by adding braces.
2. -Wshift-negative-value
gcc is clever enougn to consider ~0 a negative constant, and
rightfully complains. This is addressed by using mask() which
explicitly casts to unsigned before shifting.
That is all. Porting done.
|
|
Properly done for the ERET instruction in v8, but not for v7.
Many control register changes are only visible after explicit
instruction synchronization barriers or exception entry/exit.
This means mode changing instructions should squash any
younger in-flight speculative instructions.
|
|
Result of running 'hg m5style --skip-all --fix-white -a'.
|
|
For historical reasons, the ExecContext interface had a single
function, readMem(), that did two different things depending on
whether the ExecContext supported atomic memory mode (i.e.,
AtomicSimpleCPU) or timing memory mode (all the other models).
In the former case, it actually performed a memory read; in the
latter case, it merely initiated a read access, and the read
completion did not happen until later when a response packet
arrived from the memory system.
This led to some confusing things, including timing accesses
being required to provide a pointer for the return data even
though that pointer was only used in atomic mode.
This patch splits this interface, adding a new initiateMemRead()
function to the ExecContext interface to replace the timing-mode
use of readMem().
For consistency and clarity, the readMemTiming() helper function
in the ISA definitions is renamed to initiateMemRead() as well.
For x86, where the access size is passed in explicitly, we can
also get rid of the data parameter at this level. For other ISAs,
where the access size is determined from the type of the data
parameter, we have to keep the parameter for that purpose.
|
|
The key parameter can be used to read out various config parameters from
within the simulated software.
|
|
The decoder is responsible for splitting instructions in micro
operations (uops). Given that different micro architectures may split
operations differently, this patch allows to specify which micro
architecture each isa implements, so different cores in the system can
split instructions differently, also decoupling uop splitting
(microArch) from ISA (Arch). This is done making the decodification
calls templates that receive a type 'DecoderFlavour' that maps the
name of the operation to the class that implements it. This way there
is only one selection point (converting the command line enum to the
appropriate DecodeFeatures object). In addition, there is no explicit
code replication: template instantiation hides that, and the compiler
should be able to resolve a number of things at compile-time.
|
|
Adds per-thread interrupt controllers and thread/context logic
so that interrupts properly get routed in SMT systems.
|
|
ldrsh was typoed as hdrsh, which is a bit annoying when printing
instructions. This patch fixes it.
|
|
Add a missing check to ensure that exceptions are generated properly.
|
|
|
|
This changeset moves the pseudo instructions used to signal unknown
instructions and unimplemented instructions to the same source files
as the decoder fault.
|
|
While the IsFirstMicroop flag exists it was only occasionally used in the ARM
instructions that gem5 microOps and therefore couldn't be relied on to be correct.
|
|
We currently don't handle unaligned PCs correctly. There is one check
for unaligned PCs in the TLB when running in aarch64 mode, but this
check does not cover cases where the CPU does not do a TLB lookup when
decoding an instruction (e.g., a branch stays within the same cache
line). Additionally, the Decoder class sometimes throws an assertion
for unaligned PCs which breaks speculation.
This changeset introduces a decoder fault bit field in the ExtMachInst
structure. This field can be used to signal a decoder failure. If set,
the decoder generates an internal gem5fault instruction instead of a
normal instruction. This instruction in turns either panics (fault
type PANIC), returns an PCAlignmentFault (fault type UNALIGNED,
aarch64) or PrefetchAbort (fault type UNALIGNED, aarch32).
The patch causes minor changes to the realview64 regressions, and a
stats bump will follow.
|
|
Another churn to clean up undefined behaviour, mostly ARM, but some
parts also touching the generic part of the code base.
Most of the fixes are simply ensuring that proper intialisation. One
of the more subtle changes is the return type of the sign-extension,
which is changed to uint64_t. This is to avoid shifting negative
values (undefined behaviour) in the ISA code.
|
|
The checker can't verify timer registers, so it should just grab the version
from the executing CPU, otherwise it could get a larger value and diverge
execution.
|
|
Speculative exeuction can cause panics in detailed execution mode that
shouldn't happen.
|
|
This patch takes quite a large step in transitioning from the ad-hoc
RefCountingPtr to the c++11 shared_ptr by adopting its use for all
Faults. There are no changes in behaviour, and the code modifications
are mostly just replacing "new" with "make_shared".
|
|
Some incorrect casting to IntRegIndex, and a few uninitialized members
in the i8254xGBe device.
|
|
This patch fixes the runtime errors highlighted by the undefined
behaviour sanitizer. In the end there were two issues. First, when
rotating an immediate, we ended up shifting an uint32_t by 32 in some
cases. This case is fixed by checking for a rotation by 0
positions. Second, the Mrc15 and Mcr15 are operating on an IntReg and
a MiscReg, but we used the type RegRegImmOp and passed a MiscRegIndex
as an IntRegIndex. This issue is resolved by introducing a
MiscRegRegImmOp and RegMiscRegImmOp with the appropriate types.
With these fixes there are no runtime errors identified for the full
ARM regressions.
|
|
Multiple instructions assume only 32-bit load operations are available,
this patch increases load sizes to 64-bit or 128-bit for many load pair and
load multiple instructions.
|
|
Neon memory ops that operate on multiple registers currently have very poor
performance because of interleave/deinterleave micro-ops.
This patch marks the deinterleave/interleave micro-ops as "No_OpClass" such
that they take minumum cycles to execute and are never resource constrained.
Additionaly the micro-ops over-read registers. Although one form may need
to read up to 20 sources, not all do. This adds in new forms so false
dependencies are not modeled. Instructions read their minimum number of
sources.
|
|
Analogous to ee049bf (for x86). Requires a bump of the checkpoint version
and corresponding upgrader code to move the condition code register values
to the new register file.
|
|
This patch substituted the zero register for X31 used as a
destination register. This prevents false dependencies based on
X31.
|
|
v7 cbz/cbnz instructions were improperly marked as indirect branches.
|
|
We currently generate and compile one version of the ISA code per CPU
model. This is obviously wasting a lot of resources at compile
time. This changeset factors out the interface into a separate
ExecContext class, which also serves as documentation for the
interface between CPUs and the ISA code. While doing so, this
changeset also fixes up interface inconsistencies between the
different CPU models.
The main argument for using one set of ISA code per CPU model has
always been performance as this avoid indirect branches in the
generated code. However, this argument does not hold water. Booting
Linux on a simulated ARM system running in atomic mode
(opt/10.linux-boot/realview-simple-atomic) is actually 2% faster
(compiled using clang 3.4) after applying this patch. Additionally,
compilation time is decreased by 35%.
|
|
|
|
Mark branch flags onto macroops to allow branch prediction before
microop decomposition
|
|
|
|
This patch encompasses several interrelated and interdependent changes
to the ISA generation step. The end goal is to reduce the size of the
generated compilation units for instruction execution and decoding so
that batch compilation can proceed with all CPUs active without
exhausting physical memory.
The ISA parser (src/arch/isa_parser.py) has been improved so that it can
accept 'split [output_type];' directives at the top level of the grammar
and 'split(output_type)' python calls within 'exec {{ ... }}' blocks.
This has the effect of "splitting" the files into smaller compilation
units. I use air-quotes around "splitting" because the files themselves
are not split, but preprocessing directives are inserted to have the same
effect.
Architecturally, the ISA parser has had some changes in how it works.
In general, it emits code sooner. It doesn't generate per-CPU files,
and instead defers to the C preprocessor to create the duplicate copies
for each CPU type. Likewise there are more files emitted and the C
preprocessor does more substitution that used to be done by the ISA parser.
Finally, the build system (SCons) needs to be able to cope with a
dynamic list of source files coming out of the ISA parser. The changes
to the SCons{cript,truct} files support this. In broad strokes, the
targets requested on the command line are hidden from SCons until all
the build dependencies are determined, otherwise it would try, realize
it can't reach the goal, and terminate in failure. Since build steps
(i.e. running the ISA parser) must be taken to determine the file list,
several new build stages have been inserted at the very start of the
build. First, the build dependencies from the ISA parser will be emitted
to arch/$ISA/generated/inc.d, which is then read by a new SCons builder
to finalize the dependencies. (Once inc.d exists, the ISA parser will not
need to be run to complete this step.) Once the dependencies are known,
the 'Environments' are made by the makeEnv() function. This function used
to be called before the build began but now happens during the build.
It is easy to see that this step is quite slow; this is a known issue
and it's important to realize that it was already slow, but there was
no obvious cause to attribute it to since nothing was displayed to the
terminal. Since new steps that used to be performed serially are now in a
potentially-parallel build phase, the pathname handling in the SCons scripts
has been tightened up to deal with chdir() race conditions. In general,
pathnames are computed earlier and more likely to be stored, passed around,
and processed as absolute paths rather than relative paths. In the end,
some of these issues had to be fixed by inserting serializing dependencies
in the build.
Minor note:
For the null ISA, we just provide a dummy inc.d so SCons is never
compelled to try to generate it. While it seems slightly wrong to have
anything in src/arch/*/generated (i.e. a non-generated 'generated' file),
it's by far the simplest solution.
|
|
Unimplemented miscregs for the generic timer were guarded by panics
in arm/isa.cc which can be tripped by the O3 model if it speculatively
executes a wrong path containing a mrs instruction with a bad miscreg
index. These registers were flagged as implemented and accessible.
This patch changes the miscreg info bit vector to flag them as
unimplemented and inaccessible. In this case, and UndefinedInst
fault will be generated if the register access is not trapped
by a hypervisor.
|
|
With (upcoming) separate compilation, they are useless. Only
link-time optimization could re-inline them, but ideally
feedback-directed optimization would choose to do so only for
profitable (i.e. common) instructions.
|
|
|
|
FailUnimplemented passed a stack created mnemonic as a const char * which
causes some grief when the stack goes away.
|
|
There were several sections of the m5ops code which were
essentially copy/pasted versions of the 32-bit code. The
problem is that some of these didn't account fo4 64-bit
registers leading to arguments being in the wrong registers.
This patch addresses the args for readfile64, writefile64,
and addsymbol64 -- all of which seemed to suffer from a
similar set of problems when moving to 64-bit.
|
|
Note: AArch64 and AArch32 interworking is not supported. If you use an AArch64
kernel you are restricted to AArch64 user-mode binaries. This will be addressed
in a later patch.
Note: Virtualization is only supported in AArch32 mode. This will also be fixed
in a later patch.
Contributors:
Giacomo Gabrielli (TrustZone, LPAE, system-level AArch64, AArch64 NEON, validation)
Thomas Grocutt (AArch32 Virtualization, AArch64 FP, validation)
Mbou Eyole (AArch64 NEON, validation)
Ali Saidi (AArch64 Linux support, code integration, validation)
Edmund Grimley-Evans (AArch64 FP)
William Wang (AArch64 Linux support)
Rene De Jong (AArch64 Linux support, performance opt.)
Matt Horsnell (AArch64 MP, validation)
Matt Evans (device models, code integration, validation)
Chris Adeniyi-Jones (AArch64 syscall-emulation)
Prakash Ramrakhyani (validation)
Dam Sunwoo (validation)
Chander Sudanthi (validation)
Stephan Diestelhorst (validation)
Andreas Hansson (code integration, performance opt.)
Eric Van Hensbergen (performance opt.)
Gabe Black
|
|
|